1
|
Pringle RM, Abraham JO, Anderson TM, Coverdale TC, Davies AB, Dutton CL, Gaylard A, Goheen JR, Holdo RM, Hutchinson MC, Kimuyu DM, Long RA, Subalusky AL, Veldhuis MP. Impacts of large herbivores on terrestrial ecosystems. Curr Biol 2023; 33:R584-R610. [PMID: 37279691 DOI: 10.1016/j.cub.2023.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.
Collapse
Affiliation(s)
- Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Joel O Abraham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
| | - Tyler C Coverdale
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew B Davies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | - Jacob R Goheen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82072, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Matthew C Hutchinson
- Department of Life & Environmental Sciences, University of California Merced, Merced, CA 95343, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amanda L Subalusky
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Michiel P Veldhuis
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
Christianen MJA, Smulders FOH, Vonk JA, Becking LE, Bouma TJ, Engel SM, James RK, Nava MI, de Smit JC, van der Zee JP, Palsbøll PJ, Bakker ES. Seagrass ecosystem multifunctionality under the rise of a flagship marine megaherbivore. GLOBAL CHANGE BIOLOGY 2023; 29:215-230. [PMID: 36330798 PMCID: PMC10099877 DOI: 10.1111/gcb.16464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.
Collapse
Affiliation(s)
- Marjolijn J. A. Christianen
- Aquatic Ecology and Water Quality Management GroupWageningen University & ResearchWageningenThe Netherlands
- Marine Evolution and Conservation GroupGroningen Institute for Evolutionary Life Sciences, University of GroningenGroningenThe Netherlands
| | - Fee O. H. Smulders
- Aquatic Ecology and Water Quality Management GroupWageningen University & ResearchWageningenThe Netherlands
| | - Jan Arie Vonk
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem Dynamics (IBED), University of AmsterdamAmsterdamThe Netherlands
| | - Leontine E. Becking
- Aquaculture and Fisheries groupWageningen University & Research CentreWageningenThe Netherlands
| | - Tjeerd J. Bouma
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ)YersekeThe Netherlands
- Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Sabine M. Engel
- STINAPA, Bonaire National Parks FoundationBonaireCaribbean Netherlands
| | - Rebecca K. James
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ)YersekeThe Netherlands
- Biogeochemistry and Modeling of the Earth System GroupUniversité libre de BruxellesBruxellesBelgium
| | - Mabel I. Nava
- Sea Turtle Conservation BonaireBonaireCaribbean Netherlands
| | - Jaco C. de Smit
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ)YersekeThe Netherlands
- Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Jurjan P. van der Zee
- Marine Evolution and Conservation GroupGroningen Institute for Evolutionary Life Sciences, University of GroningenGroningenThe Netherlands
| | - Per J. Palsbøll
- Marine Evolution and Conservation GroupGroningen Institute for Evolutionary Life Sciences, University of GroningenGroningenThe Netherlands
- Center for Coastal StudiesProvincetownMassachusettsUSA
| | - Elisabeth S. Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Wildlife Ecology and Conservation Group, Wageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets - An argument against drastic limitation of livestock in the food system. Animal 2022; 16:100457. [PMID: 35158307 DOI: 10.1016/j.animal.2022.100457] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Animal source foods are evolutionarily appropriate foods for humans. It is therefore remarkable that they are now presented by some as unhealthy, unsustainable, and unethical, particularly in the urban West. The benefits of consuming them are nonetheless substantial, as they offer a wide spectrum of nutrients that are needed for cell and tissue development, function, and survival. They play a role in proper physical and cognitive development of infants, children, and adolescents, and help promote maintenance of physical function with ageing. While high-red meat consumption in the West is associated with several forms of chronic disease, these associations remain uncertain in other cultural contexts or when consumption is part of wholesome diets. Besides health concerns, there is also widespread anxiety about the environmental impacts of animal source foods. Although several production methods are detrimental (intensive cropping for feed, overgrazing, deforestation, water pollution, etc.) and require substantial mitigation, damaging impacts are not intrinsic to animal husbandry. When well-managed, livestock farming contributes to ecosystem management and soil health, while delivering high-quality foodstuffs through the upcycling of resources that are otherwise non-suitable for food production, making use of marginal land and inedible materials (forage, by-products, etc.), integrating livestock and crop farming where possible has the potential to benefit plant food production through enhanced nutrient recycling, while minimising external input needs such as fertilisers and pesticides. Moreover, the impacts on land use, water wastage, and greenhouse gas emissions are highly contextual, and their estimation is often erroneous due to a reductionist use of metrics. Similarly, whether animal husbandry is ethical or not depends on practical specificities, not on the fact that animals are involved. Such discussions also need to factor in that animal husbandry plays an important role in culture, societal well-being, food security, and the provision of livelihoods. We seize this opportunity to argue for less preconceived assumptions about alleged effects of animal source foods on the health of the planet and the humans and animals involved, for less top-down planning based on isolated metrics or (Western) technocratic perspectives, and for more holistic and circumstantial approaches to the food system.
