1
|
Raben H, Kammerer PW, van Rienen U. Addressing Model Uncertainties in Finite Element Simulation of Electrically Stimulated Implants for Critical-Size Mandibular Defects. IEEE Trans Biomed Eng 2024; 71:3055-3068. [PMID: 38819969 DOI: 10.1109/tbme.2024.3408076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Electrical stimulation is known to enhance bone healing. Novel electrostimulating devices are currently being developed for the treatment of critical-size bone defects in the mandible. Previous numerical models of these devices did not account for possible uncertainties in the input data. We present the numerical model of an electrically stimulated minipig mandible, including optimization and uncertainty quantification (UQ) methods that allow us to determine the most influential parameters. METHODS Uncertainties in the optimized finite element model are quantified using the polynomial chaos method that is implemented in the open-source Python toolbox Uncertainpy. The volumes of understimulated, beneficially stimulated, and overstimulated tissue are considered quantities of interest because they may significantly impact the expected healing success. Further, the current is a substantial quantity, limiting the lifetime of a battery-driven stimulation unit. With sensitivity analyses, the most critical parameters in the numerical model can be identified. Thus, we can learn which parameters are particularly relevant, for example, when conceptualizing the stimulation unit or planning the manufacturing process. RESULTS The results of this study show that the parameters of the electrode-tissue interface (ETI), as well as the conductivity within the defect volume, have the most significant impact on the model results. CONCLUSIONS The UQ results suggest that careful characterization of the ETI and the dielectric tissue properties is crucial to reduce these uncertainties. SIGNIFICANCE The numerical model regarding uncertainties yields important implications for reliable implant design and clinical translation.
Collapse
|
2
|
Toscano RA, Barbosa S, Campos LG, de Sousa CA, Dallazen E, Mourão CF, Shibli JA, Ervolino E, Faverani LP, Assunção WG. The Addition of Hydroxyapatite Nanoparticles on Implant Surfaces Modified by Zirconia Blasting and Acid Etching to Enhance Peri-Implant Bone Healing. Int J Mol Sci 2024; 25:7321. [PMID: 39000425 PMCID: PMC11242766 DOI: 10.3390/ijms25137321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
This study investigated the impact of adding hydroxyapatite nanoparticles to implant surfaces treated with zirconia blasting and acid etching (ZiHa), focusing on structural changes and bone healing parameters in low-density bone sites. The topographical characterization of titanium discs with a ZiHa surface and a commercially modified zirconia-blasted and acid-etched surface (Zi) was performed using scanning electron microscopy, profilometry, and surface-free energy. For the in vivo assessment, 22 female rats were ovariectomized and kept for 90 days, after which one implant from each group was randomly placed in each tibial metaphysis of the animals. Histological and immunohistochemical analyses were performed at 14 and 28 days postoperatively (decalcified lab processing), reverse torque testing was performed at 28 days, and histometry from calcified lab processing was performed at 60 days The group ZiHa promoted changes in surface morphology, forming evenly distributed pores. For bone healing, ZiHa showed a greater reverse torque, newly formed bone area, and bone/implant contact values compared to group Zi (p < 0.05; t-test). Qualitative histological and immunohistochemical analyses showed higher features of bone maturation for ZiHa on days 14 and 28. This preclinical study demonstrated that adding hydroxyapatite to zirconia-blasted and acid-etched surfaces enhanced peri-implant bone healing in ovariectomized rats. These findings support the potential for improving osseointegration of dental implants, especially in patients with compromised bone metabolism.
