1
|
Sonoda T, Arigami T, Aoki M, Matsushita D, Shimonosono M, Tsuruda Y, Sasaki K, Ohtsuka T, Murakami G. Difference between sentinel and non-sentinel lymph nodes in the distribution of dendritic cells and macrophages: An immunohistochemical and morphometric study using gastric regional nodes obtained in sentinel node navigation surgery for early gastric cancer. J Anat 2024. [PMID: 39367691 DOI: 10.1111/joa.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
The sentinel lymph node (SN) concept has a significant impact on cancer surgery. We aimed to examine which morphology of dendritic cells (DCs) and macrophages corresponds to "preconditioning" of the SN against cancer. Although macrophages are generally able to tolerate cancer metastasis, the CD169-positive subtype is believed to be a limited exception. Immunohistochemical and morphometric analyses were performed to examine DC-SIGN-, CD68-, and CD169-positive cells in SNs and non-SNs of 23 patients with gastric cancer with or without nodal metastasis. All patients survived for >5 years without recurrence. DCs were present in the subcapsular, paracortical, and medullary sinuses, the endothelia of which expressed DC-SIGN and smooth muscle actin (SMA). In the non-SNs of patients without metastasis, subcapsular DCs occupied a larger area than SNs, and this difference was statistically significant. Conversely, subcapsular DCs were likely to have migrated to the paracortical area of the SNs. DC clusters often overlapped with macrophage clusters; however, histiocytosis-like clusters of CD169-negative macrophages showed a smaller overlap. We found a significantly larger overlap between DC-SIGN and CD169-positive clusters in SNs than in non-SNs; the larger overlap seemed to correspond to a higher cross-presentation of cancer antigens between these cell populations. DC-SIGN-CD169-double positive cells might exist within this overlap. SNs in gastric cancers are usually preconditioned as a frontier of cancer immunity, but they may sometimes be suppressed earlier than non-SNs. DC-SIGN- and CD169-positive cells appeared to decrease owing to a long lag time from the primary lesion occurrence and a short distance from the metastasis.
Collapse
Affiliation(s)
- Tomohiro Sonoda
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaya Aoki
- Department of General Thoracic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Daisuke Matsushita
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masataka Shimonosono
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yusuke Tsuruda
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ken Sasaki
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
2
|
Can S, Yorgun Altunbas M, Ozen A. Pharmacotherapy for CD55 deficiency with CHAPLE disease: how close are we to a cure? Expert Opin Pharmacother 2024; 25:1421-1426. [PMID: 39092479 DOI: 10.1080/14656566.2024.2388267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Salim Can
- Division of Allergy and Immunology, Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Allergy and Immunology, Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Allergy and Immunology, Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Aoki M, Jin ZW, Ueda K, Kamimura G, Takeda-Harada A, Murakami G, Sato M. Localization of macrophages and dendritic cells in human thoracic lymph nodes: An immunohistochemical study using surgically obtained specimens. J Anat 2023; 243:504-516. [PMID: 37024113 PMCID: PMC10439373 DOI: 10.1111/joa.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Both dendritic cells (DCs) and macrophages are bone marrow-derived cells that perform antigen presentation. The distribution of DCs and CD68-positive macrophages were immunohistochemically examined in 103 thoracic nodes obtained from 23 lung cancer patients (50-84 years old) without metastasis. Among three antibodies tested initially-CD209/DCsign, fascin, and CD83-DCsign was chosen as the DC marker. For comparison, 137 nodes from 12 patients with cancer metastasis were also examined histologically. In patients without metastasis, DCs were found as (1) clusters along the subcapsular sinus and in a border area between the medullary sinus and cortex (mean sectional area of multiple nodes at one site, 8.4%) and, (2) rosette-like structures in the cortex (mean number in multiple nodes at one site, 20.5). Notably, DC clusters and rosettes contained no or few macrophages and were surrounded by smooth muscle actin (SMA)-positive, endothelium-like cells. The subcapsular linear cluster corresponded to 5%-85% (mean, 34.0%) of the nodal circumferential length and was shorter in older patients (p = 0.009). DC rosettes, solitary, or communicating with a cluster, were usually connected to a paracortical lymph sinus. Few differences were found between nodes with or without metastasis, but DC cluster sometimes contained abundant macrophages in cancer metastasis patients. The subcapsular DC cluster is not known in the rodent model, in which the subcapsular sinus is filled with macrophages. This quite different, even complementary, distribution suggests no, or less, cooperation between DCs and macrophages in humans.
Collapse
Affiliation(s)
- Masaya Aoki
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kazuhiro Ueda
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Go Kamimura
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Aya Takeda-Harada
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Masami Sato
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| |
Collapse
|
4
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
5
|
Bekkhus T, Olofsson A, Sun Y, Magnusson PU, Ulvmar MH. Stromal transdifferentiation drives lipomatosis and induces extensive vascular remodeling in the aging human lymph node. J Pathol 2023; 259:236-253. [PMID: 36367235 PMCID: PMC10108032 DOI: 10.1002/path.6030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Lymph node (LN) lipomatosis is a common but rarely discussed phenomenon associated with aging that involves a gradual exchange of the LN parenchyma into adipose tissue. The mechanisms behind these changes and the effects on the LN are unknown. We show that LN lipomatosis starts in the medullary regions of the human LN and link the initiation of lipomatosis to transdifferentiation of LN fibroblasts into adipocytes. The latter is associated with a downregulation of lymphotoxin beta expression. We also show that isolated medullary and CD34+ fibroblasts, in contrast to the reticular cells of the T-cell zone, display an inherently higher sensitivity for adipogenesis. Progression of lipomatosis leads to a gradual loss of the medullary lymphatic network, but at later stages, collecting-like lymphatic vessels are found inside the adipose tissue. The stromal dysregulation includes a dramatic remodeling and dilation of the high endothelial venules associated with reduced density of naïve T-cells. Abnormal clustering of plasma cells is also observed. Thus, LN lipomatosis causes widespread stromal dysfunction with consequences for the immune contexture of the human LN. Our data warrant an increased awareness of LN lipomatosis as a factor contributing to decreased immune functions in the elderly and in disease. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Olofsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2023; 42:113-138. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.
