1
|
Li J, He L, He Q, Xie K, Xie H. Exploring the interaction mechanisms between cervical carcinoma in situ and antibody-mediated immune responses through Mendelian randomization analysis. Discov Oncol 2024; 15:568. [PMID: 39417906 PMCID: PMC11486878 DOI: 10.1007/s12672-024-01456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This study aims to investigate the causal relationship between cervical carcinoma in situ and antibody-mediated immune responses, providing a scientific basis for the prevention and treatment of cervical carcinoma in situ. METHODS A bidirectional Mendelian Randomization (MR) approach was utilized, leveraging two Genome-Wide Association Studies (GWAS) related to cervical carcinoma in situ and antibody-mediated immune responses to collect Single Nucleotide Polymorphism (SNP) data. Multiple statistical methods, including the inverse-variance weighted (IVW) method, MR-Egger regression, weighted median, and weighted mode, were utilized. Antibody-mediated immune response-related SNPs were used as instrumental variables (IVs) for a forward MR analysis of cervical carcinoma in situ, while cervical carcinoma in situ-related SNPs served as IVs for a reverse MR analysis of antibody-mediated immune responses. RESULTS The forward MR analysis revealed significant causal associations between two SNPs, GCST90006901 (P = 0.012, OR (95%CI) = 1.167(1.034-1.317)) and GCST90006909 (P < 0.001, OR (95%CI) = 1.805(1.320-2.467)), within antibody-mediated immune responses and the occurrence of cervical carcinoma in situ. The reverse MR analysis demonstrated that cervical carcinoma in situ exerts influence on multiple SNPs associated with antibody-mediated immune responses. Specifically, GCST90006891 (P = 0.018, OR (95%CI) = 1.164(1.027-1.319)) and GCST90006894 (P = 0.048, OR (95%CI) = 1.074 (1.001-1.153)) showed positive effects, while GCST90006899 (P = 0.022, OR (95%CI) = 0.935(0.882-0.990)) and GCST90006911 (P = 0.0193, OR (95%CI) = 1.226(1.034-1.454)) exhibited distinct trends of influence. CONCLUSION The Mendelian Randomization analysis indicates a clear causal relationship between antibody-mediated immune responses and the prevalence of cervical carcinoma in situ, with cervical carcinoma in situ also exerting a certain degree of influence on antibody-mediated immune responses. This finding provides important insights into the interaction mechanism between the two and suggests avenues for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Junfei Li
- Department of Gynecology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Lihuang He
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Qun He
- Department of Supply Room, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Kaihong Xie
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| | - Hui Xie
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, People's Republic of China.
| |
Collapse
|
2
|
Bermudez Y, Hatfield D, Muller M. A Balancing Act: The Viral-Host Battle over RNA Binding Proteins. Viruses 2024; 16:474. [PMID: 38543839 PMCID: PMC10974049 DOI: 10.3390/v16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of a productive viral infection is the co-opting of host cell resources for viral replication. Despite the host repertoire of molecular functions and biological counter measures, viruses still subvert host defenses to take control of cellular factors such as RNA binding proteins (RBPs). RBPs are involved in virtually all steps of mRNA life, forming ribonucleoprotein complexes (mRNPs) in a highly ordered and regulated process to control RNA fate and stability in the cell. As such, the hallmark of the viral takeover of a cell is the reshaping of RNA fate to modulate host gene expression and evade immune responses by altering RBP interactions. Here, we provide an extensive review of work in this area, particularly on the duality of the formation of RNP complexes that can be either pro- or antiviral. Overall, in this review, we highlight the various ways viruses co-opt RBPs to regulate RNA stability and modulate the outcome of infection by gathering novel insights gained from research studies in this field.
