1
|
Sárközy A, Robinson JE, Kovács G. Motion-induced blindness shows spatial anisotropies in conscious perception. Sci Rep 2024; 14:27718. [PMID: 39532989 PMCID: PMC11557702 DOI: 10.1038/s41598-024-78939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Polar angle asymmetries (PAAs), the differences in perceptual experiences and performance across different regions of the visual field are present in various paradigms and tasks of visual perception. Currently, research in this area is sparse, particularly regarding the influence of PAAs during perceptual illusions, highlighting a gap in visual cognition studies. We aim to fill this gap by measuring PAAs across the visual field during an illusion applied to test conscious vision widely. Motion-induced blindness (MIB) is an illusion when a peripheral target disappears from consciousness as the result of a continuously moving background pattern. During MIB we separately measured the average disappearance time of peripheral targets in eight equidistant visual field positions. Our results indicate a significant variation in MIB disappearance times and frequencies as a function of target location. Specifically, we found shorter and fewer disappearances along the cardinal compared to oblique directions, and along the horizontal compared to the vertical meridian. Our results suggest specific consistencies between visual field asymmetries and conscious visual perception.
Collapse
Affiliation(s)
| | - Jonathan E Robinson
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Clayton, 3168, Australia
| | - Gyula Kovács
- Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
2
|
Gao Y, Miller KN, Webster MA, Crognale MA, Jiang F. Time course and neural locus of the Flashed Face Distortion Effect. Vision Res 2024; 224:108492. [PMID: 39348745 PMCID: PMC11466683 DOI: 10.1016/j.visres.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Viewing a rapid sequence of face images shown in the periphery can lead to large caricature-like distortions in the perceived images, a phenomenon known as the Flashed Face Distortion Effect (FFDE). The mechanisms underlying FFDE are poorly understood. Here we examined the timing and sites of the adaptation processes giving rise to the FFDE. To investigate the effects of presentation rate, we maintained consistent trial lengths while assessing how variations in the temporal frequencies of face presentation influenced the magnitude of face distortion and the averaging of facial expressions. Over a wide range of temporal frequencies (1.2-60 Hz) tested, we observed a decrease in FFDE strength as the presentation rate increased. To probe the neural sites of FFDE, we varied whether successive faces were presented to the same or different eyes using a dichoptic display. Distortion effects were comparable for monocular, binocular, and interocular conditions, yet much larger than a control condition where faces were presented with a temporal interval between successive images, suggesting a cortical locus for FFDE.
Collapse
Affiliation(s)
- Yi Gao
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| | | | | | - Michael A Crognale
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, NV, USA
| | - Fang Jiang
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, NV, USA
| |
Collapse
|
3
|
Yousif SR, Clarke S, Brannon EM. Number adaptation: A critical look. Cognition 2024; 249:105813. [PMID: 38820687 DOI: 10.1016/j.cognition.2024.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
It is often assumed that adaptation - a temporary change in sensitivity to a perceptual dimension following exposure to that dimension - is a litmus test for what is and is not a "primary visual attribute". Thus, papers purporting to find evidence of number adaptation motivate a claim of great significance: That number is something that can be seen in much the way that canonical visual features, like color, contrast, size, and speed, can. Fifteen years after its reported discovery, number adaptation's existence seems to be nearly undisputed, with dozens of papers documenting support for the phenomenon. The aim of this paper is to offer a counterweight - to critically assess the evidence for and against number adaptation. After surveying the many reasons for thinking that number adaptation exists, we introduce several lesser-known reasons to be skeptical. We then advance an alternative account - the old news hypothesis - which can accommodate previously published findings while explaining various (otherwise unexplained) anomalies in the existing literature. Next, we describe the results of eight pre-registered experiments which pit our novel old news hypothesis against the received number adaptation hypothesis. Collectively, the results of these experiments undermine the number adaptation hypothesis on several fronts, whilst consistently supporting the old news hypothesis. More broadly our work raises questions about the status of adaptation itself as a means of discerning what is and is not a visual attribute.
