1
|
Fernandez A, Drozd M, Thümmler S, Bardoni B, Askenazy F, Capovilla M. A novel microduplication in INPP5A segregates with schizophrenia spectrum disorder in the family of a patient with both childhood onset schizophrenia and autism spectrum disorder. Am J Med Genet A 2021; 185:1841-1847. [PMID: 33720513 DOI: 10.1002/ajmg.a.62155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Indexed: 01/15/2023]
Abstract
Childhood-Onset Schizophrenia (COS) is a very rare and severe psychiatric disorder defined by adult schizophrenia symptoms occurring before the age of 13. We report a microduplication in the 10q26.3 region including part of the Inositol Polyphosphate-5-Phosphatase A (INPP5A) gene that segregates with Schizophrenia Spectrum Disorders (SSDs) in the family of a female patient affected by both COS and Autism Spectrum Disorder (ASD). Phenotyping and genotyping (including CGH-array) were performed for mother, healthy sister, and affected child according to the GenAuDiss protocol (NCT02565524). The duplication size is 324 kb and is present in a patient with COS and in her mother with SSD, but not in the patient's healthy sister. INPP5A encodes a membrane-associated 43 kDa type I inositol 1,4,5-trisphosphate (InsP3) 5-phosphatase. This protein is found both in mouse and human brains and we found that its Drosophila homologue 5PtaseI is specifically expressed in the central nervous system. Hydrolyzed products from InsP3 5-phosphatases mobilize intracellular calcium, which is relevant for dendritic spine morphogenesis in neurons and altered in both schizophrenia and ASD. These may constitute arguments in favor of this gene alteration in the pathophysiology of COS.
Collapse
Affiliation(s)
- Arnaud Fernandez
- Département de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital de NICE CHU-Lenval, Nice, France.,CoBTek, FRIS, Université Côte d'Azur, Nice, France.,Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Małgorzata Drozd
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Susanne Thümmler
- Département de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital de NICE CHU-Lenval, Nice, France.,CoBTek, FRIS, Université Côte d'Azur, Nice, France
| | - Barbara Bardoni
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Florence Askenazy
- Département de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital de NICE CHU-Lenval, Nice, France.,CoBTek, FRIS, Université Côte d'Azur, Nice, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
2
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|