Collapse
Affiliation(s)
| | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (Y.B.); (D.H.)
| |
Collapse
|
3
|
Malik S, Biswas J, Sarkar P, Nag S, Gain C, Ghosh Roy S, Bhattacharya B, Ghosh D, Saha A. Differential carbonic anhydrase activities control EBV-induced B-cell transformation and lytic cycle reactivation. PLoS Pathog 2024; 20:e1011998. [PMID: 38530845 PMCID: PMC10997083 DOI: 10.1371/journal.ppat.1011998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Samaresh Malik
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Joyanta Biswas
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Purandar Sarkar
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Subhadeep Nag
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Chandrima Gain
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Shatadru Ghosh Roy
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Bireswar Bhattacharya
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Abhik Saha
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Casco A, Johannsen E. EBV Reactivation from Latency Is a Degrading Experience for the Host. Viruses 2023; 15:726. [PMID: 36992435 PMCID: PMC10054251 DOI: 10.3390/v15030726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
During reactivation from latency, gammaherpesviruses radically restructure their host cell to produce virion particles. To achieve this and thwart cellular defenses, they induce rapid degradation of cytoplasmic mRNAs, suppressing host gene expression. In this article, we review mechanisms of shutoff by Epstein-Barr virus (EBV) and other gammaherpesviruses. In EBV, canonical host shutoff is accomplished through the action of the versatile BGLF5 nuclease expressed during lytic reactivation. We explore how BGLF5 induces mRNA degradation, the mechanisms by which specificity is achieved, and the consequences for host gene expression. We also consider non-canonical mechanisms of EBV-induced host shutoff. Finally, we summarize the limitations and barriers to accurate measurements of the EBV host shutoff phenomenon.
Collapse
Affiliation(s)
- Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
5
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
6
|
Buschle A, Mrozek-Gorska P, Cernilogar FM, Ettinger A, Pich D, Krebs S, Mocanu B, Blum H, Schotta G, Straub T, Hammerschmidt W. Epstein-Barr virus inactivates the transcriptome and disrupts the chromatin architecture of its host cell in the first phase of lytic reactivation. Nucleic Acids Res 2021; 49:3217-3241. [PMID: 33675667 PMCID: PMC8034645 DOI: 10.1093/nar/gkab099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a herpes virus also termed HHV 4 and the first identified human tumor virus, establishes a stable, long-term latent infection in human B cells, its preferred host. Upon induction of EBV's lytic phase, the latently infected cells turn into a virus factory, a process that is governed by EBV. In the lytic, productive phase, all herpes viruses ensure the efficient induction of all lytic viral genes to produce progeny, but certain of these genes also repress the ensuing antiviral responses of the virally infected host cells, regulate their apoptotic death or control the cellular transcriptome. We now find that EBV causes previously unknown massive and global alterations in the chromatin of its host cell upon induction of the viral lytic phase and prior to the onset of viral DNA replication. The viral initiator protein of the lytic cycle, BZLF1, binds to >105 binding sites with different sequence motifs in cellular chromatin in a concentration dependent manner implementing a binary molar switch probably to prevent noise-induced erroneous induction of EBV's lytic phase. Concomitant with DNA binding of BZLF1, silent chromatin opens locally as shown by ATAC-seq experiments, while previously wide-open cellular chromatin becomes inaccessible on a global scale within hours. While viral transcripts increase drastically, the induction of the lytic phase results in a massive reduction of cellular transcripts and a loss of chromatin-chromatin interactions of cellular promoters with their distal regulatory elements as shown in Capture-C experiments. Our data document that EBV's lytic cycle induces discrete early processes that disrupt the architecture of host cellular chromatin and repress the cellular epigenome and transcriptome likely supporting the efficient de novo synthesis of this herpes virus.