Collapse
Affiliation(s)
- Shane Prenzler
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Dubreil L, Ledevin M, Hervet C, Menard D, Philippe C, Michel FJ, Larcher T, Meurens F, Bertho N. The Internal Conduit System of the Swine Inverted Lymph Node. Front Immunol 2022; 13:869384. [PMID: 35734172 PMCID: PMC9207403 DOI: 10.3389/fimmu.2022.869384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Lymph nodes (LN) are the crossroad where naïve lymphocytes, peripheral antigens and antigen presenting cells contact together in order to mount an adaptive immune response. For this purpose, LN are highly organized convergent hubs of blood and lymphatic vessels that, in the case of B lymphocytes, lead to the B cell follicles. Herein take place the selection and maturation of B cell clones producing high affinity antibodies directed against various antigens. Whereas the knowledge on the murine and human LN distribution systems have reached an exquisite precision those last years, the organization of the antigens and cells circulation into the inverted porcine LN remains poorly described. Using up to date microscopy tools, we described the complex interconnections between afferent lymphatics and blood vessels, perifollicular macrophages, follicular B cells and efferent blood vessels. We observed that afferent lymphatic sinuses presented an asymmetric Lyve-1 expression similar to the one observed in murine LN, whereas specialized perifollicular sinuses connect the main afferent lymphatic sinus to the B cell follicles. Finally, whereas it was long though that mature B cells egress from the inverted LN in the T cell zone through HEV, our observations are in agreement with mature B cells accessing the efferent blood circulation in the efferent, subcapsular area. This understanding of the inverted porcine LN circuitry will allow a more accurate exploration of swine pathogens interactions with the immune cells inside the LN structures. Moreover, the mix between similarities and differences of porcine inverted LN circuitry with mouse and human normal LN shall enable to better apprehend the functions and malfunctions of normal LN from a new perspective.
Collapse
Affiliation(s)
| | | | | | | | - Claire Philippe
- APEX, PAnTher, INRAE, Oniris, Nantes, France
- BIOEPAR, INRAE, Oniris, Nantes, France
| | | | | | - François Meurens
- BIOEPAR, INRAE, Oniris, Nantes, France
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nicolas Bertho
- BIOEPAR, INRAE, Oniris, Nantes, France
- *Correspondence: Nicolas Bertho,
| |
Collapse
|
8
|
Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol Life Sci 2022; 79:275. [PMID: 35505125 PMCID: PMC9063628 DOI: 10.1007/s00018-022-04303-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022]
Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA.,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA. .,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
9
|
McCracken IR, Dobie R, Bennett M, Passi R, Beqqali A, Henderson NC, Mountford JC, Riley PR, Ponting CP, Smart N, Brittan M, Baker AH. Mapping the developing human cardiac endothelium at single-cell resolution identifies MECOM as a regulator of arteriovenous gene expression. Cardiovasc Res 2022; 118:2960-2972. [PMID: 35212715 PMCID: PMC9648824 DOI: 10.1093/cvr/cvac023] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
AIMS Coronary vasculature formation is a critical event during cardiac development, essential for heart function throughout perinatal and adult life. However, current understanding of coronary vascular development has largely been derived from transgenic mouse models. The aim of this study was to characterize the transcriptome of the human foetal cardiac endothelium using single-cell RNA sequencing (scRNA-seq) to provide critical new insights into the cellular heterogeneity and transcriptional dynamics that underpin endothelial specification within the vasculature of the developing heart. METHODS AND RESULTS We acquired scRNA-seq data of over 10 000 foetal cardiac endothelial cells (ECs), revealing divergent EC subtypes including endocardial, capillary, venous, arterial, and lymphatic populations. Gene regulatory network analyses predicted roles for SMAD1 and MECOM in determining the identity of capillary and arterial populations, respectively. Trajectory inference analysis suggested an endocardial contribution to the coronary vasculature and subsequent arterialization of capillary endothelium accompanied by increasing MECOM expression. Comparative analysis of equivalent data from murine cardiac development demonstrated that transcriptional signatures defining endothelial subpopulations are largely conserved between human and mouse. Comprehensive characterization of the transcriptional response to MECOM knockdown in human embryonic stem cell-derived EC (hESC-EC) demonstrated an increase in the expression of non-arterial markers, including those enriched in venous EC. CONCLUSIONS scRNA-seq of the human foetal cardiac endothelium identified distinct EC populations. A predicted endocardial contribution to the developing coronary vasculature was identified, as well as subsequent arterial specification of capillary EC. Loss of MECOM in hESC-EC increased expression of non-arterial markers, suggesting a role in maintaining arterial EC identity.
