1
|
Udomsinprasert W, Sobhonslidsuk A, Jittikoon J, Honsawek S, Chaikledkaew U. Cellular senescence in liver fibrosis: Implications for age-related chronic liver diseases. Expert Opin Ther Targets 2021; 25:799-813. [PMID: 34632912 DOI: 10.1080/14728222.2021.1992385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION New insights indicate a causative link between cellular senescence and liver fibrosis. Senescent hepatic stellate cells (HSCs) facilitate fibrosis resolution, while senescence in hepatocytes and cholangiocytes acts as a potent mechanism driving liver fibrogenesis. In many clinical studies, telomeres and mitochondrial DNA contents, which are both aging biomarkers, were reportedly associated with a degree of liver fibrosis in patients with chronic liver diseases (CLDs); this highlights their potential as biomarkers for liver fibrogenesis. A deeper understanding of mechanisms underlying multi-step progression of senescence may yield new therapeutic strategies for age-related chronic liver pathologies. AREAS COVERED This review examines the recent findings from preclinical and clinical studies on mechanisms of senescence in liver fibrogenesis and its involvement in liver fibrosis. A comprehensive literature search in electronic databases consisting of PubMed and Scopus from inception to 31 August 2021 was performed. EXPERT OPINION Cellular senescence has diagnostic, prognostic, and therapeutic potential in progressive liver complications, especially liver fibrosis. Stimulating or reinforcing the immune response against senescent cells may be a promising and forthright biotherapeutic strategy. This approach will need a deeper understanding of the immune system's ability to eliminate senescent cells and the molecular and cellular mechanisms underlying this process.
Collapse
Affiliation(s)
| | - Abhasnee Sobhonslidsuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Lan X, Zhang H, Li HY, Chen KF, Liu F, Wei YG, Li B. Feasibility of using marginal liver grafts in living donor liver transplantation. World J Gastroenterol 2018; 24:2441-2456. [PMID: 29930466 PMCID: PMC6010938 DOI: 10.3748/wjg.v24.i23.2441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation (LT) is one of the most effective treatments for end-stage liver disease caused by related risk factors when liver resection is contraindicated. Additionally, despite the decrease in the prevalence of hepatitis B virus (HBV) over the past two decades, the absolute number of HBsAg-positive people has increased, leading to an increase in HBV-related liver cirrhosis and hepatocellular carcinoma. Consequently, a large demand exists for LT. While the wait time for patients on the donor list is, to some degree, shorter due to the development of living donor liver transplantation (LDLT), there is still a shortage of liver grafts. Furthermore, recipients often suffer from emergent conditions, such as liver dysfunction or even hepatic encephalopathy, which can lead to a limited choice in grafts. To expand the pool of available liver grafts, one option is the use of organs that were previously considered “unusable” by many, which are often labeled “marginal” organs. Many previous studies have reported on the possibilities of using marginal grafts in orthotopic LT; however, there is still a lack of discussion on this topic, especially regarding the feasibility of using marginal grafts in LDLT. Therefore, the present review aimed to summarize the feasibility of using marginal liver grafts for LDLT and discuss the possibility of expanding the application of these grafts.
Collapse
Affiliation(s)
- Xiang Lan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hua Zhang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Yu Li
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ke-Fei Chen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fei Liu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yong-Gang Wei
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Li
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
3
|
Sasaki M, Kuo FY, Huang CC, Swanson PE, Chen CL, Chuang JH, Yeh MM. Increased expression of senescence-associated cell cycle regulators in the progression of biliary atresia: an immunohistochemical study. Histopathology 2018; 72:1164-1171. [PMID: 29392752 DOI: 10.1111/his.13476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/21/2017] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
Abstract
