1
|
Li Z, Ma R, Tan J, Li C, Xiao Y, Qiu X, Jin S, Ouyang P, Zhao Y, Xiang X, Wu W. Hormonal interventions in skin wounds - a mini review. Mol Med 2024; 30:217. [PMID: 39543465 PMCID: PMC11566089 DOI: 10.1186/s10020-024-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
The ability to heal from wounds is perhaps the most important biological function that ensures our survival and perpetuation. Cutaneous wound healing typically consists of four characteristic stages, namely hemostasis, inflammation, proliferation, and remodeling, which are carefully carried out by coordinated actions of various cells, cytokines, and hormones. Incoordination of these steps may impede complete and efficient reconstruction and functional recovery of wounds or even lead to worsened outcomes. Hormones, as powerful modulators of organ functions, participate in multiple steps of the wound healing process and play a pivotal role by choreographing the complex interplay of cellular and molecular events. Leveraging the regulatory effects of hormones to enhance the healing process, hormonal therapy has emerged as a promising approach in the clinical treatment of wounds. Current research has focused on determination of the optimal dosages, delivery methods, and combinations of hormonal therapies to maximize their therapeutic benefits while minimizing potential side effects. This review highlights the molecular mechanisms, clinical benefits and side effects of the most commonly used hormones in clinical treatment of wounds.
Collapse
Affiliation(s)
- Zeming Li
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Ma
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Chongqing Yi-Cheng Biotechnology Co., LTD, Chongqing, 400004, China
- The Affiliated Hospital of Beihua University, Jilin, 224000, China
| | - Jiajun Tan
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunmeng Li
- Chongqing Yi-Cheng Biotechnology Co., LTD, Chongqing, 400004, China
| | - Yang Xiao
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xudong Qiu
- The Affiliated Hospital of Beihua University, Jilin, 224000, China
| | - Shuo Jin
- The Affiliated Hospital of Beihua University, Jilin, 224000, China
| | - Peng Ouyang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yiping Zhao
- China Medical University, Shenyang, 110001, China.
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110001, China.
| | - Xiao Xiang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Wang Wu
- College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Yi-Cheng Biotechnology Co., LTD, Chongqing, 400004, China.
- Three Gorges Hospital of Chongqing University, Chongqing, 400004, China.
| |
Collapse
|
2
|
Human Melanoma Cells Differentially Express RNASEL/RNase-L and miR-146a-5p under Sex Hormonal Stimulation. Curr Issues Mol Biol 2022; 44:4790-4802. [PMID: 36286041 PMCID: PMC9601115 DOI: 10.3390/cimb44100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Polymorphisms in the ribonuclease L (RNASEL) coding gene and hsa-miR-146a-5p (miR-146a) have been associated with melanoma in a sex-specific manner. We hypothesized that RNASEL and miR-146a expression could be influenced by sex hormones playing a role in the female advantages observed in melanoma incidence and survival. Thus, we explored the effects of testosterone and 17β-estradiol on RNASEL and miR-146a expression in LM-20 and A375 melanoma cell lines. Direct targeting of miR-146a to the 3′ untranslated region (3′UTR) of RNASEL was examined using a luciferase reporter system. Our results indicate that RNASEL is a direct target of miR-146a in both melanoma cell lines. Trough qPCR and western blot analyses, we explored the effect of miR-146a mimic transfection in the presence of each hormone either on RNASEL mRNA level or on protein expression of RNase-L, the enzyme codified by RNASEL gene. In the presence of testosterone or 17β-estradiol, miR-146a overexpression did not influence RNASEL transcript level in LM-20 cell line, but it slightly induced RNASEL mRNA level in A375 cells. Remarkably, miR-146a overexpression was able to repress the protein level of RNase-L in both LM-20 and A375 cells in the presence of each hormone, as well as to elicit high expression levels of the activated form of the extracellular signal-regulated kinases (ERK)1/2, hence confirming the pro-tumorigenic role of miR-146a overexpression in melanoma. Thereafter, we assessed if the administration of each hormone could affect the endogenous expression of RNASEL and miR-146a genes in LM-20 and A375 cell lines. Testosterone exerted no significant effect on RNASEL gene expression in both cell lines, while 17β-estradiol enhanced RNASEL transcript level at least in LM-20 melanoma cells. Conversely, miR-146a transcript augmented only in the presence of testosterone in either melanoma cell line. Importantly, each hormone acted quite the opposite regarding the RNase-L protein expression, i.e., testosterone significantly decreased RNase-L expression, whereas 17β-estradiol increased it. Overall, the data show that, in melanoma cells treated with 17β-estradiol, RNase-L expression increased likely by transcriptional induction of its gene. Testosterone, instead, decreased RNase-L expression in melanoma cell lines with a post-transcriptional mechanism in which miR-146a could play a role. In conclusion, the pro-tumor activity of androgen hormone in melanoma cells could be exacerbated by both miR-146a increase and RNase-L downregulation. These events may contribute to the worse outcome in male melanoma patients.