Collapse
Affiliation(s)
- Ricardo Alves Toscano
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Stéfany Barbosa
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Larissa Gabriele Campos
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Cecília Alves de Sousa
- Department of Dental Materials and Prosthodontics, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Eduardo Dallazen
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, School of Dentistry, Tufts University, Boston, MA 02111, USA
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos (UnG), Guarulhos 07115-230, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16018-800, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Wirley Goncalves Assunção
- Department of Dental Materials and Prosthodontics, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| |
Collapse
|
3
|
Manjunath V, Badhe RV, McCoy M, Rynne J, Bhatti A, Segu A, Oral E, Jacobs JJ, Chastain P, Bijukumar D, Mathew MT. The role of Vitamin E in hip implant-related corrosion and toxicity: Initial outcome. J Mech Behav Biomed Mater 2021; 123:104769. [PMID: 34412025 PMCID: PMC10559727 DOI: 10.1016/j.jmbbm.2021.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
In orthopedic healthcare, Total Hip Replacement (THR) is a common and effective solution to hip-related bone and joint diseases/fracture; however, corrosion of the hip implant and the release of degradation metal ions/particles can lead to early implant failure and pose potential toxicity risk for the surrounding tissues. The main objective of this work was to investigate the potential role of Vitamin E to minimize corrosion-related concerns from CoCrMo hip implants. The study focused on two questions (i) Can Vitamin E inhibit CoCrMo corrosion? and (ii) Does Vitamin E moderate the toxicity associated with the CoCrMo implant particles? In the study (i) the electrochemical experiments (ASTM G61) with different concentrations of Vitamin E (1, 2, 3 mg/ml against the control) were performed using normal saline and simulated synovial fluid (Bovine calf serum-BCS, 30 g/L protein, pH 7.4) as electrolytes. The polished CoCrMo disc (Ra 50 nm) was the working electrode. The findings suggested that both Vitamin E-Saline (45 ± 0.9%) and Vitamin E-BCS (91 ± 3%) solutions protected against implant corrosion at a Vitamin E concentration of 3 mg/ml, but Vitamin E-BCS showed protection at all Vitamin E (1-3 mg/ml) concentration levels. These results suggested that the Vitamin E and the protein present in the BCS imparted additive effects towards the electrochemical inhibition. In the study (ii) the role of Vitamin E in cytotoxicity inhibition was studied using a mouse neuroblastoma cell line (N2a) for CoCrMo particles and Cr ions separately. The CoCrMo particles were generated from a custom-built hip simulator. The alamarBlue assay results suggested that Vitamin E provides significant protection (85% and 75% proliferation) to N2a cells against CoCrMo particles and Cr ions, respectively at 1 μg/ml concentration, as compared to the control group. However, the results obtained from ROS expression and DNA fiber staining suggest that Vitamin E is only effective against CoCrMo degradation particles and not against Cr ions. In summary, the findings show that Vitamin E can minimize the corrosion processes and play a role in minimizing the potential toxicity associated with implants.
Collapse
Affiliation(s)
- Vikas Manjunath
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Maureen McCoy
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Josiah Rynne
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Aisha Bhatti
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Abhijith Segu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Ebru Oral
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Paul Chastain
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
4
|
Comparison between Plasma Electrolytic Oxidation Coating and Sandblasted Acid-Etched Surface Treatment: Histometric, Tomographic, and Expression Levels of Osteoclastogenic Factors in Osteoporotic Rats. MATERIALS 2020; 13:ma13071604. [PMID: 32244631 PMCID: PMC7178360 DOI: 10.3390/ma13071604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Plasma electrolytic oxidation (PEO) has been a promising surface coating with better mechanical and antimicrobial parameters comparing to conventional treatment surfaces. This study evaluated the peri-implant bone repair using (PEO) surface coatings compared with sandblasted acid (SLA) treatment. For this purpose, 44 Wistar rats were ovariectomized (OVX-22 animals) or underwent simulated surgery (SS-22 animals) and received implants in the tibia with each of the surface coatings. The peri-implant bone subsequently underwent molecular, microstructural, bone turnover, and histometric analysis. Real-time PCR showed a higher expression of osteoprotegerin (OPG), receptor activator of nuclear kappa-B ligand (RANKL), and osteocalcin (OC) proteins in the SLA/OVX and PEO/SS groups (p < 0.05). Computed microtomography, confocal microscopy, and histometry showed similarity between the PEO and SLA surfaces, with a trend toward the superiority of PEO in OVX animals. Thus, PEO surfaces were shown to be promising for enhancing peri-implant bone repair in ovariectomized rats.