AIMS Cellular senescence plays a role in tumour suppression and in the pathogenesis of various non-neoplastic diseases, including primary biliary cholangitis and other adult cholangiopathies. Less is known about the role of cellular senescence in cholangiopathies in children. With that in mind, we examined the expression of senescence-associated cell cycle regulators in biliary atresia, the most common form of paediatric obliterative cholangiopathy. METHODS AND RESULTS The expression of senescence-associated cell cycle regulators (p16Ink4a and p21WAF1/Cip1 ) and a ductular reaction related marker (neural cell adhesion molecule: NCAM) was examined in bile ducts and bile ductules in liver samples taken from the patients with biliary atresia [n = 80; including 23 samples at the time of the Kasai procedure (KP) and 63 obtained from the explanted liver (LT) (six cases with samples at both surgical stages of disease)] and from appropriate controls (n = 17). The degree of ductular reaction and cholestasis was significantly more extensive in LT than KP (P < 0.01). The expression of p16INK4a and NCAM was significantly more extensive in bile ducts and bile ductules in ductular reaction in both KP and LT compared to controls and in LT compared to KP (P < 0.05). The expression of p21WAF1/Cip1 was significantly more extensive in bile ducts and bile ductules in KP compared to both LT and controls (P < 0.01). CONCLUSIONS Cellular senescence may play a role in the progression of bile duct loss in biliary atresia in a manner similar to that of adult cholangiopathies.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Fang-Ying Kuo
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Paul E Swanson
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Chao-Long Chen
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
4
|
Aoki Y, Aida J, Kawano Y, Nakamura KI, Izumiyama-Shimomura N, Ishikawa N, Arai T, Nakamura Y, Taniai N, Uchida E, Takubo K, Ishiwata T. Telomere length of gallbladder epithelium is shortened in patients with congenital biliary dilatation: measurement by quantitative fluorescence in situ hybridization. J Gastroenterol 2018; 53:291-301. [PMID: 29143121 DOI: 10.1007/s00535-017-1411-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Congenital biliary dilatation (CBD) is a congenital malformation involving both dilatation of the extrahepatic bile duct and pancreaticobiliary maljunction. Persistent reflux of pancreatic juice injures the biliary tract mucosa, resulting in chronic inflammation and higher rates of carcinogenesis in the biliary tract, including the gallbladder. Telomeres are repetitive DNA sequences located at the ends of chromosomes. Chromosomal instability due to telomere dysfunction plays an important role in the carcinogenesis of many organs. This study was performed to determine whether excessive shortening of telomeres occurs in the gallbladder mucosa of patients with CBD. METHODS Resected gallbladders were obtained from 17 patients with CBD, ten patients with cholecystolithiasis without pancreatic juice reflux, and 17 patients with normal gallbladders (controls) (median age of each group of patients: 37, 50, and 53 years, respectively). The telomere lengths of the gallbladder epithelium were measured by quantitative fluorescence in situ hybridization using tissue sections, and the normalized telomere-to-centromere ratio (NTCR) was calculated. RESULTS The NTCRs in the CBD, cholecystolithiasis, and control groups were 1.24 [interquartile range (IQR) 1.125-1.52], 1.96 (IQR 1.56-2.295), and 1.77 (IQR 1.48-2.53), respectively. The NTCR in the CBD group was significantly smaller than that in the cholecystolithiasis and control groups (p = 0.003 and 0.004, respectively), even in young patients. CONCLUSIONS Our findings indicate that telomere shortening in the gallbladder mucosa plays an important role in the process of carcinogenesis in patients with CBD. These results support the recommendation of established guidelines for prophylactic surgery in patients with CBD because CBD is a premalignant condition with excessive telomere shortening.
Collapse
Affiliation(s)
- Yuto Aoki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| | - Junko Aida
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Youichi Kawano
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Ken-Ichi Nakamura
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naotaka Izumiyama-Shimomura
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naoshi Ishikawa
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshiharu Nakamura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Eiji Uchida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
5
|
Abstract
Fluorescence in situ hybridization (FISH) has a wide spectrum of applications in current molecular cytogenetic and cancer research. This is a unique technique that can be used for chromosomal DNA analysis in all cell types, at all stages of the cell cycle, and at molecular resolution. Recent developments in microscopy and imaging systems have allowed quantification of digital FISH images (quantitative FISH or QFISH) and have provided a new way for molecular cytogenetic analysis at single-cell level. QFISH can be applied for studying chromosome imbalances in interphase nuclei or metaphase spreads, measuring relative DNA content at chromosomal loci and identifying parental origin of homologous chromosomes. Here, a QFISH protocol suitable for the majority of DNA probes using the popular US National Institute of Health developed ImageJ software is described.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, Zagorodnoe sh. 2, Moscow, 117152, Russia. .,Separated Structural Unit "Clinical Research Institute of Pediatrics" named after Y.E. Veltishev, Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, Moscow, Russia. .,Moscow State University of Psychology and Education, Moscow, Russia.