Collapse
|
3
|
Is miRNA Regulation the Key to Controlling Non-Melanoma Skin Cancer Evolution? Genes (Basel) 2021; 12:genes12121929. [PMID: 34946878 PMCID: PMC8701953 DOI: 10.3390/genes12121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Non melanoma skin cancer (NMSC) is one of the most common types of skin cancer. It has a number of subtypes, which include basal cell carcinoma, cutaneous squamous cell carcinoma and Merkel cell carcinoma. MicroRNAs are short, non-coding RNA (ribonucleic acid) molecules, capable of regulating gene expression at a post transcriptional level. They play a pivotal role in a variety of physiologic cellular functions and pathologies, including malignant diseases. The development of miRNAs represents an important study field, which has been extensively exploited in melanoma for almost a decade with promising results, therefore we consider it a stepstone for further research projects also in non-melanoma skin cancers. The aim of our study was to explore the current literature in order to present the role of the different miRNAs in some of the most frequent types of NMSC pertaining to oncogenesis, evolution and therapy. The most relevant and accurate available data from the literature were evaluated. Our study concluded that there are almost 100 miRNAs which can be upregulated or downregulated and can play a role in oncogenesis. They can be easily identified in circulation, are stable and they can be important diagnosis/prognosis and therapy monitoring markers.
Collapse
|
4
|
Zhang W, Tang Y, Liu H, Yuan LP, Wang CC, Chen SF, Huang J, Xiao XY. Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: A systematic review. PLoS One 2021; 16:e0257768. [PMID: 34559850 PMCID: PMC8462700 DOI: 10.1371/journal.pone.0257768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background and objectives Intensive care unit-acquired weakness (ICU-AW) commonly occurs among intensive care unit (ICU) patients and seriously affects the survival rate and long-term quality of life for patients. In this systematic review, we synthesized the findings of previous studies in order to analyze predictors of ICU-AW and evaluate the discrimination and validity of ICU-AW risk prediction models for ICU patients. Methods We searched seven databases published in English and Chinese language to identify studies regarding ICU-AW risk prediction models. Two reviewers independently screened the literature, evaluated the quality of the included literature, extracted data, and performed a systematic review. Results Ultimately, 11 studies were considered for this review. For the verification of prediction models, internal verification methods had been used in three studies, and a combination of internal and external verification had been used in one study. The value for the area under the ROC curve for eight models was 0.7–0.923. The predictor most commonly included in the models were age and the administration of corticosteroids. All the models have good applicability, but most of the models are biased due to the lack of blindness, lack of reporting, insufficient sample size, missing data, and lack of performance evaluation and calibration of the models. Conclusions The efficacy of most models for the risk prediction of ICU-AW among high-risk groups is good, but there was a certain bias in the development and verification of the models. Thus, ICU medical staff should select existing models based on actual clinical conditions and verify them before applying them in clinical practice. In order to provide a reliable basis for the risk prediction of ICU-AW, it is necessary that large-sample, multi-center studies be conducted in the future, in which ICU-AW risk prediction models are verified.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yun Tang
- Department of Neurosurgery Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- * E-mail:
| | - Huan Liu
- Department of Blood Purification Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Li ping Yuan