Collapse
Affiliation(s)
- Ian R McCracken
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK,Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rainha Passi
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Paul R Riley
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola Smart
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
10
|
Tabrizi ZB, Ahmed NS, Horder JL, Storr SJ, Benest AV. Transcription Factor Control of Lymphatic Quiescence and Maturation of Lymphatic Neovessels in Development and Physiology. Front Physiol 2021; 12:672987. [PMID: 34795596 PMCID: PMC8593113 DOI: 10.3389/fphys.2021.672987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
The lymphatic system is a vascular system comprising modified lymphatic endothelial cells, lymph nodes and other lymphoid organs. The system has diverse, but critical functions in both physiology and pathology, and forms an interface between the blood vascular and immune system. It is increasingly evident that remodelling of the lymphatic system occurs alongside remodelling of the blood microvascular system, which is now considered a hallmark of most pathological conditions as well as being critical for normal development. Much attention has focussed on how the blood endothelium undergoes phenotypic switching in development and disease, resulting in over two decades of research to probe the mechanisms underlying the resulting heterogeneity. The lymphatic system has received less attention, and consequently there are fewer descriptions of functional and molecular heterogeneity, but differential transcription factor activity is likely an important control mechanism. Here we introduce and discuss significant transcription factors of relevance to coordinating cellular responses during lymphatic remodelling as the lymphatic endothelium dynamically changes from quiescence to actively remodelling.
Collapse
Affiliation(s)
- Zarah B Tabrizi
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Nada S Ahmed
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Joseph L Horder
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, Centre for Cancer Sciences School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Andrew V Benest
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Broadly effective metabolic and immune recovery with C5 inhibition in CHAPLE disease. Nat Immunol 2021; 22:128-139. [PMID: 33398182 PMCID: PMC7856263 DOI: 10.1038/s41590-020-00830-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/28/2020] [Indexed: 01/29/2023]
Abstract
Complement hyperactivation, angiopathic thrombosis and protein-losing enteropathy (CHAPLE disease) is a lethal disease caused by genetic loss of the complement regulatory protein CD55, leading to overactivation of complement and innate immunity together with immunodeficiency due to immunoglobulin wasting in the intestine. We report in vivo human data accumulated using the complement C5 inhibitor eculizumab for the medical treatment of patients with CHAPLE disease. We observed cessation of gastrointestinal pathology together with restoration of normal immunity and metabolism. We found that patients rapidly renormalized immunoglobulin concentrations and other serum proteins as revealed by aptamer profiling, re-established a healthy gut microbiome, discontinued immunoglobulin replacement and other treatments and exhibited catch-up growth. Thus, we show that blockade of C5 by eculizumab effectively re-establishes regulation of the innate immune complement system to substantially reduce the pathophysiological manifestations of CD55 deficiency in humans.
Collapse
|
12
|
Kretschmer L, Mitteldorf C, Hellriegel S, Leha A, Fichtner A, Ströbel P, Schön MP, Bremmer F. The sentinel node invasion level (SNIL) as a prognostic parameter in melanoma. Mod Pathol 2021; 34:1839-1849. [PMID: 34131294 PMCID: PMC8443441 DOI: 10.1038/s41379-021-00835-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
Sentinel lymph node (SN) tumor burden is becoming increasingly important and is likely to be included in future N classifications in melanoma. Our aim was to investigate the prognostic significance of melanoma infiltration of various anatomically defined lymph node substructures. This retrospective cohort study included 1250 consecutive patients with SN biopsy. The pathology protocol required description of metastatic infiltration of each of the following lymph node substructures: intracapsular lymph vessels, subcapsular and transverse sinuses, cortex, paracortex, medulla, and capsule. Within the SN with the highest tumor burden, the SN invasion level (SNIL) was defined as follows: SNIL 1 = melanoma cells confined to intracapsular lymph vessels, subcapsular or transverse sinuses; SNIL 2 = melanoma infiltrating the cortex or paracortex; SNIL 3 = melanoma infiltrating the medulla or capsule. We classified 338 SN-positive patients according to the non-metric SNIL. Using Kaplan-Meier estimates and Cox models, recurrence-free survival (RFS), melanoma-specific survival (MSS) and nodal basin recurrence rates were analyzed. The median follow-up time was 75 months. The SNIL divided the SN-positive population into three groups with significantly different RFS, MSS, and nodal basin recurrence probabilities. The MSS of patients with SNIL 1 was virtually identical to that of SN-negative patients, whereas outgrowth of the metastasis from the parenchyma into the fibrous capsule or the medulla of the lymph node indicated a very poor prognosis. Thus, the SNIL may help to better assess the benefit-risk ratio of adjuvant therapies in patients with different SN metastasis patterns.
Collapse
Affiliation(s)
- Lutz Kretschmer
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany.
| | - Christina Mitteldorf
- grid.411984.10000 0001 0482 5331Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Simin Hellriegel
- grid.411984.10000 0001 0482 5331Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Andreas Leha
- grid.411984.10000 0001 0482 5331Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Alexander Fichtner
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Michael P. Schön
- grid.411984.10000 0001 0482 5331Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Felix Bremmer
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center, Göttingen, Germany
| |
Collapse
|
13
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 2: Human. Cytometry A 2020; 99:257-264. [PMID: 33369145 DOI: 10.1002/cyto.a.24293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vascular research, clinical samples and samples from animal models are often used together to foster translation of preclinical findings to humans. General concepts of endothelia and murine-specific endothelial phenotypes were discussed in part 1 of this two part series. Here, in part 2, we present a comprehensive overview of human-specific endothelial phenotypes. Pan-endothelial cell markers, organ specific endothelial antigens, and flow cytometric immunophenotyping of blood-borne endothelial cells are reviewed.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Park SM, Brooks AE, Chen CJJ, Sheppard HM, Loef EJ, McIntosh JD, Angel CE, Mansell CJ, Bartlett A, Cebon J, Birch NP, Dunbar PR. Migratory cues controlling B-lymphocyte trafficking in human lymph nodes. Immunol Cell Biol 2020; 99:49-64. [PMID: 32740978 DOI: 10.1111/imcb.12386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
B-cell migration within lymph nodes (LNs) is crucial to adaptive immune responses. Chemotactic gradients are proposed to drive migration of B cells into follicles, followed by their relocation to specific zones of the follicle during activation, and ultimately egress. However, the molecular drivers of these processes and the cells generating chemotactic signals that affect B cells in human LNs are not well understood. We used immunofluorescence microscopy, flow cytometry and functional assays to study molecular mechanisms of B-cell migration within human LNs, and found subtle but important differences to previous murine models. In human LNs we find CXCL13 is prominently expressed at the follicular edge, often associated with fibroblastic reticular cells located in these areas, whereas follicular dendritic cells show minimal contribution to CXCL13 expression. Human B cells rapidly downregulate CXCR5 on encountering CXCL13, but recover CXCR5 expression in the CXCL13-low environment. These data suggest that the CXCL13 gradient in human LNs is likely to be different from that proposed in mice. We also identify CD68+ CD11c+ PU.1+ tingible body macrophages within both primary and secondary follicles as likely drivers of the sphingosine-1-phosphate (S1P) gradient that mediates B-cell egress from LNs, through their expression of the S1P-degrading enzyme, S1P lyase. Based on our findings, we present a model of B-cell migration within human LNs, which has both similarities and interesting differences to that proposed for mice.