| |
Collapse
|
6
|
Kłoda K, Domański L, Mierzecki A. Telomere Length Assessment for Prediction of Organ Transplantation Outcome. Future or Failure: A Review of the Literature. Med Sci Monit 2017; 23:158-162. [PMID: 28076340 PMCID: PMC5244829 DOI: 10.12659/msm.899490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomeres are located at each end of eukaryotic chromosomes. Their functional role is genomic stability maintenance. The protective role of telomeres depends on various factors, including number of nucleotides repeats, telomere-binding proteins, and telomerase activity. Organ transplantation is the preferred replacement therapy in the case of chronic kidney disease and the only possibility of sustaining recipients’ life in the case of advanced liver failure. While the prevalence of acute rejection is constantly decreasing, prevention of transplanted organ long-term function loss is still challenging. It has been demonstrated that post-transplant stressors accelerate aging of the allografts manifested through telomere shortening. The aim of this paper was to evaluate the importance of telomere length assessment for prediction of organ transplantation outcome. Literature review included the 10 most important studies regarding linkage between allograft function and telomere erosion, including 2 of our own reports. Telomere length assessment is useful to predict organ transplantation outcome. The importance of telomere length as a prediction marker depends on the analyzed material. To obtain reliable results, both graft cells (donor material) and lymphocytes (recipient material) should be examined. In the case of kidney transplantation, assessment of telomere length in the early post-transplant period allows prediction of the long-term function of the transplanted organ. To increase the accuracy of transplantation outcome prediction, telomere length assessment should be combined with evaluation of other aging biomarkers, like CDKN2A (p16). Large-scale clinical studies regarding telomere length measurement, including genome wide association analysis introducing relevant genetic factors, are needed for the future.
Collapse
Affiliation(s)
- Karolina Kłoda
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Leszek Domański
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Artur Mierzecki
- Independent Laboratory of Family Physician Education, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
7
|
Ishikawa N, Nakamura KI, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, Takubo K. Changes of telomere status with aging: An update. Geriatr Gerontol Int 2017; 16 Suppl 1:30-42. [PMID: 27018281 DOI: 10.1111/ggi.12772] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Abstract
Accumulated data have shown that most human somatic cells or tissues show irreversible telomere shortening with age, and that there are strong associations between telomere attrition and aging-related diseases, including cancers, diabetes and cognitive disorders. Although it has been largely accepted that telomere attrition is one of the major causes of aging-related disorders, critical aspects of telomere biology remain unresolved, especially the lack of standardized methodology for quantification of telomere length. Another frustrating issue is that no potentially promising methods for safe prevention of telomere erosion, or for telomere elongation, have been devised. Here, we review several methods for quantification of telomere length currently utilized worldwide, considering their advantages and drawbacks. We also summarize the results of our recent studies of human cells and tissues, mainly using quantitative fluorescence in situ hybridization and Southern blotting, including those derived from patients with progeria-prone Werner syndrome and trisomy 21, and several strains of induced pluripotent stem cells. We discuss the possible merits of using telomere shortness as an indicator, or a new marker, for diagnosis of precancerous states and aging-related disorders. In addition, we describe newly found factors that are thought to impact telomere dynamics, providing a new avenue for examining the unsolved issues related to telomere restoration and maintenance.
Collapse
Affiliation(s)
- Naoshi Ishikawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Nakamura
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Junko Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoko Matsuda
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Gillio-Meina C, Zielke HR, Fraser DD. Translational Research in Pediatrics IV: Solid Tissue Collection and Processing. Pediatrics 2016; 137:peds.2015-0490. [PMID: 26659457 DOI: 10.1542/peds.2015-0490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Solid tissues are critical for child-health research. Specimens are commonly obtained at the time of biopsy/surgery or postmortem. Research tissues can also be obtained at the time of organ retrieval for donation or from tissue that would otherwise have been discarded. Navigating the ethics of solid tissue collection from children is challenging, and optimal handling practices are imperative to maximize tissue quality. Fresh biopsy/surgical specimens can be affected by a variety of factors, including age, gender, BMI, relative humidity, freeze/thaw steps, and tissue fixation solutions. Postmortem tissues are also vulnerable to agonal factors, body storage temperature, and postmortem intervals. Nonoptimal tissue handling practices result in nucleotide degradation, decreased protein stability, artificial posttranslational protein modifications, and altered lipid concentrations. Tissue pH and tryptophan levels are 2 methods to judge the quality of solid tissue collected for research purposes; however, the RNA integrity number, together with analyses of housekeeping genes, is the new standard. A comprehensive clinical data set accompanying all tissue samples is imperative. In this review, we examined: the ethical standards relating to solid tissue procurement from children; potential sources of solid tissues; optimal practices for solid tissue processing, handling, and storage; and reliable markers of solid tissue quality.