Collapse
Affiliation(s)
- Sami R Yousif
- Department of Psychology, University of Pennsylvania,USA.
| | - Sam Clarke
- Department of Philosophy, University of Southern California, USA
| | | |
Collapse
|
4
|
Katkov M, Cooperman A, Meital-Kfir N, Sagi D. Motion-induced blindness as a noisy excitable system. Vision Res 2024; 216:108363. [PMID: 38295622 DOI: 10.1016/j.visres.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Perceptual disappearance of a salient target induced by a moving texture mask (MIB: Motion-Induced Blindness) is a striking effect, currently poorly understood. Here, we investigated whether the dynamics of MIB qualify as an excitable system. Excitable systems exhibit fast switches from one state to another (e.g., visible/invisible) induced by an above-threshold perturbation and stimulus-independent dynamics, followed by a refractory period. In the experiments, disappearance was induced by masks consisting of slowly rotating radial bars with a gap at the target location, leading to periodic perturbation of the visual field around the target (a bright parafoveal spot). When passed around the target location, masks frequently induced an abrupt target disappearance, pointing to locality. As expected from excitable systems, the disappearance time was not affected by additional bars crossing the target during invisibility, and there was little dependence on the mask configuration. After the target reappeared, it stayed for at least 0.5-2 s (the refractory period). Therefore, the dynamics governing MIB represent an example of an excitable system, where the transition to the invisible state is induced by the mask. The dynamics that follow were determined mostly by the internal network properties.
Collapse
Affiliation(s)
- Mikhail Katkov
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | - Alexander Cooperman
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Noya Meital-Kfir
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Dov Sagi
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Yu J, Zhou Y, Fu Y, Wang C, Zhou J, Shen M, Chen H. The linear impact of visual working memory load on visual awareness: Evidence from motion-induced blindness. Conscious Cogn 2023; 111:103520. [PMID: 37100001 DOI: 10.1016/j.concog.2023.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Despite the close relationship between visual working memory (VWM) and visual awareness, the question of how these two constructs interact with each other is still under debate. The current study aimed to further address this issue by investigating whether and how visual awareness is influenced by VWM load. In Experiment 1, participants were asked to perform a motion-induced blindness (MIB) task while simultaneously memorizing different numbers of items in VWM. The results indicated that the latency of MIB was prolonged gradually as the VWM load increased, revealing a linear trend in the modulation effect of VWM load on visual awareness. Experiments 2 and 3 tested the other potential explanations and validated the initial finding by confirming that VWM load was indeed responsible for the observed effect on visual awareness. These findings have important implications for a better understanding of the relationship between VWM and visual awareness.
Collapse
Affiliation(s)
- Jiahan Yu
- Department of Psychology, Suzhou University of Science and Technology, China; Department of Psychology and Behavioral Sciences, Zhejiang University, China
| | - Yiling Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, China
| | - Yingtao Fu
- Department of Psychology and Behavioral Sciences, Zhejiang University, China
| | - Ci Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, China
| | - Jifan Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, China.
| | - Mowei Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, China.
| | - Hui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, China; Department of Psychology, The Pennsylvania State University, USA.
| |
Collapse
|
6
|
Conscious interpretation: A distinct aspect for the neural markers of the contents of consciousness. Conscious Cogn 2023; 108:103471. [PMID: 36736210 DOI: 10.1016/j.concog.2023.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Progress in the science of consciousness depends on the experimental paradigms and varieties of contrastive analysis available to researchers. Here we highlight paradigms where the object is represented in consciousness as a set of its features but the interpretation of this set alternates in consciousness. We group experimental paradigms with this property under the label "conscious interpretation". We compare the paradigms studying conscious interpretation of the already consciously perceived objects with other types of experimental paradigms. We review previous and recent studies investigating this interpretative aspect of consciousness and propose future directions. We put forward the hypothesis that there are types of stimuli with a hierarchy of interpretations for which the rule applies: conscious experience is drawn towards higher-level interpretation and reverting back to the lower level of interpretation is impossible. We discuss how theories of consciousness might incorporate knowledge and constraints arising from the characteristics of conscious interpretation.