Collapse
Affiliation(s)
- Saem Mul Park
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Anna Es Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Chun-Jen J Chen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Julie D McIntosh
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Claudia J Mansell
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Australia
| | - Nigel P Birch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Eom J, Park SM, Feisst V, Chen CJJ, Mathy JE, McIntosh JD, Angel CE, Bartlett A, Martin R, Mathy JA, Cebon JS, Black MA, Brooks AES, Dunbar PR. Distinctive Subpopulations of Stromal Cells Are Present in Human Lymph Nodes Infiltrated with Melanoma. Cancer Immunol Res 2020; 8:990-1003. [PMID: 32580941 DOI: 10.1158/2326-6066.cir-19-0796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/22/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
Metastasis of human tumors to lymph nodes (LN) is a universally negative prognostic factor. LN stromal cells (SC) play a crucial role in enabling T-cell responses, and because tumor metastases modulate their structure and function, this interaction may suppress immune responses to tumor antigens. The SC subpopulations that respond to infiltration of malignant cells into human LNs have not been defined. Here, we identify distinctive subpopulations of CD90+ SCs present in melanoma-infiltrated LNs and compare them with their counterparts in normal LNs. The first population (CD90+ podoplanin+ CD105+ CD146+ CD271+ VCAM-1+ ICAM-1+ α-SMA+) corresponds to fibroblastic reticular cells that express various T-cell modulating cytokines, chemokines, and adhesion molecules. The second (CD90+ CD34+ CD105+ CD271+) represents a novel population of CD34+ SCs embedded in collagenous structures, such as the capsule and trabeculae, that predominantly produce extracellular matrix. We also demonstrated that these two SC subpopulations are distinct from two subsets of human LN pericytes, CD90+ CD146+ CD36+ NG2- pericytes in the walls of high endothelial venules and other small vessels, and CD90+ CD146+ NG2+ CD36- pericytes in the walls of larger vessels. Distinguishing between these CD90+ SC subpopulations in human LNs allows for further study of their respective impact on T-cell responses to tumor antigens and clinical outcomes.
Collapse
Affiliation(s)
- Jennifer Eom
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Saem Mul Park
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Vaughan Feisst
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Chun-Jen J Chen
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Joanna E Mathy
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Julie D McIntosh
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Martin
- Department of Surgery, Waitemata District Health Board, Auckland, New Zealand
| | - Jon A Mathy
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Auckland Regional Plastic, Reconstructive & Hand Surgery Unit, Auckland, New Zealand
| | - Jonathan S Cebon
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Michael A Black
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Xiang M, Grosso RA, Takeda A, Pan J, Bekkhus T, Brulois K, Dermadi D, Nordling S, Vanlandewijck M, Jalkanen S, Ulvmar MH, Butcher EC. A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. Front Cardiovasc Med 2020; 7:52. [PMID: 32426372 PMCID: PMC7204639 DOI: 10.3389/fcvm.2020.00052] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Single-cell transcriptomics promise to revolutionize our understanding of the vasculature. Emerging computational methods applied to high-dimensional single-cell data allow integration of results between samples and species and illuminate the diversity and underlying developmental and architectural organization of cell populations. Here, we illustrate these methods in the analysis of mouse lymph node (LN) lymphatic endothelial cells (LEC) at single-cell resolution. Clustering identifies five well-delineated subsets, including two medullary sinus subsets not previously recognized as distinct. Nearest neighbor alignments in trajectory space position the major subsets in a sequence that recapitulates the known features and suggests novel features of LN lymphatic organization, providing a transcriptional map of the lymphatic endothelial niches and of the transitions between them. Differences in gene expression reveal specialized programs for (1) subcapsular ceiling endothelial interactions with the capsule connective tissue and cells; (2) subcapsular floor regulation of lymph borne cell entry into the LN parenchyma and antigen presentation; and (3) pathogen interactions and (4) LN remodeling in distinct medullary subsets. LEC of the subcapsular sinus floor and medulla, which represent major sites of cell entry and exit from the LN parenchyma respectively, respond robustly to oxazolone inflammation challenge with enriched signaling pathways that converge on both innate and adaptive immune responses. Integration of mouse and human single-cell profiles reveals a conserved cross-species pattern of lymphatic vascular niches and gene expression, as well as specialized human subsets and genes unique to each species. The examples provided demonstrate the power of single-cell analysis in elucidating endothelial cell heterogeneity, vascular organization, and endothelial cell responses. We discuss the findings from the perspective of LEC functions in relation to niche formations in the unique stromal and highly immunological environment of the LN.
