1
|
Xiao S, Liu F, Yu L, Li X, Ye X, Gong X. Development and validation of a nomogram for blood transfusion during intracranial aneurysm clamping surgery: a retrospective analysis. BMC Med Inform Decis Mak 2023; 23:71. [PMID: 37076865 PMCID: PMC10114399 DOI: 10.1186/s12911-023-02157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Intraoperative blood transfusion is associated with adverse events. We aimed to establish a machine learning model to predict the probability of intraoperative blood transfusion during intracranial aneurysm surgery. METHODS Patients, who underwent intracranial aneurysm surgery in our hospital between January 2019 and December 2021 were enrolled. Four machine learning models were benchmarked and the best learning model was used to establish the nomogram, before conducting a discriminative assessment. RESULTS A total of 375 patients were included for analysis in this model, among whom 108 received an intraoperative blood transfusion during the intracranial aneurysm surgery. The least absolute shrinkage selection operator identified six preoperative relative factors: hemoglobin, platelet, D-dimer, sex, white blood cell, and aneurysm rupture before surgery. Performance evaluation of the classification error demonstrated the following: K-nearest neighbor, 0.2903; logistic regression, 0.2290; ranger, 0.2518; and extremely gradient boosting model, 0.2632. A nomogram based on a logistic regression algorithm was established using the above six parameters. The AUC values of the nomogram were 0.828 (0.775, 0.881) and 0.796 (0.710, 0.882) in the development and validation groups, respectively. CONCLUSIONS Machine learning algorithms present a good performance evaluation of intraoperative blood transfusion. The nomogram established using a logistic regression algorithm showed a good discriminative ability to predict intraoperative blood transfusion during aneurysm surgery.
Collapse
Affiliation(s)
- Shugen Xiao
- Institute of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Fan Liu
- Institute of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Liyuan Yu
- Institute of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaopei Li
- Institute of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xihong Ye
- Institute of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Xingrui Gong
- Institute of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
2
|
Shao Z, Wang T, Zhang M, Jiang Z, Huang S, Zeng P. IUSMMT: Survival mediation analysis of gene expression with multiple DNA methylation exposures and its application to cancers of TCGA. PLoS Comput Biol 2021; 17:e1009250. [PMID: 34464378 PMCID: PMC8437300 DOI: 10.1371/journal.pcbi.1009250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/13/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Effective and powerful survival mediation models are currently lacking. To partly fill such knowledge gap, we particularly focus on the mediation analysis that includes multiple DNA methylations acting as exposures, one gene expression as the mediator and one survival time as the outcome. We proposed IUSMMT (intersection-union survival mixture-adjusted mediation test) to effectively examine the existence of mediation effect by fitting an empirical three-component mixture null distribution. With extensive simulation studies, we demonstrated the advantage of IUSMMT over existing methods. We applied IUSMMT to ten TCGA cancers and identified multiple genes that exhibited mediating effects. We further revealed that most of the identified regions, in which genes behaved as active mediators, were cancer type-specific and exhibited a full mediation from DNA methylation CpG sites to the survival risk of various types of cancers. Overall, IUSMMT represents an effective and powerful alternative for survival mediation analysis; our results also provide new insights into the functional role of DNA methylation and gene expression in cancer progression/prognosis and demonstrate potential therapeutic targets for future clinical practice.
Collapse
Affiliation(s)
- Zhonghe Shao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Jiang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuiping Huang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Lu H, Zhang J, Jiang Z, Zhang M, Wang T, Zhao H, Zeng P. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet 2021; 12:656545. [PMID: 33815486 PMCID: PMC8012913 DOI: 10.3389/fgene.2021.656545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background Clinical and epidemiological studies have suggested systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are comorbidities and common genetic etiologies can partly explain such coexistence. However, shared genetic determinations underlying the two diseases remain largely unknown. Methods Our analysis relied on summary statistics available from genome-wide association studies of SLE (N = 23,210) and RA (N = 58,284). We first evaluated the genetic correlation between RA and SLE through the linkage disequilibrium score regression (LDSC). Then, we performed a multiple-tissue eQTL (expression quantitative trait loci) weighted integrative analysis for each of the two diseases and aggregated association evidence across these tissues via the recently proposed harmonic mean P-value (HMP) combination strategy, which can produce a single well-calibrated P-value for correlated test statistics. Afterwards, we conducted the pleiotropy-informed association using conjunction conditional FDR (ccFDR) to identify potential pleiotropic genes associated with both RA and SLE. Results We found there existed a significant positive genetic correlation (rg = 0.404, P = 6.01E-10) via LDSC between RA and SLE. Based on the multiple-tissue eQTL weighted integrative analysis and the HMP combination across various tissues, we discovered 14 potential pleiotropic genes by ccFDR, among which four were likely newly novel genes (i.e., INPP5B, OR5K2, RP11-2C24.5, and CTD-3105H18.4). The SNP effect sizes of these pleiotropic genes were typically positively dependent, with an average correlation of 0.579. Functionally, these genes were implicated in multiple auto-immune relevant pathways such as inositol phosphate metabolic process, membrane and glucagon signaling pathway. Conclusion This study reveals common genetic components between RA and SLE and provides candidate associated loci for understanding of molecular mechanism underlying the comorbidity of the two diseases.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Zhao N, Zhang H, Clark JJ, Maity A, Wu MC. Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene–environment interaction effect. Biometrics 2019; 75:625-637. [DOI: 10.1111/biom.13003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ni Zhao