Collapse
|
7
|
Abstract
The amplitude of prestimulus alpha oscillations over parieto-occipital cortex has been shown to predict visual detection of masked and threshold-level stimuli. Whether alpha activity similarly predicts target visibility in perceptual suppression paradigms, another type of illusion commonly used to investigate visual awareness, is presently unclear. Here, we examined prestimulus alpha activity in the electroencephalogram (EEG) of healthy participants in the context of a generalized flash suppression (GFS) task during which salient target stimuli are rendered subjectively invisible in a subset of trials following the onset of a full-field motion stimulus. Unlike for masking or threshold paradigms, alpha (8-12 Hz) amplitude prior to motion onset was significantly higher when targets remained subjectively visible compared to trials during which the targets became perceptually suppressed. Furthermore, individual prestimulus alpha amplitudes strongly correlated with the individual trial-to-trial variability quenching following motion stimulus onset, indicating that variability quenching in visual cortex is closely linked to prestimulus alpha activity. We conclude that predictive correlates of conscious perception derived from perceptual suppression paradigms differ substantially from those obtained with "near threshold paradigms", possibly reflecting the effectiveness of the suppressor stimulus.
Collapse
|
8
|
Glaucoma Drainage Device Technique in a Cohort of Experienced Glaucoma Surgeons in Australia and New Zealand. J Glaucoma 2020; 29:1138-1142. [PMID: 32925517 DOI: 10.1097/ijg.0000000000001662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PRéCIS:: Glaucoma drainage devices (GDD) by Australian and New Zealand glaucomatologists are implanted superotemporally under a peribulbar anesthesia without the use of mitomycin C. Intraluminal stents and tube fenestration are utilized and covered with a scleral graft. PURPOSE To evaluate current practice patterns of surgical techniques for GDD among Australia and New Zealand Glaucoma Society members routinely performing GDD surgery. METHODS Survey of surgeons who performed more than 20 GDD in past 5 years. RESULTS Surgeon participation rate was 31/32 (96.8%). The most common surgical techniques were Baerveldt GDD (24/32, 77.4%), superotemporal placement (31/31, 100%), and peribulbar anesthesia (21/31, 67.7%). Mitomycin C antimetabolite was used routinely by 9/31 surgeons (29.0%). Most surgeons employed intraluminal stents (23/31, 74.2%) with tube fenestrations (19/31, 61.3%). GDD was placed behind the recti muscles (27/31, 87.1%) and secured with nylon (8/0, 9/0 or 10/0) by 29/31 (93.6%). Most common sclerostomy techniques for tube insertion was a 23-G needle passed ab externo (18/31, 58.1%). Tube placement was in the sulcus (11/31, 35.5%) for pseudophakic patients. The external portion of the tube was most commonly covered with a full-thickness scleral patch graft (21/31, 67.7%). Majority of surgeons (21/31, 67.7%) reviewed patients 3 to 4 times in the first month. CONCLUSIONS Although a wide range of practice patterns for GDD implantation exists among Australia and New Zealand Glaucoma Society surgeons, there are consistent techniques currently in use to optimize patient outcomes. This report can help surgeons seeking to improve outcomes and minimize complications when trialing the different surgical options.
Collapse
|
9
|
Brascamp JW, Qian CS, Hambrick DZ, Becker MW. Individual differences point to two separate processes involved in the resolution of binocular rivalry. J Vis 2020; 19:15. [PMID: 31622474 DOI: 10.1167/19.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although binocular rivalry is different from other perceptually bistable phenomena in requiring interocular conflict, it also shares numerous features with those phenomena. This raises the question of whether, and to what extent, the neural bases of binocular rivalry and other bistable phenomena overlap. Here we examine this question using an individual-differences approach. In a first experiment, observers reported perception during four binocular rivalry tasks that differed in the features and retinal locations of the stimuli used. Perceptual dominance durations were highly correlated when compared between stimuli that differed in location only. Correlations were substantially weaker, however, when comparing stimuli comprised of different features. Thus, individual differences in binocular-rivalry perception partly reflect a feature-specific factor that is not shared among all variants of binocular rivalry. Our second experiment again included several binocular rivalry variants, but also a different form of bistability: moving plaid rivalry. Correlations in dominance durations between binocular rivalry variants that differed in feature content were again modest. Moreover, and surprisingly, correlations between binocular rivalry and moving plaid rivalry were of similar magnitude. This indicates a second, more general, factor underlying individual differences in binocular rivalry perception: one that is shared across binocular rivalry and moving plaid rivalry. We propose that the first, feature-specific factor corresponds to feature-tuned mechanisms involved in the treatment of interocular conflict, whereas the second, general factor corresponds to mechanisms involved in representing surfaces. These latter mechanisms would operate at a binocular level and be central to both binocular rivalry and other forms of bistability.