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Chu chu Wang
- Department of Neurosurgery Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shu fan Chen
- Department of Neurosurgery Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jin Huang
- Department of Neurosurgery Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xin yuan Xiao
- Department of Neurosurgery Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Moser U, Andrianakis A, Pondorfer P, Wolf A, Graupp M, Weiland T, Holzmeister C, Wild D, Thurnher D. Sex-specific differences in patients with nonmelanoma skin cancer of the pinna. Head Neck 2020; 42:2414-2420. [PMID: 32369257 PMCID: PMC7496743 DOI: 10.1002/hed.26237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/04/2023] Open
Abstract
Background Generally, it is known that men are affected more frequently by nonmelanoma skin cancer (NMSC) than women. The aim of our study was to investigate the effect of sex on the characteristics of NMSCs of the pinna at the population that our center serves and to compare it with the international data. Methods We analyzed retrospectively the data of 225 patients with NMSC of the pinna. Sex‐specific differences were investigated for basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) subgroups. Results The ratio of BCC to cSCC was determined in male patients at 1:1.3, in contrast in females it was identified at 4:1 (P = .001). Conclusion In our study, a new aspect of the sex‐dependent distribution of cSCC and BCC of the pinna was demonstrated. Women are affected four times more frequently by BCC than by cSCC, whereas in men this ratio is approximately equal.
Collapse
Affiliation(s)
- Ulrich Moser
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Alexandros Andrianakis
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Prisca Pondorfer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Axel Wolf
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Matthias Graupp
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Thomas Weiland
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Clemens Holzmeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| | - Dominik Wild
- Department of Otorhinolaryngology, Krankenhaus der Barmherzigen Schwestern Ried, Ried im Innkreis, Austria
| | - Dietmar Thurnher
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Xia J, Sun R. Evidence from 40 Studies that 2 Common Single-Nucleotide Polymorphisms (SNPs) of RNASEL Gene Affect Prostate Cancer Susceptibility: A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-Compliant Meta-Analysis. Med Sci Monit 2019; 25:8315-8325. [PMID: 31686670 PMCID: PMC6857427 DOI: 10.12659/msm.917715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Numerous studies have evaluated the relationship between RNASEL gene polymorphisms (rs486907 G>A and rs627928 T>G) and the risk of cancer. However, many of the results have been controversial. To explore the role of RNASEL gene polymorphisms in prostate cancer, we carried out the present meta-analysis. MATERIAL AND METHODS The qualified articles were collected from PubMed, Web of Science, Scopus, CNKI, and WanFang databases to August 2018. A total 23 articles with 40 studies were incorporated into our analysis. RESULTS Our data show that rs486907 was not associated with the risk of prostate cancer in any populations. Nevertheless, rs627928 was reported to promote the development of prostate cancer (T vs. G: OR=1.08, 95% CI=1.01-1.15; TT+TG vs. GG: OR=1.14, 95% CI=1.03-1.25) in allele and recessive models in overall populations. Stratified analyses showed that similar results were obtained in white populations. CONCLUSIONS We report the effect of rs627928 on the development of prostate cancer and confirm that rs486907 is not involved in the risk of prostate cancer in the current meta-analysis. However, research in larger populations is needed to validate our conclusions.