Collapse
|
5
|
Dini C, Nagay BE, Cordeiro JM, da Cruz NC, Rangel EC, Ricomini-Filho AP, de Avila ED, Barão VAR. UV-photofunctionalization of a biomimetic coating for dental implants application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110657. [PMID: 32204085 DOI: 10.1016/j.msec.2020.110657] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
Photofunctionalization mediated by ultraviolet (UV) rays changes the physico-chemical characteristics of titanium (Ti) and improves the biological activity of dental implants. However, the role of UV-mediated photofunctionalization of biofunctional Ti surfaces on the antimicrobial and photocatalytic activity remains unknown and was investigated in this study. Commercially pure titanium (cpTi) discs were divided into four groups: (1) machined samples without UV light application [cpTi UV-]; (2) plasma electrolytic oxidation (PEO) treated samples without UV light application [PEO UV-]; (3) machined samples with UV light application [cpTi UV+]; and (4) PEO-treated samples with UV light application [PEO UV+]. The surfaces were characterized according to their morphology, roughness, crystalline phase, chemical composition and wettability. The photocatalytic activity and proteins adsorption were measured. For the microbiological assay, Streptococcus sanguinis was grown on the disc surfaces for 1 h and 6 h, and the colony forming units and bacterial organization were evaluated. In addition, to confirm the non-cytotoxic effect of PEO UV +, human gingival fibroblast (HGF) cells were cultured in a monolayer onto each material surface and the cells viability and proliferation evaluated by a fluorescent cell staining method. PEO treatment increased the Ti surface roughness and wettability (p < 0.05). Photofunctionalization reduced the hydrocarbon concentration and enhanced human blood plasma proteins and albumin adsorption mainly for the PEO-treated surface (p < 0.05). PEO UV+ also maintained higher wettability values for a longer period and provided microbial reduction at 1 h of bacterial adhesion (p = 0.012 vs. PEO UV-). Photofunctionalization did not increase the photocatalytic activity of Ti (p > 0.05). Confocal microscopy analyses demonstrated that PEO UV+ had no cell damage effect on HGF cells growth even after 24 h of incubation. The photofunctionalization of a biofunctional PEO coating seems to be a promising alternative for dental implants as it increases blood plasma proteins adsorption, reduces initial bacterial adhesion and presents no cytotoxicity effect.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Antônio P Ricomini-Filho
- Department of Physiological Science, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
6
|
Souza FÁ, Furtado TSM, Dayube URC, Melo WM, Nishioka RS, Poli PP, Maiorana C, de Carvalho PSP. Comparative in vivo study of alloy titanium implants with two different surfaces: biomechanical and SEM analysis. Clin Oral Investig 2019; 23:4383-4397. [PMID: 30972600 DOI: 10.1007/s00784-019-02872-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/19/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the biomechanical behavior of the interface formed between bone and implants with machined surfaces (MS) and those modified by Al2O3 sandblasting and acid etching (SBAS). MATERIALS AND METHODS Before surgery, topographic characterization was performed by SEM-EDX and by mean roughness measurements. Ten Albinus rabbits received randomly 20 Ti-6Al-4V implants on its right and left tibiae, with one implant placed in each tibia. After implant insertion, the implant stability quotient (ISQ) was measured by means of resonance frequency analysis (RFA). After 3 and 6 weeks, the ISQ was again measured, followed by torque removal measurements. Analysis of variance and Tukey tests were used to analyze the data. The surface of the implants removed was evaluated by SEM-EDX. Immunohistochemical analysis of osteopontin (OPN) and osteocalcin (OC) protein was performed in bone tissue. RESULTS The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of SBAS group were statistically higher than MS. Overall, higher statistically significant ISQ values were observed in the SBAS group compared to the MS group (p = 0.012). The intra-group comparison of ISQ values in the SBAS group showed statistically significant differences between 0 and 3 weeks (p = 0.032) and 0 and 6 weeks (p = 0.003). The torque removal measurements of group SBAS were statistically higher when compared with the torque removal measurements of group MS in the time intervals of 3 weeks (p = 0.002) and 6 weeks (p < 0.001). SEM-EDX of the implant surfaces removed in SBAS group showed greater bone tissue covering and mean values atomic in percentage of Ca, P, and O statistically superior (p < 0.05) than MS group. Immunohistochemical reactions showed intense OC immunolabeling at 6 weeks postoperative for SBAS group. CONCLUSIONS The topographical modifications made in group SBAS allowed a better mechanical interlocking between the implant and bone tissue.