Collapse
Affiliation(s)
- Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21 D-81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Bianca Mocanu
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| |
Collapse
|
7
|
Li J, Walsh A, Lam TT, Delecluse HJ, El-Guindy A. A single phosphoacceptor residue in BGLF3 is essential for transcription of Epstein-Barr virus late genes. PLoS Pathog 2019; 15:e1007980. [PMID: 31461506 PMCID: PMC6713331 DOI: 10.1371/journal.ppat.1007980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Almost one third of herpesvirus proteins are expressed with late kinetics. Many of these late proteins serve crucial structural functions such as formation of virus particles, attachment to host cells and internalization. Recently, we and others identified a group of Epstein-Barr virus early proteins that form a pre-initiation complex (vPIC) dedicated to transcription of late genes. Currently, there is a fundamental gap in understanding the role of post-translational modifications in regulating assembly and function of the complex. Here, we used mass spectrometry to map potential phosphorylation sites in BGLF3, a core component of the vPIC module that connects the BcRF1 viral TATA box binding protein to other components of the complex. We identified threonine 42 (T42) in BGLF3 as a phosphoacceptor residue. T42 is conserved in BGLF3 orthologs encoded by other gamma herpesviruses. Abolishing phosphorylation at T42 markedly reduced expression of vPIC-dependent late genes and disrupted production of new virus particles, but had no effect on early gene expression, viral DNA replication, or expression of vPIC-independent late genes. We complemented failure of BGLF3(T42A) to activate late gene expression by ectopic expression of other components of vPIC. Only BFRF2 and BVLF1 were sufficient to suppress the defect in late gene expression associated with BGLF3(T42A). These results were corroborated by the ability of wild type BGLF3 but not BGLF3(T42A) to form a trimeric complex with BFRF2 and BVLF1. Our findings suggest that phosphorylation of BGLF3 at threonine 42 serves as a new checkpoint for subsequent formation of BFRF2:BGLF3:BVLF1; a trimeric subcomplex essential for transcription of late genes. Our findings provide evidence that post-translational modifications regulate the function of the vPIC nanomachine that initiates synthesis of late transcripts in herpesviruses.
Collapse
Affiliation(s)
- Jinlin Li
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - TuKiet T. Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Keck MS and Proteomics Resource, Yale University, New Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hartenian E, Glaunsinger BA. Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes. Crit Rev Biochem Mol Biol 2019; 54:385-398. [PMID: 31656086 PMCID: PMC6871655 DOI: 10.1080/10409238.2019.1679083] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Transcription and RNA decay are key determinants of gene expression; these processes are typically considered as the uncoupled beginning and end of the messenger RNA (mRNA) lifecycle. Here we describe the growing number of studies demonstrating interplay between these spatially disparate processes in eukaryotes. Specifically, cells can maintain mRNA levels by buffering against changes in mRNA stability or transcription, and can also respond to virally induced accelerated decay by reducing RNA polymerase II gene expression. In addition to these global responses, there is also evidence that mRNAs containing a premature stop codon can cause transcriptional upregulation of homologous genes in a targeted fashion. In each of these systems, RNA binding proteins (RBPs), particularly those involved in mRNA degradation, are critical for cytoplasmic to nuclear communication. Although their specific mechanistic contributions are yet to be fully elucidated, differential trafficking of RBPs between subcellular compartments are likely to play a central role in regulating this gene expression feedback pathway.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, Berkeley, CA 94720
| |
Collapse
|
9
|
Gilbertson S, Federspiel JD, Hartenian E, Cristea IM, Glaunsinger B. Changes in mRNA abundance drive shuttling of RNA binding proteins, linking cytoplasmic RNA degradation to transcription. eLife 2018; 7:37663. [PMID: 30281021 PMCID: PMC6203436 DOI: 10.7554/elife.37663] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Alterations in global mRNA decay broadly impact multiple stages of gene expression, although signals that connect these processes are incompletely defined. Here, we used tandem mass tag labeling coupled with mass spectrometry to reveal that changing the mRNA decay landscape, as frequently occurs during viral infection, results in subcellular redistribution of RNA binding proteins (RBPs) in human cells. Accelerating Xrn1-dependent mRNA decay through expression of a gammaherpesviral endonuclease drove nuclear translocation of many RBPs, including poly(A) tail-associated proteins. Conversely, cells lacking Xrn1 exhibited changes in the localization or abundance of numerous factors linked to mRNA turnover. Using these data, we uncovered a new role for relocalized cytoplasmic poly(A) binding protein in repressing recruitment of TATA binding protein and RNA polymerase II to promoters. Collectively, our results show that changes in cytoplasmic mRNA decay can directly impact protein localization, providing a mechanism to connect seemingly distal stages of gene expression. The nucleus of a cell harbors DNA, which contains all information needed to build an organism. The instructions are stored as a genetic code that serves as a blueprint for making proteins – molecules that are important for almost every process in the body – and to