Collapse
Affiliation(s)
- Jan W Brascamp
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Cheng Stella Qian
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - David Z Hambrick
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Mark W Becker
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
|
11
|
Hupé JM, Signorelli CM, Alais D. Two paradigms of bistable plaid motion reveal independent mutual inhibition processes. J Vis 2019; 19:5. [PMID: 30943533 DOI: 10.1167/19.4.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perception is sometimes bistable, switching between two possible interpretations. Levelt developed several propositions to explain bistable perception in binocular rivalry, based on a model of competing neural populations connected through reciprocal inhibition. Here we test Levelt's laws with bistable plaid motion. Plaids are typically tristable, either a coherent pattern, transparent with one component in front, or transparent with the opposite depth order. In Experiment 1, we use a large angle between component directions to prevent plaid coherence, limiting the ambiguity to alternations of grating depth order. Similar to increasing contrast in binocular rivalry, increasing component speed led to higher switch rates (analogous to Levelt's fourth proposition). In Experiment 2, we used occlusion cues to prevent one depth order and limit bistability to one transparent depth order alternating with coherence. Increasing grating speed shortened coherent motion periods but left transparent periods largely unchanged (analogous to Levelt's second proposition). Switch dynamics showed no correlation between the experiments. These data suggest that plaid component speed acts like contrast in binocular rivalry to vary switch dynamics through a mutual inhibition model. The lack of correlation between both experiments suggests reciprocal inhibition mediates bistability between a variety of neural populations across the visual system.
Collapse
Affiliation(s)
- Jean-Michel Hupé
- Centre de Recherche Cerveau et Cognition, Université de Toulouse Paul Sabatier and Centre National de la Recherche Scientifique, Toulouse, France
| | - Camilo Miguel Signorelli
- Centre de Recherche Cerveau et Cognition, Université de Toulouse Paul Sabatier and Centre National de la Recherche Scientifique, Toulouse, France.,Present addresses: Department of Computer Science, University of Oxford, Oxford, UK Cognitive Neuroimaging Unit, INSERM U992, NeuroSpin, Gif-sur-Yvette, France
| | - David Alais
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Abstract
OBJECTIVE The objective of this study was to evaluate the impact of directed and sustained attention on the allocation of visuospatial attention. Healthy people often have left lateral and upward vertical spatial attentional biases. However, it is not known whether there will be an increase in bias toward the attended portion of the stimulus when volitional spatial attention is allocated to a portion of a stimulus, whether there are asymmetrical spatial alterations of these biases, and how sustained attention influences these biases. METHODS We assessed spatial bias in 36 healthy, right-handed participants using a variant of horizontal and vertical line bisections. Participants were asked to focus on one or the other end of vertical or horizontal lines or entire vertical or horizontal lines, and then to bisect the line either immediately or after a 20 second delay. RESULTS We found a significant main effect of attentional focus and an interaction between attentional focus and prolonged viewing with delayed bisection. Focusing on a certain portion of the line resulting in a significant deviation toward the attended portion and prolonged viewing of the line prior to bisection significantly enhanced the degree of deviation toward the attended portion. CONCLUSIONS The enhanced bias with directed and sustained attention may be useful modifications of the line bisection test, particularly in clinical populations. Thus, future studies should determine whether prolonged viewing with delayed bisection and spatially focused attention reveals attentional biases in patients with hemispheric lesions who perform normally on the traditional line bisection test. (JINS, 2019, 25, 65-71).