Collapse
Affiliation(s)
- Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Rubén Adrián Grosso
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Akira Takeda
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Tove Bekkhus
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kevin Brulois
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
| | - Sofia Nordling
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Michael Vanlandewijck
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Stockholm, Sweden
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maria H. Ulvmar
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Eugene C. Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
17
|
Abstract
The influx and efflux of cells and antigens to and from the draining lymph nodes largely take place through the subcapsular, cortical and medullary sinus systems. Recent analyses in mice and humans have revealed unexpected diversity in the lymphatic endothelial cells, which form the distinct regions of the sinuses. As a semipermeable barrier, the lymphatic endothelial cells regulate the sorting of lymph-borne antigens to the lymph node parenchyma and can themselves serve as antigen-presenting cells. The leukocytes entering the lymph node via the sinus system and the lymphocytes egressing from the parenchyma migrate through the lymphatic endothelial cell layer. The sinus lymphatic endothelial cells also orchestrate the organogenesis of lymph nodes, and they undergo bidirectional signalling with other sinus-resident cells, such as subcapsular sinus macrophages, to generate a unique lymphatic niche. In this Review, we consider the structural and functional basis of how the lymph node sinus system coordinates immune responses under physiological conditions, and in inflammation and cancer.
Collapse
|
18
|
Ozen A. CHAPLE syndrome uncovers the primary role of complement in a familial form of Waldmann's disease. Immunol Rev 2019; 287:20-32. [PMID: 30565236 DOI: 10.1111/imr.12715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
Abstract
Primary intestinal lymphangiectasia (PIL) or Waldmann's disease was described in 1961 as an important cause of protein-losing enteropathy (PLE). PIL can be the sole finding in rare individuals or occur as part of a multisystemic genetic syndrome. Although genetic etiologies of many lymphatic dysplasia syndromes associated with PIL have been identified, the pathogenesis of isolated PIL (with no associated syndromic features) remains unknown. Familial cases and occurrence at birth suggest genetic etiologies in certain cases. Recently, CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and PLE (the CHAPLE syndrome) has been identified as a monogenic form of PIL. Surprisingly, loss of CD55, a key regulator of complement system leads to a predominantly gut condition. Similarly to other complement disorders, namely paroxysmal nocturnal and hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), CHAPLE disease involves pathogenic cross-activation of the coagulation system, predisposing individuals to severe thrombosis. The observation that complement system is overly active in CHAPLE disease introduced a novel concept into the management of PLE; anti-complement therapy. While CD55 deficiency constitutes a treatable subgroup in the larger pool of patients with isolated PIL, the etiology remains to be identified in the remaining patients with intact CD55.
Collapse
Affiliation(s)
- Ahmet Ozen
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.,The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
| |
Collapse
|
19
|
Takeda A, Hollmén M, Dermadi D, Pan J, Brulois KF, Kaukonen R, Lönnberg T, Boström P, Koskivuo I, Irjala H, Miyasaka M, Salmi M, Butcher EC, Jalkanen S. Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils. Immunity 2019; 51:561-572.e5. [PMID: 31402260 DOI: 10.1016/j.immuni.2019.06.027] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/17/2019] [Accepted: 06/27/2019] [Indexed: 01/28/2023]
Abstract
Lymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing. Unbiased clustering revealed six major types of human LECs. LECs lining the subcapsular sinus (SCS) of LNs abundantly expressed neutrophil chemoattractants, whereas LECs lining the medullary sinus (MS) expressed a C-type lectin CD209. Binding of a carbohydrate Lewis X (CD15) to CD209 mediated neutrophil binding to the MS. The neutrophil-selective homing by MS LECs may retain neutrophils in the LN medulla and allow lymph-borne pathogens to clear, preventing their spread through LNs in humans. Our study provides a comprehensive characterization of LEC heterogeneity and unveils a previously undefined role for medullary LECs in human immunity.
Collapse
Affiliation(s)
- Akira Takeda
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Kevin Francis Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Riina Kaukonen
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Tapio Lönnberg
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Pia Boström
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Ilkka Koskivuo
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology, Turku University Hospital and University of Turku, Finland
| | - Masayuki Miyasaka
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland; Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Japan
| | - Marko Salmi
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
20
|
van Dinther D, Lopez Venegas M, Veninga H, Olesek K, Hoogterp L, Revet M, Ambrosini M, Kalay H, Stöckl J, van Kooyk Y, den Haan JMM. Activation of CD8⁺ T Cell Responses after Melanoma Antigen Targeting to CD169⁺ Antigen Presenting Cells in Mice and Humans. Cancers (Basel) 2019; 11:cancers11020183. [PMID: 30764534 PMCID: PMC6406251 DOI: 10.3390/cancers11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
The lack of tumor-reactive T cells is one reason why immune checkpoint inhibitor therapies still fail in a significant proportion of melanoma patients. A vaccination that induces melanoma-specific T cells could potentially enhance the efficacy of immune checkpoint inhibitors. Here, we describe a vaccination strategy in which melanoma antigens are targeted to mouse and human CD169 and thereby induce strong melanoma antigen-specific T cell responses. CD169 is a sialic acid receptor expressed on a subset of mouse splenic macrophages that captures antigen from the blood and transfers it to dendritic cells (DCs). In human and mouse spleen, we detected CD169+ cells at an equivalent location using immunofluorescence microscopy. Immunization with melanoma antigens conjugated to antibodies (Abs) specific for mouse CD169 efficiently induced gp100 and Trp2-specific T cell responses in mice. In HLA-A2.1 transgenic mice targeting of the human MART-1 peptide to CD169 induced strong MART-1-specific HLA-A2.1-restricted T cell responses. Human gp100 peptide conjugated to Abs specific for human CD169 bound to CD169-expressing monocyte-derived DCs (MoDCs) and resulted in activation of gp100-specific T cells. Together, these data indicate that Ab-mediated antigen targeting to CD169 is a potential strategy for the induction of melanoma-specific T cell responses in mice and in humans.
