1
|
Sarmini L, Meabed M, Emmanouil E, Atsaves G, Robeska E, Karwowski BT, Campalans A, Gimisis T, Khobta A. Requirement of transcription-coupled nucleotide excision repair for the removal of a specific type of oxidatively induced DNA damage. Nucleic Acids Res 2023; 51:4982-4994. [PMID: 37026475 PMCID: PMC10250225 DOI: 10.1093/nar/gkad256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Accumulation of DNA damage resulting from reactive oxygen species was proposed to cause neurological and degenerative disease in patients, deficient in nucleotide excision repair (NER) or its transcription-coupled subpathway (TC-NER). Here, we assessed the requirement of TC-NER for the repair of specific types of oxidatively generated DNA modifications. We incorporated synthetic 5',8-cyclo-2'-deoxypurine nucleotides (cyclo-dA, cyclo-dG) and thymine glycol (Tg) into an EGFP reporter gene to measure transcription-blocking potentials of these modifications in human cells. Using null mutants, we further identified the relevant DNA repair components by a host cell reactivation approach. The results indicated that NTHL1-initiated base excision repair is by far the most efficient pathway for Tg. Moreover, Tg was efficiently bypassed during transcription, which effectively rules out TC-NER as an alternative repair mechanism. In a sharp contrast, both cyclopurine lesions robustly blocked transcription and were repaired by NER, wherein the specific TC-NER components CSB/ERCC6 and CSA/ERCC8 were as essential as XPA. Instead, repair of classical NER substrates, cyclobutane pyrimidine dimer and N-(deoxyguanosin-8-yl)-2-acetylaminofluorene, occurred even when TC-NER was disrupted. The strict requirement of TC-NER highlights cyclo-dA and cyclo-dG as candidate damage types, accountable for cytotoxic and degenerative responses in individuals affected by genetic defects in this pathway.
Collapse
Affiliation(s)
- Leen Sarmini
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Mohammed Meabed
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Eirini Emmanouil
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - George Atsaves
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Elena Robeska
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
- Université de Paris Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
| | - Bolesław T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, Lodz 90-151, Poland
| | - Anna Campalans
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
- Université de Paris Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, F-92265, France
| | - Thanasis Gimisis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Andriy Khobta
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
2
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
3
|
Rodriguez-Alvarez M, Kim D, Khobta A. EGFP Reporters for Direct and Sensitive Detection of Mutagenic Bypass of DNA Lesions. Biomolecules 2020; 10:biom10060902. [PMID: 32545792 PMCID: PMC7357151 DOI: 10.3390/biom10060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The sustainment of replication and transcription of damaged DNA is essential for cell survival under genotoxic stress; however, the damage tolerance of these key cellular functions comes at the expense of fidelity. Thus, translesion DNA synthesis (TLS) over damaged nucleotides is a major source of point mutations found in cancers; whereas erroneous bypass of damage by RNA polymerases may contribute to cancer and other diseases by driving accumulation of proteins with aberrant structure and function in a process termed “transcriptional mutagenesis” (TM). Here, we aimed at the generation of reporters suited for direct detection of miscoding capacities of defined types of DNA modifications during translesion DNA or RNA synthesis in human cells. We performed a systematic phenotypic screen of 25 non-synonymous base substitutions in a DNA sequence encoding a functionally important region of the enhanced green fluorescent protein (EGFP). This led to the identification of four loss-of-fluorescence mutants, in which any ulterior base substitution at the nucleotide affected by the primary mutation leads to the reversal to a functional EGFP. Finally, we incorporated highly mutagenic abasic DNA lesions at the positions of primary mutations and demonstrated a high sensitivity of detection of the mutagenic DNA TLS and TM in this system.