Collapse
|
13
|
Brascamp JW, Becker MW, Hambrick DZ. Revisiting individual differences in the time course of binocular rivalry. J Vis 2018; 18:3. [PMID: 29971348 DOI: 10.1167/18.7.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Simultaneously showing an observer two incompatible displays, one to each eye, causes binocular rivalry, during which the observer regularly switches between perceiving one eye's display and perceiving the other. Observers differ in the rate of this perceptual cycle, and these individual differences have been reported to correlate with differences in the perceptual switch rate for other bistable perception phenomena. Identifying which psychological or neural factors explain this variability can help clarify the mechanisms underlying binocular rivalry and of bistable perception generally. Motivated by the prominent theory that perceptual switches during binocular rivalry are brought about by neural adaptation, we investigated whether perceptual switch rates are correlated with the strength of neural adaptation, indexed by visual aftereffects. We found no compelling evidence for such correlations. Moreover, we did not corroborate previous findings that switch rates are correlated between binocular rivalry and other forms of bistable perception. This latter nonreplication prompted us to perform a meta-analysis of existing research into correlations among forms of bistable perception, which revealed that evidence for such correlations is much weaker than is generally believed. By showing no common factor linking individual differences in binocular rivalry and in our other paradigms, these results fit well with other work that has shown such common factors to be rare among visual phenomena generally.
Collapse
Affiliation(s)
- Jan W Brascamp
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Mark W Becker
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - David Z Hambrick
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
New JJ, Scholl BJ. Motion-induced blindness for dynamic targets: Further explorations of the perceptual scotoma hypothesis. J Vis 2018; 18:24. [DOI: 10.1167/18.9.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Joshua J. New
- Department of Psychology, Barnard College, New York, NY, USA
- https://
| | - Brian J. Scholl
- Yale University, New Haven, CT, USA
- http://perception.yale.edu/
| |
Collapse
|
15
|
Real-time visual interactions across the boundary of awareness. Sci Rep 2018; 8:6442. [PMID: 29691414 PMCID: PMC5915610 DOI: 10.1038/s41598-018-24554-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/03/2018] [Indexed: 11/21/2022] Open
Abstract
Recently, using Motion Induced-Blindness (MIB), we have shown that two visual stimuli, one consciously experienced and one not, interact as a function of feature and object similarity, pointing to preserved visual representations of objects, and their constitutive features, in the absence of perceptual awareness. Here we investigated whether these representations preserve the memory of the previously perceived stimulus by testing interactions with the unperceived stimulus modified while it is invisible. Observers performed the MIB task, wherein an object ‘Target’ (a plaid object) was morphed into one of its features (an oriented Gabor patch) once its disappearance was reported. Reappearances of the morphed target were induced by a visible ‘Cue’ (object or feature), with reappearance frequency used to quantify the interaction between the visible cue and the invisible target. Reappearance rates were highest when the morphed target and the cue shared the same orientations, with the plaid-cue showing reappearance rates equal to that of the orthogonal-cue. Our findings indicate that target-cue interactions do not depend on memory-stored representations, but rather, on the current state of the consciously unavailable target. We suggest that visual objects can be constructed and deconstructed in the absence of conscious perception, but only objects are consciously available.