Collapse
Affiliation(s)
- Dieke van Dinther
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Miguel Lopez Venegas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
- DC4U B.V., De Corridor 21E, 3621 ZA Breukelen, The Netherlands.
| | - Henrike Veninga
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Katarzyna Olesek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Leoni Hoogterp
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Mirjam Revet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Martino Ambrosini
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
- DC4U B.V., De Corridor 21E, 3621 ZA Breukelen, The Netherlands.
| | - Hakan Kalay
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Immunology and Infectiology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
- DC4U B.V., De Corridor 21E, 3621 ZA Breukelen, The Netherlands.
| | - Joke M M den Haan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Blesinger H, Kaulfuß S, Aung T, Schwoch S, Prantl L, Rößler J, Wilting J, Becker J. PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations. PLoS One 2018; 13:e0200343. [PMID: 29985963 PMCID: PMC6037383 DOI: 10.1371/journal.pone.0200343] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023] Open
Abstract
Lymphatic malformations (LM) are characterized by the overgrowth of lymphatic vessels during pre- and postnatal development. Macrocystic, microcystic and combined forms of LM are known. The cysts are lined by lymphatic endothelial cells (LECs). Resection and sclerotherapy are the most common treatment methods. Recent studies performed on LM specimens in the United States of America have identified activating mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene in LM. However, whole tissue but not isolated cell types were studied. Here, we studied LM tissues resected at the University Hospitals Freiburg and Regensburg, Germany. We isolated LECs and fibroblasts separately, and sequenced the commonly affected exons 8, 10, and 21 of the PIK3CA gene. We confirm typical monoallelic mutations in 4 out of 6 LM-derived LEC lines, and describe two new mutations i.) in exon 10 (c.1636C>A; p.Gln546Lys), and ii.) a 3bp in-frame deletion of GAA (Glu109del). LM-derived fibroblasts did not possess such mutations, showing cell-type specificity of the gene defect. High activity of the PIK3CA—AKT- mTOR pathway was demonstrated by hyperphosphorylation of AKT-Ser473 in all LM-derived LECs (including the ones with newly identified mutations), as compared to normal LECs. Additionally, hyperphosphorylation of ERK was seen in all LM-derived LECs, except for the one with Glu109del. In vitro, the small molecule kinase inhibitors Buparlisib/BKM-120, Wortmannin, and Ly294002, (all inhibitors of PIK3CA), CAL-101 (inhibitor of PIK3CD), MK-2206 (AKT inhibitor), Sorafenib (multiple kinases inhibitor), and rapamycin (mTOR inhibitor) significantly blocked proliferation of LM-derived LECs in a concentration-dependent manner, but also blocked proliferation of normal LECs. However, MK-2206 appeared to be more specific for mutated LECs, except in case of Glu109 deletion. In sum, children that are, or will be, treated with kinase inhibitors must be monitored closely.
Collapse
Affiliation(s)
- Hannah Blesinger
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, UMG, Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical School Göttingen, UMG, Göttingen, Germany
| | - Thiha Aung
- Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Sonja Schwoch
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, UMG, Göttingen, Germany
| | - Lukas Prantl
- Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Jochen Rößler
- Clinics for Pediatric Hematology and Oncology, University Medical Hospital Freiburg, Freiburg, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, UMG, Göttingen, Germany
- * E-mail:
| | - Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, UMG, Göttingen, Germany
| |
Collapse
|
22
|
Visser A, Doorenspleet ME, de Vries N, Spijkervet FKL, Vissink A, Bende RJ, Bootsma H, Kroese FGM, Bos NA. Acquisition of N-Glycosylation Sites in Immunoglobulin Heavy Chain Genes During Local Expansion in Parotid Salivary Glands of Primary Sjögren Patients. Front Immunol 2018; 9:491. [PMID: 29662487 PMCID: PMC5890187 DOI: 10.3389/fimmu.2018.00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies revealed high incidence of acquired N-glycosylation sites acquired N-glycosylation sites in RNA transcripts encoding immunoglobulin heavy variable region (IGHV) 3 genes from parotid glands of primary Sjögren’s syndrome (pSS) patients. In this study, next generation sequencing was used to study the extent of ac-Nglycs among clonally expanded cells from all IGVH families in the salivary glands of pSS patients. RNA was isolated from parotid gland biopsies of five pSS patients and five non-pSS sicca controls. IGHV sequences covering all functional IGHV genes were amplified, sequenced, and analyzed. Each biopsy recovered 1,800–4,000 unique IGHV sequences. No difference in IGHV gene usage was observed between pSS and non-pSS sequences. Clonally related sequences with more than 0.3% of the total number of sequences per patient were referred to as dominant clone. Overall, 70 dominant clones were found in pSS biopsies, compared to 15 in non-pSS. No difference in percentage mutation in dominant clone-derived IGHV sequences was seen between pSS and non-pSS. In pSS, no evidence for antigen-driven selection in dominant clones was found. We observed a significantly higher amount of ac-Nglycs among pSS dominant clone-derived sequences compared to non-pSS. Ac-Nglycs were, however, not restricted to dominant clones or IGHV gene. Most ac-Nglycs were detected in the framework 3 region. No stereotypic rheumatoid factor rearrangements were found in dominant clones. Lineage tree analysis showed in four pSS patients, but not in non-pSS, the presence of the germline sequence from a dominant clone. Presence of germline sequence and mutated IGHV sequences in the same dominant clone provide evidence that this clone originated from a naïve B-cell recruited into the parotid gland to expand and differentiate locally into plasma cells. The increased presence of ac-Nglycs in IGHV sequences, due to somatic hypermutation, might provide B-cells an escape mechanism to survive during immune response. We speculate that glycosylation of the B-cell receptor makes the cell sensitive to environmental lectin signals to contribute to aberrant B-cell selection in pSS parotid glands.