Collapse
Affiliation(s)
- Marta Rodriguez-Alvarez
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
| | - Daria Kim
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andriy Khobta
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
- Correspondence:
| |
Collapse
|
4
|
Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A. Nucleotide excision repair of abasic DNA lesions. Nucleic Acids Res 2019; 47:8537-8547. [PMID: 31226203 PMCID: PMC6895268 DOI: 10.1093/nar/gkz558] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are a class of highly mutagenic and toxic DNA lesions arising in the genome from a number of exogenous and endogenous sources. Repair of AP lesions takes place predominantly by the base excision pathway (BER). However, among chemically heterogeneous AP lesions formed in DNA, some are resistant to the endonuclease APE1 and thus refractory to BER. Here, we employed two types of reporter constructs accommodating synthetic APE1-resistant AP lesions to investigate the auxiliary repair mechanisms in human cells. By combined analyses of recovery of the transcription rate and suppression of transcriptional mutagenesis at specifically positioned AP lesions, we demonstrate that nucleotide excision repair pathway (NER) efficiently removes BER-resistant AP lesions and significantly enhances the repair of APE1-sensitive ones. Our results further indicate that core NER components XPA and XPF are equally required and that both global genome (GG-NER) and transcription coupled (TC-NER) subpathways contribute to the repair.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Marta Rodriguez-Alvarez
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andriy Khobta
- Unit "Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| |
Collapse
|
5
|
Kitsera N, Allgayer J, Parsa E, Geier N, Rossa M, Carell T, Khobta A. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Nucleic Acids Res 2017; 45:11033-11042. [PMID: 28977475 PMCID: PMC5737506 DOI: 10.1093/nar/gkx718] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Enzymatic oxidation of 5-methylcytosine (5-mC) in the CpG dinucleotides to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) has central role in the process of active DNA demethylation and epigenetic reprogramming in mammals. However, it is not known whether the 5-mC oxidation products have autonomous epigenetic or regulatory functions in the genome. We used an artificial upstream promoter constituted of one cAMP response element (CRE) to measure the impact of 5-mC in a hemi-methylated CpG on the promoter activity and further explored the consequences of 5-hmC, 5-fC, and 5-caC in the same system. All modifications induced mild impairment of the CREB transcription factor binding to the consensus 5'-TGACGTCA-3' CRE sequence. The decrease of the gene expression by 5-mC or 5-hmC was proportional to the impairment of CREB binding and had a steady character over at least 48 h. In contrast, promoters containing single 5-fC or 5-caC underwent further progressive loss of activity, up to an almost complete repression. This decline was dependent on the thymine-DNA glycosylase (TDG). The results thus indicate that 5-fC and 5-caC can provide a signal for perpetuation and enhancement of the repressed transcriptional state by a mechanism that requires base excision repair.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Edris Parsa
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Nadine Geier
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Martin Rossa
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andriy Khobta
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany.,Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| |
Collapse
|
6
|
Otto C, Spivak G, Aloisi CMN, Menigatti M, Naegeli H, Hanawalt PC, Tanasova M, Sturla SJ. Modulation of Cytotoxicity by Transcription-Coupled Nucleotide Excision Repair Is Independent of the Requirement for Bioactivation of Acylfulvene. Chem Res Toxicol 2017; 30:769-776. [PMID: 28076683 DOI: 10.1021/acs.chemrestox.6b00240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioactivation as well as DNA repair affects the susceptibility of cancer cells to the action of DNA-alkylating chemotherapeutic drugs. However, information is limited with regard to the relative contributions of these processes to the biological outcome of metabolically activated DNA alkylating agents. We evaluated the influence of cellular bioactivation capacity and DNA repair on cytotoxicity of the DNA alkylating agent acylfulvene (AF). We compared the cytotoxicity and RNA synthesis inhibition by AF and its synthetic activated analogue iso-M0 in a panel of fibroblast cell lines with deficiencies in transcription-coupled (TC-NER) or global genome nucleotide excision repair (GG-NER). We related these data to the inherent bioactivation capacity of each cell type on the basis of mRNA levels. We demonstrated that specific inactivation of TC-NER by siRNA had the largest positive impact on AF activity in a cancer cell line. These findings establish that transcription-coupled DNA repair reduces cellular sensitivity to AF, independent of the requirement for bioactivation.
Collapse
Affiliation(s)
- Claudia Otto
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Graciela Spivak
- Department of Biology, Stanford University , Stanford, California 94305, United States
| | - Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Mirco Menigatti
- Institute of Molecular Cancer Research, University of Zurich , 8057 Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse , 8057 Zurich, Switzerland
| | - Philip C Hanawalt
- Department of Biology, Stanford University , Stanford, California 94305, United States
| | - Marina Tanasova
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland.,Department of Chemistry, Michigan Technological University , Houghton, Michigan 49932, United States
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Wei L, Levine AS, Lan L. Transcription-coupled homologous recombination after oxidative damage. DNA Repair (Amst) 2016; 44:76-80. [DOI: 10.1016/j.dnarep.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Allgayer J, Kitsera N, Bartelt S, Epe B, Khobta A. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine. Nucleic Acids Res 2016; 44:7267-80. [PMID: 27220469 PMCID: PMC5009734 DOI: 10.1093/nar/gkw473] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 12/18/2022] Open
Abstract
DNA damage can significantly modulate expression of the affected genes either by direct structural interference with transcription components or as a collateral outcome of cellular repair attempts. Thus, DNA glycosylases of the base excision repair (BER) pathway have been implicated in negative transcriptional response to several spontaneously generated DNA base modifications, including a common oxidative DNA base modification 8-oxoguanine (8-oxoG). Here, we report that single 8-oxoG situated in the non-transcribed DNA strand of a reporter gene has a pronounced negative effect on transcription, driven by promoters of various strength and with different structural properties, including viral, human, and artificial promoters. We further show that the magnitude of the negative effect on the gene expression correlates with excision of the modified base by OGG1 in all promoter constructs tested. Moreover, by using expression vectors with nuclease resistant backbone modifications, we demonstrate that OGG1 does not catalyse DNA strand cleavage in vivo. Rather, cleavage of the phosphate bond 5′ to 8-oxodG (catalysed by APE1) is essential and universally required for the onset of transcriptional silencing, regardless of the promoter structure. Hence, induction of transcriptional silencing emerges as a ubiquitous mode of biological response to 8-oxoG in DNA.