Collapse
|
16
|
Devyatko D, Pastukhov A. Extrinsic grouping factors in motion-induced blindness. PLoS One 2018; 13:e0192133. [PMID: 29381747 PMCID: PMC5790270 DOI: 10.1371/journal.pone.0192133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022] Open
Abstract
We investigated how various grouping factors altered subjective disappearances of the individual targets in the motion-induced blindness display. The latter relies on a moving mask to render highly salient static targets temporarily subjectively invisible. Specifically, we employed two extrinsic grouping factors, the connectedness and the common region, and examined whether their presence would make targets more resilient against the suppression. In addition, we investigated whether the presence of an illusory Kanizsa triangle would affect the suppression of the inducing Pac-Man elements. We quantified the perceptual dynamics using the proportion of the disappearance time (this indicates whether targets became more resilient against the suppression), and the proportion of simultaneous disappearance and reappearance events (characterizes the tendency for the targets to disappear or reappear as a group). We report that a single mask that encompassed all targets (a common region grouping) significantly increased the proportion of simultaneous disappearance and reappearance events, but had no effect on the proportion of the disappearance time. In contrast, a line that connected two targets significantly decreased the total invisibility time, but had no impact on the simultaneity of the disappearance and reappearance events. We found no statistically significant effect of the presence of the illusory Kanizsa triangle on either measure. Finally, we found no interaction either between the common region and the connectedness or between the common region and the presence of the illusory Kanizsa triangle. Our results indicate that extrinsic grouping factors might influence the perception differently than the intrinsic ones and highlight the importance of using several measures to characterize the perceptual dynamics, as various grouping factors might affect it differentially.
Collapse
Affiliation(s)
- Dina Devyatko
- Laboratory for Cognitive Research, National Research University Higher School of Economics, Moscow, Russia
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- * E-mail:
| | - Alexander Pastukhov
- Department of General Psychology and Methodology, University of Bamberg, Bamberg, Bavaria, Germany
- Forschungsgruppe EPÆG (Ergonomics, Psychological Æsthetics, Gestalt), Bamberg, Bavaria, Germany
| |
Collapse
|
17
|
Thomas V, Davidson M, Zakavi P, Tsuchiya N, van Boxtel J. Simulated forward and backward self motion, based on realistic parameters, causes motion induced blindness. Sci Rep 2017; 7:9767. [PMID: 28851914 PMCID: PMC5574926 DOI: 10.1038/s41598-017-09424-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Motion Induced Blindness (MIB) is a well-established visual phenomenon whereby highly salient targets disappear when viewed against a moving background mask. No research has yet explored whether contracting and expanding optic flow can also trigger target disappearance. We explored MIB using mask speeds corresponding to driving at 35, 50, 65 and 80 km/h in simulated forward (expansion) and backward (contraction) motion as well as 2-D radial movement, random, and static mask motion types. Participants (n = 18) viewed MIB targets against masks with different movement types, speed, and target locations. To understand the relationship between saccades, pupil response and perceptual disappearance, we ran two additional eye-tracking experiments (n = 19). Target disappearance increased significantly with faster mask speeds and upper visual field target presentation. Simulated optic flow and 2-D radial movement caused comparable disappearance, and all moving masks caused significantly more disappearance than a static mask. Saccades could not entirely account for differences between conditions, suggesting that self-motion optic flow does cause MIB in an artificial setting. Pupil analyses implied that MIB disappearance induced by optic flow is not subjectively salient, potentially explaining why MIB is not noticed during driving. Potential implications of MIB for driving safety and Head-Up-Display (HUD) technologies are discussed.
Collapse
Affiliation(s)
- Victoria Thomas
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia.
| | - Matthew Davidson
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia
| | - Parisa Zakavi
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia
| | - Jeroen van Boxtel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
18
|
Extending Levelt's Propositions to perceptual multistability involving interocular grouping. Vision Res 2017; 133:37-46. [PMID: 28185858 DOI: 10.1016/j.visres.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022]
Abstract
Levelt's Propositions are central to understanding a wide range of multistable perceptual phenomena, but it is unclear whether they extend to perceptual multistability involving interocular grouping. We presented split-grating stimuli with complementary halves of the same color (either red or green) to human subjects. The subjects reported four percepts in alternation: the two stimuli presented to each eye (half red and half green), as well as the two single color (all red or all green), interocularly grouped percepts. Increasing color saturation lead to increased reports of the single color percept in most subjects, indicating increased predominance of grouped percepts (Levelt's Proposition I). This increase in predominance was due to a decrease in the average dominance duration of single-eye percepts, with grouped percept dominance largely unaffected. This agrees with a generalization of Levelt's Proposition II, as the average dominance duration of the stronger (in this case single-eye) percept was primarily affected by changes in stimulus strength. Moreover, in agreement with Levelt's Proposition III the alternation rate between percepts increased as the difference in the strength of the percepts decreased.