Collapse
Affiliation(s)
- Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland).,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland).,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| | - Rulin Sun
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland).,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland).,Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
7
|
Li R, Wang L. Baicalin inhibits influenza virus A replication via activation of type I IFN signaling by reducing miR‑146a. Mol Med Rep 2019; 20:5041-5049. [PMID: 31638222 PMCID: PMC6854550 DOI: 10.3892/mmr.2019.10743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/26/2019] [Indexed: 12/26/2022] Open
Abstract
Influenza virus A (IVA) is one of the predominant causative agents of the seasonal flu and has become an important cause of morbidity worldwide. Great efforts have been paid to develop vaccines against IVA. However, due to antigenic drift in influenza virus A and rapid emergence of drug-resistant strains, current available vaccines or anti-IVA chemotherapeutics are consistently inefficient. Hence, various more broadly effective drugs have become important for the prevention and treatment of IVA. Of these drugs, baicalin, a flavonoid isolated from Radix Scutellaria, is a promising example. However, little is known in regards to its pharmacological mechanism. Here, it was demonstrated that baicalin inhibits the H1N1 and H3N2 viruses in A549 cells. Subsequently, it was found that miR-146a was markedly downregulated by treatment of baicalin. Additionally, further experiments revealed that miR-146a was able to promote the replication of H1N1 and H3N2 by targeting TNF receptor-associated factor 6 (TRAF6), a pivotal adaptor in the interferon (IFN) production signaling pathway, to downregulate type I IFN production, and enrichment of miR-146a eliminated the anti-IVA effects of baicalin on the H1N1 and H3N2 viruses. Additionally, in vivo experiments demonstrated that baicalin could protect mice during H1N1 infection. Taken together, our findings firstly illustrated the anti-IVA molecular mechanism of baicalin and provide new evidence for targeting miRNAs to prevent and treat viral infection, such as the H1N1 and H3N2 viruses.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Lianxin Wang
- Institute of Basic Research of Traditional Chinese Medicine in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
8
|
Mancha‐Ramirez AM, Yang X, Liang H, Junco J, Lee KP, Bovio SF, Espinoza M, Wool J, Slaga A, Glade DC, Hanes M, Malik G, Kim DJ, DiGiovanni J, Slaga TJ. Harnessing the gatekeepers of glucocorticoids for chemoprevention of non-melanoma skin cancer. Mol Carcinog 2019; 58:102-112. [PMID: 30302860 PMCID: PMC6563487 DOI: 10.1002/mc.22912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 11/11/2022]
Abstract
Despite effective surgical methods for non-melanoma skin cancer (NMSC), patients suffer from tissue damage, scarring, or even disfigurement; thus, there is a need for chemopreventive approaches. Because of the complex interplay between glucocorticoids (GCs), inflammation, and cancer, we sought to determine the role of 11β-hydroxysteroid dehydrogenase 1 and 2 (11βHSD1 and 2) in regulating GCs during skin cancer development and progression. 11βHSDs modulate the activation of GCs in a tissue-specific manner and have been reported to play a role in development and progression of other types of cancer, but their role has not yet been reported in NMSC. Here, we found a significant upregulation of 11βHSD2 protein in skin cancer cells when compared to normal skin cells, suggesting a role for this enzyme in the multifactorial process of skin cancer development. In addition, inhibition of 11βHSD2 with siRNA resulted in significant reduction in colony formation in vitro. Finally, our in vivo study elucidated that inhibition of 11βHSD2 with pharmacological inhibitor, Glycyrrhetinic acid (GA) could significantly diminish tumorigenesis in a well-studied in vivo mouse model of NMSC. Overall, these studies highlight for the first time a potential novel role for 11βHSD2 in NMSC development and may allow for new GC treatment approaches capable of avoiding deactivation by the enzyme. If 11βHSD2 can be inhibited as we have done here, or circumvented using modified GCs, this may lead to more efficacious outcomes for NMSC patients by preventing deactivation of the GC and minimizing resistance.