Collapse
Affiliation(s)
- Francisley Ávila Souza
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil.
| | - Thayane Silveira Mata Furtado
- Implant Dentistry Postgraduate Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas, Brazil
| | - Ulisses Ribeiro Campos Dayube
- Implant Dentistry Postgraduate Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas, Brazil
| | - Willian Moraes Melo
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil
| | - Renato Sussumu Nishioka
- Department of Materials Dental and Prosthesis, São José dos Campos Dental of School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil
| | - Pier Paolo Poli
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Carlo Maiorana
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Paulo Sérgio Perri de Carvalho
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil.,Implant Dentistry Postgraduate Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas, Brazil
| |
Collapse
|
7
|
Pantaroto HN, Amorim KP, Matozinho Cordeiro J, Souza JGS, Ricomini-Filho AP, Rangel EC, Ribeiro ALR, Vaz LG, Barão VAR. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. BIOFOULING 2019; 35:173-186. [PMID: 30935231 DOI: 10.1080/08927014.2019.1580360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The chemical composition of biomaterials can drive their biological responses; therefore, this in vitro study aimed to evaluate the proteomic profile of the salivary pellicle formed on titanium (Ti) alloys containing niobium (Nb) and zirconium (Zr). The experimental groups consisted of Ti35NbxZr (x = 5 and 10 wt%) alloys, and commercially pure titanium (cpTi); titanium aluminium vanadium (Ti6Al4V) alloys were used as controls. The physical and chemical characteristics of the Ti materials were analysed. The proteomic profile was evaluated by liquid chromatography coupled with tandem mass spectrometry. Bacterial adhesion (2 h) of mixed species (Streptococcus sanguinis and Actinomyces naeslundii) was investigated as colony-forming units (n = 6). This paper reports the finding that salivary pellicle composition can be modulated by the composition of the Ti material. The Ti35NbxZr group showed a significant ability to adsorb proteins from saliva, which can favour interactions with cells and compatibility with the body.
Collapse
Affiliation(s)
- Heloisa Navarro Pantaroto
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Karina Pintaudi Amorim
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Jairo Matozinho Cordeiro
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - João Gabriel S Souza
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Antônio Pedro Ricomini-Filho
- b Department of Physiological Science , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Elidiane C Rangel
- c Laboratory of Technological Plasmas, Engineering College , University Estadual Paulista (UNESP) , Sorocaba , São Paulo , Brazil
- d Faculdade de Ciências do Tocantins (FACIT) , Araguaína , Tocantins , Brazil
| | - Ana Lúcia R Ribeiro
- e Faculdade de Ciências Humanas, Econômicas e da Saúde de Araguaína/Instituto Tocantinense Presidente Antônio Carlos (FAHESA/ITPAC) , Araguaína , Tocantins , Brazil
| | - Luís Geraldo Vaz
- f Department of Dental Materials and Prosthodontics , University Estadual Paulista (UNESP), Araraquara Dental School , Araraquara , São Paulo , Brazil
| | - Valentim A R Barão
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| |
Collapse
|
8
|
Cordeiro JM, Faverani LP, Grandini CR, Rangel EC, da Cruz NC, Nociti Junior FH, Almeida AB, Vicente FB, Morais BR, Barão VA, Assunção WG. Characterization of chemically treated Ti-Zr system alloys for dental implant application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:849-861. [DOI: 10.1016/j.msec.2018.07.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/11/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
|
9
|
Marques IDSV, Alfaro MF, Saito MT, da Cruz NC, Takoudis C, Landers R, Mesquita MF, Nociti Junior FH, Mathew MT, Sukotjo C, Barão VAR. Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces. Biointerphases 2016; 11:031008. [PMID: 27514370 PMCID: PMC4982872 DOI: 10.1116/1.4960654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022] Open
Abstract
Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (-0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (-0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces.