Collapse
|
19
|
Devyatko D, Appelbaum LG, Mitroff SR. A Common Mechanism for Perceptual Reversals in Motion-Induced Blindness, the Troxler Effect, and Perceptual Filling-In. Perception 2016; 46:50-77. [PMID: 27697914 DOI: 10.1177/0301006616672577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several striking visual phenomena involve a physically present stimulus that alternates between being perceived and being "invisible." For example, motion-induced blindness, the Troxler effect, and perceptual filling-in all consist of subjective alternations where an item repeatedly changes from being seen to unseen. In the present study, we explored whether these three specific visual phenomena share any commonalities in their alternation rates and patterns to better understand the mechanisms of each. Data from 69 individuals revealed moderate to strong correlations across the three phenomena for the number of perceptual disappearances and the accumulated duration of the disappearances. Importantly, these effects were not correlated with eye movement patterns (saccades) assessed through eye tracking, differences in motion sensitivity as indexed by dot coherence and speed perception thresholds, or simple reaction time abilities. Principal component analyses revealed a single component that explained 67% of the variance for the number of perceptual reversals and 60% for the accumulated duration of the disappearances. The temporal dynamics of illusory disappearances was also compared for each phenomenon, and normalized durations of disappearances were well fit by a gamma distribution with similar shape parameters for each phenomenon, suggesting that they may be driven by a single oscillatory mechanism.
Collapse
Affiliation(s)
- Dina Devyatko
- National Research University Higher School of Economics, Moscow, Russia; Institute of Information Processing and Decision Making, University of Haifa, Israel
| | - L Gregory Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Stephen R Mitroff
- Department of Psychology, The George Washington University, Washington, DC, USA
| |
Collapse
|
20
|
Dieter KC, Tadin D, Pearson J. Motion-induced blindness continues outside visual awareness and without attention. Sci Rep 2015; 5:11841. [PMID: 26138079 PMCID: PMC4490349 DOI: 10.1038/srep11841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/14/2015] [Indexed: 12/03/2022] Open
Abstract
Visual phenomena demonstrating striking perceptual disappearances of salient stimuli have fascinated researchers because of their utility in identifying neural processes that underlie subjective visibility and invisibility. Motion-induced blindness (MIB) is appealing for such purposes because it, like a class of ostensibly related paradigms such as binocular rivalry, features periods of unequivocal subjective disappearances despite constant physical stimulation. It remains unclear, however, exactly how the mechanisms that cause MIB are related to subjectively observed fluctuations in visual awareness. To address this question, we used continuous flash suppression (CFS) to present the MIB stimulus outside visual awareness. Results indicated that MIB occasionally reappeared from suppression with its salient yellow target absent. To quantify this observation, we measured reaction times (RTs) to detect the yellow dot target following visible or perceptually suppressed MIB and indeed found no difference in RTs between these conditions. We also provide evidence that MIB fluctuations can occur without attention. In sum, these experiments indicate that MIB fluctuations are effectively changes in stimulus strength, which under typical conditions result in unmistakable subjective disappearances, but are not inherently fluctuations in stimulus visibility. More broadly, these results challenge the assumed privileged link between bistable stimuli and visual awareness.