Collapse
Affiliation(s)
- Carolina Gillio-Meina
- Translational Research Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | | | - Douglas D Fraser
- Translational Research Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Centre for Critical Illness Research, Critical Care Medicine and Pediatrics, Clinical Neurologic Sciences, and Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Cell-autonomous decrease in proliferative competitiveness of the aged hepatocyte. J Hepatol 2015; 62:1341-8. [PMID: 25617502 DOI: 10.1016/j.jhep.2015.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/03/2014] [Accepted: 01/04/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The regenerative potential of the liver declines with age, this might be dependent on a decrease in the intensity of the stimulus and/or an increased refractoriness of the target. In the present study, we compared the in vivo growth capacity of young and old hepatocytes transplanted into the same host. METHODS We utilized the retrorsine (RS)-based model for liver repopulation, which provides a specific and effective stimulus for transplanted hepatocytes. Rats of the dipeptidyl-peptidase type IV (DPP-IV)-deficient strain were given RS and were injected with a mix of hepatocytes isolated from either a 2-month old or an 18-month old donor. To follow the fate of transplanted cells, they were each identified through a specific tag: young hepatocytes expressed the green fluorescent protein (GFP(+)), while those from old donors were DPP-IV-positive. RESULTS At 1 month post-transplantation, DPP-IV-positive clusters (derived from old donor) were consistently smaller than those GFP(+) (young donor); the cross sectional area of clusters was decreased by 50%, while the mean volume was reduced to 1/3. Furthermore, when 2/3 partial hepatectomy (PH) was performed, the S-phase response of old hepatocyte-derived clusters was only 30-40% compared to that observed in cluster originating from young hepatocytes. No markers of cell senescence were expressed in clusters of transplanted hepatocytes. CONCLUSIONS This is the first direct evidence in vivo that hepatocytes in the aged liver express a cell-autonomous decline in their replicative capacity and in their regenerative response to PH compared to those from a young animal.
Collapse
|
10
|
Matsuda Y, Ishiwata T, Izumiyama-Shimomura N, Hamayasu H, Fujiwara M, Tomita KI, Hiraishi N, Nakamura KI, Ishikawa N, Aida J, Takubo K, Arai T. Gradual telomere shortening and increasing chromosomal instability among PanIN grades and normal ductal epithelia with and without cancer in the pancreas. PLoS One 2015; 10:e0117575. [PMID: 25658358 PMCID: PMC4319908 DOI: 10.1371/journal.pone.0117575] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/28/2014] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence supports a key role for telomere dysfunction in carcinogenesis due to the induction of chromosomal instability. To study telomere shortening in precancerous pancreatic lesions, we measured telomere lengths using quantitative fluorescence in situ hybridization in the normal pancreatic duct epithelium, pancreatic intraepithelial neoplasias (PanINs), and cancers. The materials employed included surgically resected pancreatic specimens without cancer (n = 33) and with invasive ductal carcinoma (n = 36), as well as control autopsy cases (n = 150). In comparison with normal ducts, telomere length was decreased in PanIN-1, −2 and −3 and cancer. Furthermore, telomeres were shorter in cancer than in PanIN-1 and −2. Telomere length in cancer was not associated with histological type, lesion location, or cancer stage. PanINs with or without cancer showed similar telomere lengths. The incidences of atypical mitosis and anaphase bridges, which are morphological characteristics of chromosomal instability, were negatively correlated with telomere length. The telomeres in normal duct epithelium became shorter with aging, and those in PanINs or cancers were shorter than in age-matched controls, suggesting that telomere shortening occurs even when histological changes are absent. Our data strongly suggest that telomere shortening occurs in the early stages of pancreatic carcinogenesis and progresses with precancerous development. Telomere shortening and chromosomal instability in the duct epithelium might be associated with carcinogenesis of the pancreas. Determination of telomere length in pancreatic ductal lesions may be valuable for accurate detection and risk assessment of pancreatic cancer.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- * E-mail: (YM); (KT)
| | - Toshiyuki Ishiwata
- Department of Integrated Diagnostic Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Naotaka Izumiyama-Shimomura
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hideki Hamayasu
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Mutsunori Fujiwara
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan
| | - Ken-ichiro Tomita
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan
| | - Naoki Hiraishi
- Department of Laboratory Medicine, Hadano Red Cross Hospital, Hadano, Kanagawa, 257-0017, Japan
| | - Ken-ichi Nakamura
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Naoshi Ishikawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Junko Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- * E-mail: (YM); (KT)
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|