Collapse
Affiliation(s)
- Anna M. Mancha‐Ramirez
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Xiaoyu Yang
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Huiyun Liang
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Jacob Junco
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Kevin P. Lee
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Sarah F. Bovio
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Maricruz Espinoza
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Julia Wool
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Andrew Slaga
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Daniel C. Glade
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Martha Hanes
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Gunjan Malik
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Dae Joon Kim
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
- Department of Biomedical SciencesSchool of MedicineThe University of Texas Rio Grande ValleyEdinburgTexas
| | - John DiGiovanni
- College of PharmacyThe University of Texas at AustinAustinTexas
| | - Thomas J. Slaga
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| |
Collapse
|
9
|
Sex-specific effect of RNASEL rs486907 and miR-146a rs2910164 polymorphisms' interaction as a susceptibility factor for melanoma skin cancer. Melanoma Res 2018; 27:309-314. [PMID: 28654546 DOI: 10.1097/cmr.0000000000000360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genetics of melanoma is complex and, in addition to environmental influences, numerous genes are involved or contribute toward melanoma predisposition. In this study, we evaluated the possible interaction between miR-146a and one of its putative targets ribonuclease L (RNASEL) in the risk of sporadic melanoma. Polymorphisms rs2910164 in miR-146a and rs486907 in the RNASEL gene have both independently been associated with the risk of different cancers, and an interaction between them has been observed in nonmelanoma skin cancer. Polymorphisms rs2910164 G/C and rs486907 A/G were genotyped by restriction fragment length polymorphism analysis in 304 sporadic melanoma patients and 314 control individuals. Genotype distribution between cases and controls for each of the two polymorphisms was compared using Fisher's exact test. Epistasis between the two polymorphisms was tested by a logistic regression model. In the present study, we observed a sex-specific effect of the miR-146a rs2910164 C allele restricted to individuals carrying the RNASEL rs486907 A allele as well. Men carrying this allelic combination have the highest risk of melanoma, whereas it seems to have no effect or even an opposite relationship to melanoma risk in the female population. The results reported in the present study suggest a sex-specific interaction between miR-146a and RNASEL genes in melanoma skin cancer susceptibility, and could account for possible discordant results in association studies when stratification according to sex is not performed.
Collapse
|
10
|
Xu Q, Wu YF, Li Y, He CY, Sun LP, Liu JW, Yuan Y. SNP-SNP interactions of three new pri-miRNAs with the target gene PGC and multidimensional analysis of H. pylori in the gastric cancer/atrophic gastritis risk in a Chinese population. Oncotarget 2018; 7:23700-14. [PMID: 26988755 PMCID: PMC5029657 DOI: 10.18632/oncotarget.8057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a multistep complex disease involving multiple genes, and gene–gene interactions have a greater effect than a single gene in determining cancer susceptibility. This study aimed to explore the interaction of the let-7e rs8111742, miR-365b rs121224, and miR-4795 rs1002765 single nucleotide polymorphisms (SNPs) with SNPs of the predicted target gene PGC and Helicobacter pylori status in GC and atrophic gastritis (AG) risk. Three miRNA SNPs and seven PGC SNPs were detected in 2448 cases using the Sequenom MassArray platform. Two pairwise combinations of miRNA and PGC SNPs were associated with increased AG risk (let-7e rs8111742 – PGC rs6458238 and miR-4795 rs1002765 – PGC rs9471643). Singly, miR-365b rs121224 and PGC rs6912200 had no effect individually but in combination they demonstrated an epistatic interaction associated with AG risk. Similarly, let-7e rs8111742 and miR-4795 rs1002765 SNPs interacted with H. pylori infection to increase GC risk (rs8111742: Pinteraction = 0.024; rs1002765: Pinteraction = 0.031, respectively). A three-dimensional interaction analysis found miR-4795 rs1002765, PGC rs9471643, and H. pylori infection positively interacted to increase AG risk (Pinteraction = 0.027). Also, let-7e rs8111742, PGC rs6458238, and H. pylori infection positively interacted to increase GC risk (Pinteraction = 0.036). Furthermore, both of these three-dimensional interactions had a dosage–effect correspondence (Ptrend < 0.001) and were verified by MDR. In conclusion, the miRNAs SNPs (let-7e rs8111742 and miR-4795 rs1002765) might have more superior efficiency when combined with PGC SNPs and/or H. pylori for GC or AG risk than a single SNP on its own.