- Department of BiostatisticsJohns Hopkins UniversityBaltimore, Maryland
| | - Haoyu Zhang
- Department of BiostatisticsJohns Hopkins UniversityBaltimore, Maryland
| | - Jennifer J. Clark
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Arnab Maity
- Department of StatisticsNorth Carolina State UniversityRaleigh, North Carolina
| | - Michael C. Wu
- Public Health Sciences Division,Fred Hutchinson Cancer Research CenterSeattle, Washington
| |
Collapse
|
5
|
Larson NB, Chen J, Schaid DJ. A review of kernel methods for genetic association studies. Genet Epidemiol 2019; 43:122-136. [PMID: 30604442 DOI: 10.1002/gepi.22180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Evaluating the association of multiple genetic variants with a trait of interest by use of kernel-based methods has made a significant impact on how genetic association analyses are conducted. An advantage of kernel methods is that they tend to be robust when the genetic variants have effects that are a mixture of positive and negative effects, as well as when there is a small fraction of causal variants. Another advantage is that kernel methods fit within the framework of mixed models, providing flexible ways to adjust for additional covariates that influence traits. Herein, we review the basic ideas behind the use of kernel methods for genetic association analysis as well as recent methodological advancements for different types of traits, multivariate traits, pedigree data, and longitudinal data. Finally, we discuss opportunities for future research.
Collapse
Affiliation(s)
- Nicholas B Larson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Jun Chen
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Daniel J Schaid
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep 2017; 7:15237. [PMID: 29127305 PMCID: PMC5681585 DOI: 10.1038/s41598-017-15055-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding the functional mechanism of SNPs identified in GWAS on complex diseases is currently a challenging task. The studies of expression quantitative trait loci (eQTL) have shown that regulatory variants play a crucial role in the function of associated SNPs. Detecting significant genes (called eGenes) in eQTL studies and analyzing the effect sizes of cis-SNPs can offer important implications on the genetic architecture of associated SNPs and interpretations of the molecular basis of diseases. We applied linear mixed models (LMM) to the gene expression level and constructed likelihood ratio tests (LRT) to test for eGene in the Geuvadis data. We identified about 11% genes as eGenes in the Geuvadis data and found some eGenes were enriched in approximately independent linkage disequilibrium (LD) blocks (e.g. MHC). We further performed PrediXcan analysis for seven diseases in the WTCCC data with weights estimated using LMM and identified 64, 5, 21 and 1 significant genes (p < 0.05 after Bonferroni correction) associated with T1D, CD, RA and T2D. We found most of the significant genes of T1D and RA were also located within the MHC region. Our results provide strong evidence that gene expression plays an intermediate role for the associated variants in GWAS.
Collapse
Affiliation(s)
- Ping Zeng
- Xuzhou Medical University, Department of Epidemiology and Biostatistics, Xuzhou, 221004, China.
- University of Michigan, Department of Biostatistics, Ann Arbor, MI, 48104, USA.
| | - Ting Wang
- Xuzhou Medical University, Department of Epidemiology and Biostatistics, Xuzhou, 221004, China
| | - Shuiping Huang
- Xuzhou Medical University, Department of Epidemiology and Biostatistics, Xuzhou, 221004, China.
| |
Collapse
|
7
|
Zeng P, Wang T. Detecting the Genomic Signature of Divergent Selection in Presence of Gene Flow. Curr Genomics 2015; 16:203-12. [PMID: 26069460 PMCID: PMC4460224 DOI: 10.2174/1389202916666150313230943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/23/2015] [Accepted: 03/09/2015] [Indexed: 11/22/2022] Open
Abstract
In this paper the detection of rare variants association with continuous phenotypes of interest is investigated via the likelihood-ratio based variance component test under the framework of linear mixed models. The hypothesis testing is challenging and nonstandard, since under the null the variance component is located on the boundary of its parameter space. In this situation the usual asymptotic chisquare distribution of the likelihood ratio statistic does not necessarily hold. To circumvent the derivation of the null distribution we resort to the bootstrap method due to its generic applicability and being easy to implement. Both parametric and nonparametric bootstrap likelihood ratio tests are studied. Numerical studies are implemented to evaluate the performance of the proposed bootstrap likelihood ratio test and compare to some existing methods for the identification of rare variants. To reduce the computational time of the bootstrap likelihood ratio test we propose an effective approximation mixture for the bootstrap null distribution. The GAW17 data is used to illustrate the proposed test.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Epidemiology and Biostatistics, and Center of Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, P. R. China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, P. R. China
| |
Collapse
|