1
|
van Rosmalen L, Riedstra B, Beemster N, Dijkstra C, Hut RA. Differential temperature effects on photoperiodism in female voles: A possible explanation for declines in vole populations. Mol Ecol 2022; 31:3360-3373. [PMID: 35398940 PMCID: PMC9325516 DOI: 10.1111/mec.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Many mammalian species use photoperiod as a predictive cue to time seasonal reproduction. In addition, metabolic effects on the reproductive axis may also influence seasonal timing, especially in female small, short-lived mammals. To get a better understanding of how annual cycling environmental cues impact reproductive function and plasticity in small, short-lived herbivores with different geographic origins, we investigated the mechanisms underlying integration of temperature in the photoperiodic-axis regulating female reproduction in a Northern vole species (tundra vole, Microtus oeconomus) and in a Southern vole species (common vole, Microtus arvalis). We show that photoperiod and temperature interact to determine appropriate physiological responses; there is species-dependent annual variation in the sensitivity to temperature for reproductive organ development. In common voles, temperature can overrule photoperiodical spring-programmed responses, with reproductive organ mass being higher at 10°C than at 21°C, whereas in autumn they are less sensitive to temperature. These findings are in line with our census data, showing an earlier onset of spring reproduction in cold springs, while reproductive offset in autumn is synchronized to photoperiod. The reproductive organs of tundra voles were relatively insensitive to temperature, whereas hypothalamic gene expression was generally upregulated at 10°C. Thus, both vole species use photoperiod, whereas only common voles use temperature as a cue to control spring reproduction, which indicates species-specific reproductive strategies. Due to global warming, spring reproduction in common voles will be delayed, perhaps resulting in shorter breeding seasons and thus declining populations, as observed throughout Europe.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Present address:
Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Bernd Riedstra
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nico Beemster
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Present address:
Altenburg & Wymenga Ecological ConsultantsFeanwâldenThe Netherlands
| | - Cor Dijkstra
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Caro SP, Pierre L, Bergès M, Bakker R, Doutrelant C, Bonadonna F. Mutual mate preferences and assortative mating in relation to a carotenoid-based color trait in blue tits. Behav Ecol 2021. [DOI: 10.1093/beheco/arab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Choosing an appropriate sexual partner is a critical decision for many animal species. However, many mechanisms involved in mate choice are still poorly understood. Do both males and females choose their sexual partners, do both sexes use the same criteria for choosing, and do their own phenotype influence the choices they make, are questions that need further investigation. Over two successive experiments conducted in captivity with hand-reared blue tits (Cyanistes caeruleus), we manipulated the color of the chest plumage, a secondary sexual trait that reflects an individual’s condition, to create two different color morphs (one pale and one colored). We then tested whether both sexes express a preference, whether they are attracted to the same morphs, and if the subjects’ own chest color influences the preference they show. Our data reveal that both sexes are choosy, with females tending to be slightly choosier than males. We also show that both sexes preferentially select individuals with a pale chest plumage over colorful individuals, and this was again more pronounced in females. Finally, paler individuals tend to be selected by birds that are themselves pale, even if this phenotype matching was not very robust. Such a preference for paler individuals is intriguing because mates are predicted to associate with individuals displaying higher, not lower, value of quality signals. It could result from adaptive mechanisms related to avoidance of aggressiveness in a confined environment, avoidance of conflicting sexual signals within individuals, or from cultural mechanisms leading to a preference for individuals that match its own phenotype.