Collapse
Affiliation(s)
- Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Ye-Feng Wu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Ying Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Cai-Yun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jing-Wei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| |
Collapse
|
11
|
Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol 2017; 162:3645-3659. [PMID: 28825144 PMCID: PMC7086938 DOI: 10.1007/s00705-017-3516-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
During dengue virus (DENV) infection, the virus manipulates different cellular pathways to assure productive replication, including autophagy. However, it remains unclear how this autophagic process is regulated. Here, we have demonstrated a novel role for the microRNA miR-146a in negatively regulating the cellular autophagic pathway in DENV-infected A549 cells and THP-1 cells. Overexpression of miR-146a significantly blocked DENV2-induced autophagy, and LNA-mediated inhibition of miR-146a counteracted these effects. Moreover, co-overexpression of TRAF6, a target of miR-146a, significantly reversed the inhibitory effect of miR-146a on autophagy. Notably, treatment with recombinant IFN-β fully restored the autophagic activity in TRAF6-silenced cells. Furthermore, our data showed that, in DENV2-infected A549 cells, autophagy promoted a pro-inflammatory response to significantly increase TNF-α and IL-6 production. Taken together, our results define a novel role for miR-146a as a negative regulator of DENV-induced autophagy and identify TRAF6 as a key target of this microRNA in modulating the DENV-autophagy interaction.
Collapse
Affiliation(s)
- Jieying Pu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Siyu Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuye Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China.
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Chen Q, Mao X, Zhang Z, Zhu R, Yin Z, Leng Y, Yu H, Jia H, Jiang S, Ni Z, Jiang H, Han X, Liu C, Hu Z, Wu X, Hu G, Xin D, Qi Z. SNP-SNP Interaction Analysis on Soybean Oil Content under Multi-Environments. PLoS One 2016; 11:e0163692. [PMID: 27668866 PMCID: PMC5036806 DOI: 10.1371/journal.pone.0163692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/13/2016] [Indexed: 11/22/2022] Open
Abstract
Soybean oil content is one of main quality traits. In this study, we used the multifactor dimensionality reduction (MDR) method and a soybean high-density genetic map including 5,308 markers to identify stable single nucleotide polymorphism (SNP)—SNP interactions controlling oil content in soybean across 23 environments. In total, 36,442,756 SNP-SNP interaction pairs were detected, 1865 of all interaction pairs associated with soybean oil content were identified under multiple environments by the Bonferroni correction with p <3.55×10−11. Two and 1863 SNP-SNP interaction pairs detected stable across 12 and 11 environments, respectively, which account around 50% of total environments. Epistasis values and contribution rates of stable interaction (the SNP interaction pairs were detected in more than 2 environments) pairs were detected by the two way ANOVA test, the available interaction pairs were ranged 0.01 to 0.89 and from 0.01 to 0.85, respectively. Some of one side of the interaction pairs were identified with previously research as a major QTL without epistasis effects. The results of this study provide insights into the genetic architecture of soybean oil content and can serve as a basis for marker-assisted selection breeding.