Collapse
Affiliation(s)
- Annie Visser
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Marieke E Doorenspleet
- Department of Clinical Immunology and Rheumatology, Academic Medical Center and University of Amsterdam, Amsterdam, Netherlands.,Rheumatology and Immunology Center, Academic Medical Center, Amsterdam, Netherlands.,Laboratory for Genome Analysis, Academic Medical Center, Amsterdam, Netherlands
| | - Niek de Vries
- Department of Clinical Immunology and Rheumatology, Academic Medical Center and University of Amsterdam, Amsterdam, Netherlands.,Rheumatology and Immunology Center, Academic Medical Center, Amsterdam, Netherlands
| | - Fred K L Spijkervet
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Richard J Bende
- Department of Pathology, Academic Medical Center and University of Amsterdam, Amsterdam, Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Turner VM, Mabbott NA. Influence of ageing on the microarchitecture of the spleen and lymph nodes. Biogerontology 2017; 18:723-738. [PMID: 28501894 PMCID: PMC5597693 DOI: 10.1007/s10522-017-9707-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
Abstract
The elderly have a decreased response to vaccination and an increased susceptibility to infectious diseases. The spleen and lymph nodes are important secondary lymphoid organs where immune cells can rapidly respond to pathogenic material in the blood and lymph in order to mount long-term adaptive immune responses to those pathogens. In aged mice and humans structural changes occur to both the spleen and lymph nodes. These structural changes affect the functioning of the immune cells within, which may ultimate result in less effective or decreased immune responses. This review describes our current understanding of the structural changes that occur to the spleen and lymph nodes of elderly mice. However, where data are available, we also discuss whether similar changes occur in tissues from elderly humans. A particular focus is made on how these structural changes are considered to impact on the functioning of the immune cells within. The world’s population is currently living longer than ever before. The increased incidence and severity of infectious diseases in the elderly has the potential to have a significant impact on the health care system if solutions are not identified. A thorough understanding of the molecular causes of these ageing-related structural changes to the spleen and lymph nodes may help to identify novel treatments that could repair them, and in doing so, improve immune responses and vaccine efficacy in the elderly.
Collapse
Affiliation(s)
- Vivian M Turner
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, EH25 9RG, UK.
| |
Collapse
|
24
|
Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci Rep 2017; 7:44356. [PMID: 28287163 PMCID: PMC5347010 DOI: 10.1038/srep44356] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
As well as systemic vascular endothelial cells, the liver has specialised sinusoidal endothelial cells (LSEC). LSEC dysfunction has been documented in many diseased states yet their phenotype in normal human liver has not been comprehensively assessed. Our aim was to improve characterisation of subsets of endothelial cells and associated pericytes in the human liver. Immunofluorescence microscopy was performed on normal human liver tissue samples to assess endothelial and structural proteins in a minimum of three donors. LSEC are distributed in an acinar pattern and universally express CD36, but two distinctive subsets of LSEC can be identified in different acinar zones. Type 1 LSEC are CD36hiCD32−CD14−LYVE-1− and are located in acinar zone 1 of the lobule, while Type 2 LSEC are LYVE-1+CD32hiCD14+CD54+CD36mid-lo and are located in acinar zones 2 and 3 of the lobule. Portal tracts and central veins can be identified using markers for systemic vascular endothelia and pericytes, none of which are expressed by LSEC. In areas of low hydrostatic pressure LSEC are lined by stellate cells that express the pericyte marker CD146. Our findings identify distinctive populations of LSEC and distinguish these cells from adjacent stellate cells, systemic vasculature and pericytes in different zones of the liver acinus.
Collapse
Affiliation(s)
- Otto Strauss
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony Phillips
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Katya Ruggiero
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Ji RC. Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses. Int J Mol Sci 2016; 18:ijms18010051. [PMID: 28036019 PMCID: PMC5297686 DOI: 10.3390/ijms18010051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
26
|
Abstract
The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
27
|
Hasselhof V, Sperling A, Buttler K, Ströbel P, Becker J, Aung T, Felmerer G, Wilting J. Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors. PLoS One 2016; 11:e0164964. [PMID: 27764183 PMCID: PMC5072738 DOI: 10.1371/journal.pone.0164964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
Millions of patients suffer from lymphedema worldwide. Supporting the contractility of lymphatic collectors is an attractive target for pharmacological therapy of lymphedema. However, lymphatics have mostly been studied in animals, while the cellular and molecular characteristics of human lymphatic collectors are largely unknown. We studied epifascial lymphatic collectors of the thigh, which were isolated for autologous transplantations. Our immunohistological studies identify additional markers for LECs (vimentin, CCBE1). We show and confirm differences between initial and collecting lymphatics concerning the markers ESAM1, D2-40 and LYVE-1. Our transmission electron microscopic studies reveal two types of smooth muscle cells (SMCs) in the media of the collectors with dark and light cytoplasm. We observed vasa vasorum in the media of the largest collectors, as well as interstitial Cajal-like cells, which are highly ramified cells with long processes, caveolae, and lacking a basal lamina. They are in close contact with SMCs, which possess multiple caveolae at the contact sites. Immunohistologically we identified such cells with antibodies against vimentin and PDGFRα, but not CD34 and cKIT. With Next Generation Sequencing we searched for highly expressed genes in the media of lymphatic collectors, and found therapeutic targets, suitable for acceleration of lymphatic contractility, such as neuropeptide Y receptors 1, and 5; tachykinin receptors 1, and 2; purinergic receptors P2RX1, and 6, P2RY12, 13, and 14; 5-hydroxytryptamine receptors HTR2B, and 3C; and adrenoceptors α2A,B,C. Our studies represent the first comprehensive characterization of human epifascial lymphatic collectors, as a prerequisite for diagnosis and therapy.