assemble cells. But first, the code on the DNA needs to be translated with the help of a ‘middle man’, known as messenger RNA. These molecules carry information to other parts of the cell, wherever it is needed. Messenger RNA is produced in the nucleus of a cell, and then exported into the material within a cell, called the cytoplasm, as a template to produce proteins. Once this process has finished, the template is destroyed. The rate at which the messenger RNA is made affects the flow of genetic information. However, recent evidence suggests that the speed at which messenger RNA is destroyed in the cytoplasm can influence how much of it is made in the nucleus, i.e., if high levels of RNA are destroyed, the production is stopped. For example, it has been shown that certain viruses possess proteins that speed up the destruction of messenger RNA to gain control over the host cell. Here, Gilbertson et al. wanted to find out more about how the breakdown of RNA can signal the nucleus to stop producing these molecules. Messenger RNAs are coated with proteins, which are released when the RNA is destroyed. To test if some of those proteins travel back to the nucleus to influence the production of messenger RNA, proteins in human cells grown in the laboratory were labeled with specific trackers. RNA destruction was induced, in a way that is similar to what happens during a virus attack. The experiments revealed that many RNA-binding proteins indeed return to the nucleus when RNA is destroyed. One of these proteins, named cytoplasmic poly(A)-binding protein, played a key role in transmitting the signal between the cytoplasm and the nucleus to control the production messenger RNA. The amount of messenger RNA can change in many ways throughout the life of a cell. For example, viral infections can lower it and limit the growth and health of cells. A drop in these molecules could act as an early warning of ill health in cells and trigger responses in the nucleus. This new link between messenger RNA destruction and production may help to shed new light on how cells use different signals to control the production of their own genes while restricting pathogens from taking over. A next step will be to determine how these signals communicate with the RNA production machinery in the nucleus and how certain viruses can subvert this process to activate their own genes.
Collapse
Affiliation(s)
- Sarah Gilbertson
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Britt Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Department of Plant & Microbial Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, United States
| |
Collapse
|
10
|
Epstein-Barr Virus-Induced Nodules on Viral Replication Compartments Contain RNA Processing Proteins and a Viral Long Noncoding RNA. J Virol 2018; 92:JVI.01254-18. [PMID: 30068640 DOI: 10.1128/jvi.01254-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022] Open
Abstract
Profound alterations in host cell nuclear architecture accompany the lytic phase of Epstein-Barr virus (EBV) infection. Viral replication compartments assemble, host chromatin marginalizes to the nuclear periphery, cytoplasmic poly(A)-binding protein translocates to the nucleus, and polyadenylated mRNAs are sequestered within the nucleus. Virus-induced changes to nuclear architecture that contribute to viral host shutoff (VHS) must accommodate selective processing and export of viral mRNAs. Here we describe additional previously unrecognized nuclear alterations during EBV lytic infection in which viral and cellular factors that function in pre-mRNA processing and mRNA export are redistributed. Early during lytic infection, before formation of viral replication compartments, two cellular pre-mRNA splicing factors, SC35 and SON, were dispersed from interchromatin granule clusters, and three mRNA export factors, Y14, ALY, and NXF1, were depleted from the nucleus. During late lytic infection, virus-induced nodular structures (VINORCs) formed at the periphery of viral replication compartments. VINORCs were composed of viral (BMLF1 and BGLF5) and cellular (SC35, SON, SRp20, and NXF1) proteins that mediate pre-mRNA processing and mRNA export. BHLF1 long noncoding RNA was invariably found in VINORCs. VINORCs did not contain other nodular nuclear cellular proteins (PML or coilin), nor did they contain viral proteins (BRLF1 or BMRF1) found exclusively within replication compartments. VINORCs are novel EBV-induced nuclear structures. We propose that EBV-induced dispersal and depletion of pre-mRNA processing and mRNA export factors during early lytic infection contribute to VHS; subsequent relocalization of these pre-mRNA processing and mRNA export proteins to VINORCs and viral replication compartments facilitates selective processing and export of viral mRNAs.IMPORTANCE In order to make protein, mRNA transcribed from DNA in the nucleus must enter the cytoplasm. Nuclear export of mRNA requires correct processing of mRNAs by enzymes that function in splicing and nuclear export. During the Epstein-Barr virus (EBV) lytic cycle, nuclear export of cellular mRNAs is blocked, yet export of viral mRNAs is facilitated. Here we report the dispersal and dramatic reorganization of cellular (SC35, SON, SRp20, Y14, ALY, and NXF1) and viral (BMLF1 and BGLF5) proteins that play key roles in pre-mRNA processing and export of mRNA. These virus-induced nuclear changes culminate in formation of VINORCs, novel nodular structures composed of viral and cellular RNA splicing and export factors. VINORCs localize to the periphery of viral replication compartments, where viral mRNAs reside. These EBV-induced changes in nuclear organization may contribute to blockade of nuclear export of host mRNA, while enabling selective processing and export of viral mRNA.