Collapse
|
4
|
Methane and Dissolved Organic Matter in the Ground Ice Samples from Central Yamal: Implications to Biogeochemical Cycling and Greenhouse Gas Emission. GEOSCIENCES 2020. [DOI: 10.3390/geosciences10110450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Permafrost thawing leads to mobilization of the vast carbon pool into modern biogeochemical cycling through the enhanced release of dissolved organic matter (DOM) and production of greenhouse gases (CO2 and CH4). In this work, we focus on the study of methane and DOM distribution and genesis in the ground ice samples of thermodenudational exposure in the Central Yamal (Russian Arctic). We propose that the liberation of the ice-trapped CH4 and generation of CO2 by DOM mineralization are the earliest factors of atmospheric greenhouse gases emission as a result of permafrost thawing. The observed enormously “light ” isotope signatures of methane (δ13C < −80‰, δD < −390‰) found in the tabular ground ice units significantly divergent in morphology and localization within the exposuremay be related to subzero (cryogenic) carbonate reduction a as significant factor of the local methane enrichment. DOM is mainly formed (>88%) by biochemically refractory humic acids. Distribution of the labile protein-like DOM reflects the specific features of carbon and nitrogen cycles in the tabular ground ice and ice wedge samples. Tabular ground ice units are shown to be a significant source of methane and high quality organic matter as well as dissolved inorganic nitrogen (DIN). Ice wedges express a high variation in DOM composition and lability.
Collapse
|
5
|
Leroy F, Hite AH, Gregorini P. Livestock in Evolving Foodscapes and Thoughtscapes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
6
|
Abstract
Large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans. Much has been written on the timing and causes of these declines, but only recently has scientific attention focused on the consequences of these declines for ecosystem function. Here, we review progress in our understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate, drawing on special features of PNAS and Ecography that have been published as a result of an international workshop on this topic held in Oxford in 2014. Insights emerging from this work have consequences for our understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems, as well as offering a rationale and framework for scientifically informed restoration of megafaunal function where possible and appropriate.
Collapse
|
7
|
Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proc Natl Acad Sci U S A 2015; 113:874-9. [PMID: 26504225 DOI: 10.1073/pnas.1502547112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Globally, large-bodied wild mammals are in peril. Because "megamammals" have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes in methane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∼ 200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation of megaherbivores reduced global enteric emissions between 2.2-69.6 Tg CH4 y(-1) during the various time periods, representing a decrease of 0.8-34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate.
Collapse
|
8
|
Smith FA, Lyons SK, Wagner PJ, Elliott SM. The importance of considering animal body mass in IPCC greenhouse inventories and the underappreciated role of wild herbivores. GLOBAL CHANGE BIOLOGY 2015; 21:3880-3888. [PMID: 25970851 DOI: 10.1111/gcb.12973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 12/26/2014] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Methane is an important greenhouse gas, but characterizing production by source sector has proven difficult. Current estimates suggest herbivores produce ~20% (~76-189 Tg yr(-1) ) of methane globally, with wildlife contributions uncertain. We develop a simple and accurate method to estimate methane emissions and reevaluate production by wildlife. We find a strikingly robust relationship between body mass and methane output exceeding the scaling expected by differences in metabolic rate. Our allometric model gives a significantly better fit to empirical data than IPCC Tier 1 and 2 calculations. Our analysis suggests that (i) the allometric model provides an easier and more robust estimate of methane production than IPCC models currently in use; (ii) output from wildlife is much higher than previously considered; and (iii) because of the allometric scaling of methane output with body mass, national emissions could be reduced if countries favored more, smaller livestock, over fewer, larger ones.
Collapse
Affiliation(s)
- Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - S Kathleen Lyons
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Peter J Wagner
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Scott M Elliott
- Climate, Ocean, Sea Ice Modeling (COSIM), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|