Collapse
Affiliation(s)
- Isabella da Silva Vieira Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Fernanda Alfaro
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, Illinois 60612
| | - Miki Taketomi Saito
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Christos Takoudis
- Departments of Chemical Engineering and Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., SEO 218, Chicago, Illinois 60607
| | - Richard Landers
- Institute of Physics Gleb Wataghin, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo 13083-859, Brazil
| | - Marcelo Ferraz Mesquita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Francisco Humberto Nociti Junior
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, Illinois 61107
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, Illinois 60612
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
10
|
Ogawa ES, Matos AO, Beline T, Marques IS, Sukotjo C, Mathew MT, Rangel EC, Cruz NC, Mesquita MF, Consani RX, Barão VA. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:251-61. [DOI: 10.1016/j.msec.2016.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/17/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023]
|
11
|
Marques IDS, Alfaro MF, Cruz NCD, Mesquita MF, Takoudis C, Sukotjo C, Mathew MT, Barão VAR. Tribocorrosion behavior of biofunctional titanium oxide films produced by micro-arc oxidation: Synergism and mechanisms. J Mech Behav Biomed Mater 2016; 60:8-21. [DOI: 10.1016/j.jmbbm.2015.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022]
|
12
|
Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 2016; 74:323-45. [PMID: 27027398 DOI: 10.1111/cod.12565] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations for detection of type IV hypersensitivity is currently inadequate for Ti. Although several other methods for contact allergy detection have been suggested, including lymphocyte stimulation tests, none has yet been generally accepted, and the diagnosis of Ti allergy is therefore still based primarily on clinical evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved.
Collapse
Affiliation(s)
- Simon W Fage
- Department of Dermato-Venereology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Joris Muris
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stig S Jakobsen
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| |
Collapse
|
13
|
Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases 2016; 11:011013. [PMID: 26984234 DOI: 10.1116/1.4944061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the authors tested the hypotheses that plasma electrolytic oxidation (PEO) and glow-discharge plasma (GDP) would improve the electrochemical, physical, chemical, and mechanical properties of commercially pure titanium (cpTi), and that blood protein adsorption on plasma-treated surfaces would increase. Machined and sandblasted surfaces were used as controls. Standard electrochemical tests were conducted in artificial saliva (pHs of 3.0, 6.5, and 9.0) and simulated body fluid. Surfaces were characterized by scanning electron microscopy, energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, atomic force microscopy, x-ray diffraction, profilometry, Vickers microhardness, and surface energy. For biological assay, the adsorption of blood serum proteins (i.e., albumin, fibrinogen, and fibronectin) was tested. Higher values of polarization resistance and lower values of capacitance were noted for the PEO and GDP groups (p < 0.05). Acidic artificial saliva reduced the corrosion resistance of cpTi (p < 0.05). PEO and GDP treatments improved the surface properties by enrichment of the surface chemistry with bioactive elements and increased surface energy. PEO produced a porous oxide layer (5-μm thickness), while GDP created a very thin oxide layer (0.76-μm thickness). For the PEO group, the authors noted rutile and anatase crystalline structures that may be responsible for the corrosion barrier improvement and increased microhardness values. Plasma treatments were able to enhance the surface properties and electrochemical stability of titanium, while increasing protein adsorption levels.
Collapse
|
14
|
Yu W, Qian C, Weng W, Zhang S. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys. J Prosthet Dent 2016; 116:286-91. [PMID: 26973298 DOI: 10.1016/j.prosdent.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
STATEMENT OF PROBLEM Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. PURPOSE The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. MATERIAL AND METHODS Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). RESULTS Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (P<.05), whereas high LPS concentration (150 μg/mL) accelerated Co-Cr alloy corrosion (P<.05), as determined by OCP, corrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (P<.05) was observed for the Co-Cr alloy. CONCLUSIONS LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys.