Collapse
|
11
|
Encyclopedia of EBV-Encoded Lytic Genes: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:395-412. [DOI: 10.1007/978-981-10-7230-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 2017; 8:70006-70034. [PMID: 29050259 PMCID: PMC5642534 DOI: 10.18632/oncotarget.19549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is the pathogenic factor of numerous human tumors, yet certain of its encoded proteins have not been studied. As a first step for functional identification, we presented the construction of a library of expression constructs for most of the EBV encoded proteins and an explicit subcellular localization map of 81 proteins encoded by EBV in mammalian cells. Viral open reading frames were fused with enhanced yellow fluorescent protein (EYFP) tag in eukaryotic expression plasmid then expressed in COS-7 live cells, and protein localizations were observed by fluorescence microscopy. As results, 34.57% (28 proteins) of all proteins showed pan-nuclear or subnuclear localization, 39.51% (32 proteins) exhibitted pan-cytoplasmic or subcytoplasmic localization, and 25.93% (21 proteins) were found in both the nucleus and cytoplasm. Interestingly, most envelope proteins presented pan-cytoplasmic or membranous localization, and most capsid proteins displayed enriched or complete localization in the nucleus, indicating that the subcellular localization of specific proteins are associated with their roles during viral replication. Taken together, the subcellular localization map of EBV proteins in live cells may lay the foundation for further illustrating the functions of EBV-encoded genes in human diseases especially in its relevant tumors.
Collapse
|
13
|
Abstract
RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals.
Collapse
|
14
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
15
|
van Gent M, Gram AM, Boer IGJ, Geerdink RJ, Lindenbergh MFS, Lebbink RJ, Wiertz EJ, Ressing ME. Silencing the shutoff protein of Epstein–Barr virus in productively infected B cells points to (innate) targets for immune evasion. J Gen Virol 2015; 96:858-865. [DOI: 10.1099/jgv.0.000021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna M. Gram
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid G. J. Boer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ruben J. Geerdink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike E. Ressing
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 2015; 479-480:600-8. [PMID: 25721579 PMCID: PMC4424162 DOI: 10.1016/j.virol.2015.02.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
Viral replication significantly alters the gene expression landscape of infected cells. Many of these changes are driven by viral manipulation of host transcription or translation machinery. Several mammalian viruses encode factors that broadly dampen gene expression by directly targeting messenger RNA (mRNA). Here, we highlight how these factors promote mRNA degradation to globally regulate both host and viral gene expression. Although these viral factors are not homologous and use distinct mechanisms to target mRNA, many of them display striking parallels in their strategies for executing RNA degradation and invoke key features of cellular RNA quality control pathways. In some cases, there is a lack of selectivity for degradation of host versus viral mRNA, indicating that the purposes of virus-induced mRNA degradation extend beyond redirecting cellular resources towards viral gene expression. In addition, several antiviral pathways use RNA degradation as a viral restriction mechanism, and we will summarize new findings related to how these host-encoded ribonucleases target and destroy viral RNA.
Collapse
|