Collapse
Affiliation(s)
- Kevin C. Dieter
- Vanderbilt Vision Research Center and Department of Psychology, Vanderbilt University, Nashville TN, 37240, USA
- Department of Brain and Cognitive Sciences and Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Duje Tadin
- Department of Brain and Cognitive Sciences and Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Department of Ophthalmology, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| | - Joel Pearson
- School of Psychology, The University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
21
|
Kloosterman NA, Meindertsma T, van Loon AM, Lamme VAF, Bonneh YS, Donner TH. Pupil size tracks perceptual content and surprise. Eur J Neurosci 2015; 41:1068-78. [PMID: 25754528 DOI: 10.1111/ejn.12859] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/14/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Department of Psychology, University of Amsterdam, Weesperplein 4, Amsterdam, 1018XA, the Netherlands; Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Brascamp JW, Klink PC, Levelt WJM. The 'laws' of binocular rivalry: 50 years of Levelt's propositions. Vision Res 2015; 109:20-37. [PMID: 25749677 DOI: 10.1016/j.visres.2015.02.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
Abstract
It has been fifty years since Levelt's monograph On Binocular Rivalry (1965) was published, but its four propositions that describe the relation between stimulus strength and the phenomenology of binocular rivalry remain a benchmark for theorists and experimentalists even today. In this review, we will revisit the original conception of the four propositions and the scientific landscape in which this happened. We will also provide a brief update concerning distributions of dominance durations, another aspect of Levelt's monograph that has maintained a prominent presence in the field. In a critical evaluation of Levelt's propositions against current knowledge of binocular rivalry we will then demonstrate that the original propositions are not completely compatible with what is known today, but that they can, in a straightforward way, be modified to encapsulate the progress that has been made over the past fifty years. The resulting modified, propositions are shown to apply to a broad range of bistable perceptual phenomena, not just binocular rivalry, and they allow important inferences about the underlying neural systems. We argue that these inferences reflect canonical neural properties that play a role in visual perception in general, and we discuss ways in which future research can build on the work reviewed here to attain a better understanding of these properties.
Collapse
Affiliation(s)
- J W Brascamp
- Helmholtz Institute and Division of Experimental Psychology, Department of Psychology, Utrecht University, Utrecht, The Netherlands.
| | - P C Klink
- Vision & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands; Neuromodulation & Behaviour, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - W J M Levelt
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Vidal JR, Perrone-Bertolotti M, Kahane P, Lachaux JP. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex. Front Psychol 2015; 5:1545. [PMID: 25642199 PMCID: PMC4295601 DOI: 10.3389/fpsyg.2014.01545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Abstract
If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception.
Collapse
Affiliation(s)
- Juan R Vidal
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon - Université Claude Bernard Lyon 1, Lyon, France ; University Grenoble Alpes, LPNC, F -38040 Grenoble France ; CNRS, LPNC, UMR 5105, F -38040 Grenoble France
| | - Marcela Perrone-Bertolotti
- University Grenoble Alpes, LPNC, F -38040 Grenoble France ; CNRS, LPNC, UMR 5105, F -38040 Grenoble France
| | - Philippe Kahane
- CHU Grenoble and Department of Neurology, INSERM U704, F -38043 Grenoble France
| | - Jean-Philippe Lachaux
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon - Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
24
|
Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VAF, Donner TH. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion. J Neurophysiol 2014; 113:1063-76. [PMID: 25411458 DOI: 10.1152/jn.00338.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conscious perception sometimes fluctuates strongly, even when the sensory input is constant. For example, in motion-induced blindness (MIB), a salient visual target surrounded by a moving pattern suddenly disappears from perception, only to reappear after some variable time. Whereas such changes of perception result from fluctuations of neural activity, mounting evidence suggests that the perceptual changes, in turn, may also cause modulations of activity in several brain areas, including visual cortex. In this study, we asked whether these latter modulations might affect the subsequent dynamics of perception. We used magnetoencephalography (MEG) to measure modulations in cortical population activity during MIB. We observed a transient, retinotopically widespread modulation of beta (12-30 Hz)-frequency power over visual cortex that was closely linked to the time of subjects' behavioral report of the target disappearance. This beta modulation was a top-down signal, decoupled from both the physical stimulus properties and the motor response but contingent on the behavioral relevance of the perceptual change. Critically, the modulation amplitude predicted the duration of the subsequent target disappearance. We propose that the transformation of the perceptual change into a report triggers a top-down mechanism that stabilizes the newly selected perceptual interpretation.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, The Netherlands;
| | - Thomas Meindertsma
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Bob W van Dijk
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands; Faculty of Movement Sciences, VU University, Amsterdam, The Netherlands; and
| | - Victor A F Lamme
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, The Netherlands
| | - Tobias H Donner
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, The Netherlands; Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|