Collapse
Affiliation(s)
- Qingshan Chen
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Xinrui Mao
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Zhanguo Zhang
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Rongsheng Zhu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Zhengong Yin
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
- Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, People’s Republic of China
| | - Yue Leng
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Hongxiao Yu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Huiying Jia
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Shanshan Jiang
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Zhongqiu Ni
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Hongwei Jiang
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Xue Han
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Chunyan Liu
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Zhenbang Hu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Xiaoxia Wu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Guohua Hu
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Dawei Xin
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
- * E-mail: (DX); (ZQ)
| | - Zhaoming Qi
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
- * E-mail: (DX); (ZQ)
| |
Collapse
|
13
|
Gusho E, Baskar D, Banerjee S. New advances in our understanding of the "unique" RNase L in host pathogen interaction and immune signaling. Cytokine 2016; 133:153847. [PMID: 27595182 PMCID: PMC7128181 DOI: 10.1016/j.cyto.2016.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Ever since the discovery of the existence of an interferon (IFN)-regulated ribonuclease, significant advances have been made in understanding the mechanism and associated regulatory effects of its action. What had been studied initially as a "unique" endoribonuclease is currently known as ribonuclease L (RNase L where "L" stands for latent). Some of the key developments include discovery of the RNase L signaling pathway, its structural characterization, and its molecular cloning. RNase L has been implicated in antiviral and antibacterial defense, as well as in hereditary prostate cancer. RNase L is activated by 2'-5' linked oligoadenylates (2-5A), which are synthesized by the oligoadenylate synthetases (OASs), a family of IFN-regulated pathogen recognition receptors that sense double-stranded RNAs. Activated RNase L cleaves single stranded RNAs, including viral RNAs and cellular RNAs. The catalytic activity of RNase L has been found to lead into the activation of several cellular signaling pathways, including those involved in autophagy, apoptosis, IFN-β production, NLRP3 inflammasome activation leading to IL-1β secretion, inhibition of cell migration, and cell adhesion. In this review, we will highlight the newest advances in our understanding of the catalytic role of RNase L in the context of different cellular pathways and extend the scope of these findings to discussion of potential therapeutic targets for antimicrobial drug development.
Collapse
Affiliation(s)
- Elona Gusho
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA
| | - Danika Baskar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA; Pediatrics Division Office, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA(1)
| | - Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Martin MT, Vulin A, Hendry JH. Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:349-368. [PMID: 27919341 DOI: 10.1016/j.mrrev.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 02/06/2023]
Abstract
In human skin, keratinopoiesis is based on a functional hierarchy among keratinocytes, with rare slow-cycling stem cells responsible for the long-term maintenance of the tissue through their self-renewal potential, and more differentiated daughter progenitor cells actively cycling to permit epidermal renewal and turn-over every month. Skin is a radio-responsive tissue, developing all types of radiation damage and pathologies, including early tissue reactions such as dysplasia and denudation in epidermis, and later fibrosis in the dermis and acanthosis in epidermis, with the TGF-beta 1 pathway as a known master switch. Also there is a risk of basal cell carcinoma, which arises from epidermal keratinocytes, notably after oncogenic events in PTCH1 or TP53 genes. This review will cover the mechanisms of adverse human skin reactions and carcinogenesis after various types of exposures to ionizing radiation, with comparison with animal data when necessary, and will discuss the possible role of stem cells and their progeny in the development of these disorders. The main endpoints presented are basal cell intrinsic radiosensitivity, genomic stability, individual factors of risk, dose specific responses, major molecular pathways involved and the cellular origin of skin reactions and cancer. Although major advances have been obtained in recent years, the precise implications of epidermal stem cells and their progeny in these processes are not yet fully characterized.
Collapse
Affiliation(s)
- Michèle T Martin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France.
| | - Adeline Vulin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France
| | - Jolyon H Hendry
- Christie Medical Physics and Engineering, Christie Hospital and University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, Stockfleth E, Hessam S. Circular RNA expression in basal cell carcinoma. Epigenomics 2016; 8:619-32. [DOI: 10.2217/epi-2015-0019] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Circular RNAs (circRNAs), are nonprotein coding RNAs consisting of a circular loop with multiple miRNA, binding sites called miRNA response elements (MREs), functioning as miRNA sponges. This study was performed to identify differentially expressed circRNAs and their MREs in basal cell carcinoma (BCC). Materials & methods: Microarray circRNA expression profiles were acquired from BCC and control followed by qRT-PCR validation. Bioinformatical target prediction revealed multiple MREs. Sequence analysis was performed concerning MRE interaction potential with the BCC miRNome. Results: We identified 23 upregulated and 48 downregulated circRNAs with 354 miRNA response elements capable of sequestering miRNA target sequences of the BCC miRNome. Conclusion: The present study describes a variety of circRNAs that are potentially involved in the molecular pathogenesis of BCC.