Collapse
Affiliation(s)
- Samuel P Caro
- Department of Behavioural and Evolutionary Ecology, CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34090 Montpellier, France
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Léo Pierre
- Department of Behavioural and Evolutionary Ecology, CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34090 Montpellier, France
| | - Matthieu Bergès
- Department of Behavioural and Evolutionary Ecology, CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34090 Montpellier, France
| | - Raldi Bakker
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Animal Science, Behavioural Ecology Group, Wageningen University and Research (WUR), De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Claire Doutrelant
- Department of Behavioural and Evolutionary Ecology, CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34090 Montpellier, France
| | - Francesco Bonadonna
- Department of Behavioural and Evolutionary Ecology, CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34090 Montpellier, France
| |
Collapse
|
3
|
Caro SP, Cornil CA, van Oers K, Visser ME. Personality and gonadal development as sources of individual variation in response to GnRH challenge in female great tits. Proc Biol Sci 2020; 286:20190142. [PMID: 31039718 DOI: 10.1098/rspb.2019.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seasonal timing of reproduction is a key life-history trait, but we know little about the mechanisms underlying individual variation in female endocrine profiles associated with reproduction. In birds, 17β-oestradiol is a key reproductive hormone that links brain neuroendocrine mechanisms, involved in information processing and decision-making, to downstream mechanisms in the liver, where egg-yolk is produced. Here, we test, using a simulated induction of the reproductive system through a Gonadotropin-Releasing Hormone (GnRH) challenge, whether the ovary of pre-breeding female great tits responds to brain stimulation by increasing oestradiol. We also assess how this response is modified by individual-specific traits like age, ovarian follicle size, and personality, using females from lines artificially selected for divergent levels of exploratory behaviour. We show that a GnRH injection leads to a rapid increase in circulating concentrations of oestradiol, but responses varied among individuals. Females with more developed ovarian follicles showed stronger responses and females from lines selected for fast exploratory behaviour showed stronger increases compared to females from the slow line, indicating a heritable component. This study shows that the response of the ovary to reproductive stimulation from the brain greatly varies among individuals and that this variation can be attributed to several commonly measured individual traits, which sheds light on the mechanisms shaping heritable endocrine phenotypes.
Collapse
Affiliation(s)
- Samuel P Caro
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands.,2 Centre d'Ecologie Fonctionnelle et Evolutive (CEFE-CNRS), Unité Mixte de Recherche CNRS 5175 , Montpellier , France
| | | | - Kees van Oers
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| | - Marcel E Visser
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| |
Collapse
|
4
|
Dore AA, McDowall L, Rouse J, Bretman A, Gage MJG, Chapman T. The role of complex cues in social and reproductive plasticity. Behav Ecol Sociobiol 2018; 72:124. [PMID: 30100665 PMCID: PMC6060796 DOI: 10.1007/s00265-018-2539-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/13/2023]
Abstract
Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly 'mismatches' between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity.
Collapse
Affiliation(s)
- Alice A. Dore
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Laurin McDowall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - James Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
5
|
Dubuc-Messier G, Caro SP, Perrier C, van Oers K, Réale D, Charmantier A. Gene flow does not prevent personality and morphological differentiation between two blue tit populations. J Evol Biol 2018; 31:1127-1137. [PMID: 29791058 DOI: 10.1111/jeb.13291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/02/2018] [Accepted: 05/13/2018] [Indexed: 11/28/2022]
Abstract
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to 5 years. We then compared adult phenotypes between the two populations, as well as trait-specific Qst and Fst . Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. Qst -Fst comparisons revealed that the trait divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a Qst -Fst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits.
Collapse
Affiliation(s)
- Gabrielle Dubuc-Messier
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France.,Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Samuel P Caro
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Charles Perrier
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Anne Charmantier
- Centre d'Écologie Fonctionnelle et Évolutive, Unité Mixte de Recherche CNRS 5175, Montpellier, France.,Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Early Birds by Light at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits. J Biol Rhythms 2017; 32:323-333. [DOI: 10.1177/0748730417719168] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.
Collapse
|
7
|
Snijders L, Naguib M, van Oers K. Dominance rank and boldness predict social attraction in great tits. Behav Ecol 2016. [DOI: 10.1093/beheco/arw158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Tank size alters mean behaviours and individual rank orders in personality traits of fish depending on their life stage. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|