Collapse
Affiliation(s)
- Weiqiang Yu
- Physician-in-charge, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chao Qian
- Doctoral candidate, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weimin Weng
- Associate Professor, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Songmei Zhang
- Physician-in-charge, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
15
|
Rodrigues DC, Sridhar S, Gindri IM, Siddiqui DA, Valderrama P, Wilson TG, Chung KH, Wadhwani C. Spectroscopic and microscopic investigation of the effects of bacteria on dental implant surfaces. RSC Adv 2016. [DOI: 10.1039/c6ra07760a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The surface morphology and chemical composition of commercially pure titanium dental implants and healing abutments exposed in vitro or in vivo to oral bacteria were studied.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kwok-Hung Chung
- Department of Restorative Dentistry
- University of Washington
- Seattle
- USA
| | - Chandur Wadhwani
- Department of Restorative Dentistry
- University of Washington
- Seattle
- USA
| |
Collapse
|
16
|
Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface. J Oral Biol Craniofac Res 2015; 6:2-9. [PMID: 26937362 DOI: 10.1016/j.jobcr.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/04/2015] [Indexed: 01/25/2023] Open
Abstract
AIMS The present study investigated the surface properties and murine pre-osteoblast cell (MC3T3-E1) responses of phosphoric acid (H3PO4) treated commercially pure titanium. METHODS Titanium discs were treated with various concentration of H3PO4 (5%, 10%, and 20%; v/v) at 90 °C for 30 min. Surface properties were evaluated by profilometer, contact angle meter, and scanning electron microscopy (SEM) with energy dispersive X-rays. MC3T3-E1 attachment and spreading were evaluated by SEM and phalloidin immunohistochemistry staining. RESULTS Surface roughness and wettability were not statistically difference among all experimental and control groups. Phosphate and oxygen were detected on H3PO4 treated surfaces. At 20 min, cell attachment was significantly higher in 10% and 20% H3PO4 treated groups compared to the control. Cells exhibited orientated-cytoskeleton fibers on 20% H3PO4 modified titanium surface. Though, there was no difference in cell spreading stage among all treatment groups. CONCLUSION H3PO4 treatment on titanium may influence early cell response, particularly on attachment and spreading.
Collapse
|
17
|
Beline T, Garcia CS, Ogawa ES, Marques ISV, Matos AO, Sukotjo C, Mathew MT, Mesquita MF, Consani RX, Barão VAR. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1079-1088. [PMID: 26652467 DOI: 10.1016/j.msec.2015.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
Abstract
The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi.
Collapse
Affiliation(s)
- Thamara Beline
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Camila S Garcia
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Erika S Ogawa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Isabella S V Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Adaias O Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL 60612, USA; IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA
| | - Mathew T Mathew
- IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA; Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison, Chicago, IL 60612, USA
| | - Marcelo F Mesquita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Rafael X Consani
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil.
| |
Collapse
|
18
|
Vechiato-Filho AJ, da Silva Vieira Marques I, Dos Santos DM, Matos AO, Rangel EC, da Cruz NC, Barão VAR. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:37-44. [PMID: 26706504 DOI: 10.1016/j.msec.2015.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/02/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n=24): Po (no surface treatment), SB (sandblasting), Po+NTP and SB+NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P<.001). SEM-EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB+NTP group showed the highest bond strength values (6.76±0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P<.05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials.
Collapse
Affiliation(s)
- Aljomar José Vechiato-Filho
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista - UNESP, Aracatuba, Sao Paulo, Brazil.
| | - Isabella da Silva Vieira Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Daniela Micheline Dos Santos
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista - UNESP, Aracatuba, Sao Paulo, Brazil
| | - Adaias Oliveira Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista - UNESP, Sorocaba, Sao Paulo, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista - UNESP, Sorocaba, Sao Paulo, Brazil
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
19
|
Faverani LP, Fogaça JF, Machado T, Silva EA, Barão VAR, Assunção WG. Does Surface Topography Improve Electrochemical Behavior of Ti–6Al–4V Alloy in Different Saliva pH Levels? ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40735-015-0020-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|