Collapse
Affiliation(s)
- Michael Sand
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Falk G Bechara
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Daniel Sand
- University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Thilo Gambichler
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Stephan A Hahn
- Department of Internal Medicine, Knappschaftskrankenhaus University of Bochum, Zentrum für Klinische Forschung, Labor für Molekulare Gastroenterologische Onkologie, 44780 Bochum, Germany
| | - Michael Bromba
- Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Eggert Stockfleth
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Schapoor Hessam
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
16
|
Soleimani A, Ghanadi K, Noormohammadi Z, Irani S. The correlation between miR-146a C/G polymorphism and UHRF1 gene expression level in gastric tumor. J Dig Dis 2016; 17:169-74. [PMID: 26896831 DOI: 10.1111/1751-2980.12329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the association between the polymorphism of miR-146a and The ubiquitin-like with PHD and ring-finger domains 1 (UHRF1) expression in patients with gastric cancer. METHODS MiR-146a rs2910164 was genotyped in 130 patients with gastric cancer and 130 cancer-free individuals using polymerase chain reaction (PCR)-restriction fragment length polymorphism. UHRF1 expression was analyzed in 22 gastric cancer tissues and their adjacent normal tissues using quantitative real-time PCR. RESULTS No significant differences in genotype distributions of miR-146a rs2910164 were found between cases and controls, but we observed that grade II tumors were more frequently detected in patients with CG/CC genotype compared to those with CC genotype. UHRF1 expressions in cancerous tissues were significantly higher than in noncancerous tissues (1.89-fold). Patients with CC genotype showed a significant increase in UHRF1 expression in comparison to the carriers of GG/CG genotype. A higher UHRF1 expression was associated with cancer stage IV and grade III (P<0.05). CONCLUSION The overexpression of UHRF1 was correlated with the stage and grade of gastric cancer and is associated with the genotype distribution of rs2910164.
Collapse
Affiliation(s)
- Azam Soleimani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kourosh Ghanadi
- Razi Herbal Medicines Research Center and Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Wang J, Zhang Y, Zhang N, Wang C, Herrler T, Li Q. An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs. Cell Mol Life Sci 2015; 72:2091-106. [PMID: 25681865 PMCID: PMC11113187 DOI: 10.1007/s00018-015-1853-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The skin is constantly exposed and responds to a wide range of biomechanical cues. The mechanobiology of skin has already been known and applied by clinicians long before the fundamental molecular mechanisms of mechanotransduction are elucidated. MATERIALS AND METHODS Despite increasing knowledge on the mediators of biomechanical signaling such as mitogen-associated protein kinases, Rho GTPases or FAK-ERK pathways, the key elements of mechano-responses transcription factors, and mechano-sensors remain unclear. Recently, canonical biochemical components of Hippo and Wnt signaling pathway YAP and β-catenin were found to exhibit undefined mechanical sensitivity. Mechanical forces were identified to be the dominant regulators of YAP/TAZ activity in a multicellular context. Furthermore, different voltage or ligand sensitive ion channels in the cell membrane exhibited their mechanical sensitivity as mechano-sensors. Additionally, a large number of microRNAs have been confirmed to regulate cellular behavior and contribute to various skin disorders under mechanical stimuli. Mechanosensitive (MS) microRNAs could not only be activated by distinct mechanical force pattern, but also responsively target MS sensors such as e-cadherin and cytoskeleton constituent RhoA. CONCLUSION Thus, a comprehensive understanding of this regulatory network of cutaneous mechanotransduction will facilitate the development of novel approaches to wound healing, hypertrophic scar formation, skin regeneration, and the progression or initiation of skin diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | | | | | | | | | | |
Collapse
|
18
|
Syed DN, Lall RK, Mukhtar H. MicroRNAs and Photocarcinogenesis. Photochem Photobiol 2014; 91:173-87. [DOI: 10.1111/php.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Deeba N. Syed
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Rahul K. Lall
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Hasan Mukhtar
- Department of Dermatology; University of Wisconsin; Madison WI
| |
Collapse
|