Collapse
Affiliation(s)
- Viktoria Hasselhof
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Anastasia Sperling
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Kerstin Buttler
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Thiha Aung
- Division of Trauma Surgery, Plastic and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
- Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Gunther Felmerer
- Division of Trauma Surgery, Plastic and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Lerner TR, de Souza Carvalho-Wodarz C, Repnik U, Russell MR, Borel S, Diedrich CR, Rohde M, Wainwright H, Collinson LM, Wilkinson RJ, Griffiths G, Gutierrez MG. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis. J Clin Invest 2016; 126:1093-108. [PMID: 26901813 PMCID: PMC4767353 DOI: 10.1172/jci83379] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes.
Collapse
Affiliation(s)
- Thomas R. Lerner
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Cristiane de Souza Carvalho-Wodarz
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien, Oslo, Norway
| | - Matthew R.G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Sophie Borel
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Collin R. Diedrich
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Helen Wainwright
- Department of Anatomical Pathology, University of Cape Town Faculty of Health Sciences and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Robert J. Wilkinson
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien, Oslo, Norway
| | - Maximiliano G. Gutierrez
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
29
|
Azad AK, Rajaram MVS, Metz WL, Cope FO, Blue MS, Vera DR, Schlesinger LS. γ-Tilmanocept, a New Radiopharmaceutical Tracer for Cancer Sentinel Lymph Nodes, Binds to the Mannose Receptor (CD206). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2019-29. [PMID: 26202986 PMCID: PMC4543904 DOI: 10.4049/jimmunol.1402005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Abstract
γ-Tilmanocept ((99m)Tc-labeled-tilmanocept or [(99m)Tc]-tilmanocept) is the first mannose-containing, receptor-directed, radiolabeled tracer for the highly sensitive imaging of sentinel lymph nodes in solid tumor staging. To elucidate the mannose-binding receptor that retains tilmanocept in this microenvironment, human macrophages were used that have high expression of the C-type lectin mannose receptor (MR; CD206). Cy3-labeled tilmanocept exhibited high specificity binding to macrophages that was nearly abolished in competitive inhibition experiments. Furthermore, Cy3-tilmanocept binding was markedly reduced on macrophages deficient in the MR by small interfering RNA treatment and was increased on MR-transfected HEK 293 cells. Finally, confocal microscopy revealed colocalization of Cy3-tilmanocept with the macrophage membrane MR and binding of labeled tilmanocept to MR(+) cells (macrophages and/or dendritic cells) in human sentinel lymph node tissues. Together these data provide strong evidence that CD206 is a major binding receptor for γ-tilmanocept. Identification of CD206 as the γ-tilmanocept-binding receptor enables opportunities for designing receptor-targeted advanced imaging agents and therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
- Abul K Azad
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Murugesan V S Rajaram
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Wendy L Metz
- Clinical and Medical Groups, Navidea Biopharmaceuticals, Inc., Dublin, OH 43017; and
| | - Frederick O Cope
- Clinical and Medical Groups, Navidea Biopharmaceuticals, Inc., Dublin, OH 43017; and
| | - Michael S Blue
- Clinical and Medical Groups, Navidea Biopharmaceuticals, Inc., Dublin, OH 43017; and
| | - David R Vera
- Department of Radiology, UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
30
|
DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood 2015; 126:1911-20. [PMID: 26272216 DOI: 10.1182/blood-2015-04-640912] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM(+) FL B cells activated a stronger BCR signaling network than IgG(+) FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM(+) FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN-dependent adhesion of highly mannosylated IgM(+) FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN-expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets.
Collapse
|
31
|
Park SM, Angel CE, McIntosh JD, Brooks AES, Middleditch M, Chen CJJ, Ruggiero K, Cebon J, Rod Dunbar P. Sphingosine-1-phosphate lyase is expressed by CD68+cells on the parenchymal side of marginal reticular cells in human lymph nodes. Eur J Immunol 2014; 44:2425-36. [DOI: 10.1002/eji.201344158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/31/2014] [Accepted: 05/08/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Saem Mul Park
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; The University of Auckland; Auckland New Zealand
| | - Catherine E. Angel
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; The University of Auckland; Auckland New Zealand
| | - Julie D. McIntosh
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; The University of Auckland; Auckland New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; The University of Auckland; Auckland New Zealand
| | - Martin Middleditch
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; The University of Auckland; Auckland New Zealand
| | - Chun-Jen J. Chen
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; The University of Auckland; Auckland New Zealand
| | - Katya Ruggiero
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
| | - Jonathan Cebon
- Ludwig Institute for Cancer Research; Austin Health, Heidelberg; Melbourne VIC Australia
| | - P. Rod Dunbar
- School of Biological Sciences; The University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; The University of Auckland; Auckland New Zealand
| |
Collapse
|
32
|
Blei F. Update June 2014. Lymphat Res Biol 2014. [DOI: 10.1089/lrb.2014.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|