Collapse
Affiliation(s)
- Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Nataliya Kitsera
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Solveig Bartelt
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Andriy Khobta
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| |
Collapse
|
9
|
Nadkarni A, Burns JA, Gandolfi A, Chowdhury MA, Cartularo L, Berens C, Geacintov NE, Scicchitano DA. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription. J Biol Chem 2016; 291:848-61. [PMID: 26559971 PMCID: PMC4705403 DOI: 10.1074/jbc.m115.685271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER.
Collapse
Affiliation(s)
- Aditi Nadkarni
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - John A Burns
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Alberto Gandolfi
- the Dipartimento di Matematica e Informatica "Ulisse Dini," Università di Firenze, 50134 Firenze, Italy, the Division of Science, New York University Abu Dhabi, Post Office Box 129188, Abu Dhabi, United Arab Emirates
| | - Moinuddin A Chowdhury
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Laura Cartularo
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Christian Berens
- the Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany, 07743, and
| | - Nicholas E Geacintov
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - David A Scicchitano
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003, the Division of Science, New York University Abu Dhabi, Post Office Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Abstract
The DNA damage response (DDR) has been broadly defined as a complex network of cellular pathways that cooperate to sense and repair lesions in DNA. Multiple types of DNA damage, some natural DNA sequences, nucleotide pool deficiencies and collisions with transcription complexes can cause replication arrest to elicit the DDR. However, in practice, the term DDR as applied to eukaryotic/mammalian cells often refers more specifically to pathways involving the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM-Rad3-related) kinases in response to double-strand breaks or arrested replication forks, respectively. Nevertheless, there are distinct responses to particular types of DNA damage that do not involve ATM or ATR. In addition, some of the aberrations that cause replication arrest and elicit the DDR cannot be categorized as direct DNA damage. These include nucleotide pool deficiencies, nucleotide sequences that can adopt non-canonical DNA structures, and collisions between replication forks and transcription complexes. The response to these aberrations can be called the genomic stress response (GSR), a term that is meant to encompass the sensing of all types of DNA aberrations together with the mechanisms involved in coping with them. In addition to fully functional cells, the consequences of processing genomic aberrations may include mutagenesis, genomic rearrangements and lethality.
Collapse
Affiliation(s)
- Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
11
|
DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc Natl Acad Sci U S A 2015; 112:E3495-504. [PMID: 26100862 DOI: 10.1073/pnas.1507105112] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.
Collapse
|
12
|
Lior-Hoffmann L, Ding S, Geacintov NE, Zhang Y, Broyde S. Structural and dynamic characterization of polymerase κ's minor groove lesion processing reveals how adduct topology impacts fidelity. Biochemistry 2014; 53:5683-91. [PMID: 25148552 PMCID: PMC4159208 DOI: 10.1021/bi5007964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA
lesion bypass polymerases process different lesions with varying
fidelities, but the structural, dynamic, and mechanistic origins of
this phenomenon remain poorly understood. Human DNA polymerase κ
(Polκ), a member of the Y family of lesion bypass polymerases,
is specialized to bypass bulky DNA minor groove lesions in a predominantly
error-free manner, by housing them in its unique gap. We have investigated
the role of the unique Polκ gap and N-clasp structural features
in the fidelity of minor groove lesion processing with extensive molecular
modeling and molecular dynamics simulations to pinpoint their functioning
in lesion bypass. Here we consider the N2-dG covalent adduct derived from the carcinogenic aromatic amine,
2-acetylaminofluorene (dG-N2-AAF), that
is produced via the combustion of kerosene and diesel fuel. Our simulations
reveal how the spacious gap directionally accommodates the lesion
aromatic ring system as it transits through the stages of incorporation
of the predominant correct partner dCTP opposite the damaged guanine,
with preservation of local active site organization for nucleotidyl
transfer. Furthermore, flexibility in Polκ’s N-clasp
facilitates the significant misincorporation of dTTP opposite dG-N2-AAF via wobble pairing. Notably, we show that
N-clasp flexibility depends on lesion topology, being markedly reduced
in the case of the benzo[a]pyrene-derived major adduct
to N2-dG, whose bypass by Polκ is
nearly error-free. Thus, our studies reveal how Polκ’s
unique structural and dynamic properties can regulate its bypass fidelity
of polycyclic aromatic lesions and how the fidelity is impacted by
lesion structures.
Collapse
Affiliation(s)
- Lee Lior-Hoffmann
- Department of Biology and ‡Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | | | | | | | | |
Collapse
|