1
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
2
|
Widjaja CE, Olvera JG, Metz PJ, Phan AT, Savas JN, de Bruin G, Leestemaker Y, Berkers CR, de Jong A, Florea BI, Fisch K, Lopez J, Kim SH, Garcia DA, Searles S, Bui JD, Chang AN, Yates JR, Goldrath AW, Overkleeft HS, Ovaa H, Chang JT. Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification. J Clin Invest 2017; 127:3609-3623. [PMID: 28846070 PMCID: PMC5617668 DOI: 10.1172/jci90895] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/14/2017] [Indexed: 12/30/2022] Open
Abstract
During an immune response, CD8+ T lymphocytes can undergo asymmetric division, giving rise to daughter cells that exhibit distinct tendencies to adopt terminal effector and memory cell fates. Here we show that "pre-effector" and "pre-memory" cells resulting from the first CD8+ T cell division in vivo exhibited low and high rates of endogenous proteasome activity, respectively. Pharmacologic reduction of proteasome activity in CD8+ T cells early during differentiation resulted in acquisition of terminal effector cell characteristics, whereas enhancement of proteasome activity conferred attributes of memory lymphocytes. Transcriptomic and proteomic analyses revealed that modulating proteasome activity in CD8+ T cells affected cellular metabolism. These metabolic changes were mediated, in part, through differential expression of Myc, a transcription factor that controls glycolysis and metabolic reprogramming. Taken together, these results demonstrate that proteasome activity is an important regulator of CD8+ T cell fate and raise the possibility that increasing proteasome activity may be a useful therapeutic strategy to enhance the generation of memory lymphocytes.
Collapse
Affiliation(s)
| | | | | | - Anthony T Phan
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| | - Jeffrey N Savas
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Gerjan de Bruin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Yves Leestemaker
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands
| | - Annemieke de Jong
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kathleen Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, and
| | | | | | | | | | - Jack D Bui
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Aaron N Chang
- Center for Computational Biology and Bioinformatics, Department of Medicine, and
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
3
|
The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J Autoimmun 2016; 75:118-129. [PMID: 27522114 DOI: 10.1016/j.jaut.2016.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are diseases with muscle weakness, morphologically characterized by inflammatory infiltration and increased expression of MHC class I molecule on myofibers. Immunoproteasome, as a proteolytic complex that shapes the repertoire of antigenic peptides, has been previously demonstrated to be over-expressed in IIMs at mRNA level. In this study, we investigated the expression and the function of the immunoproteasome in IIMs in more detail. As shown by immunofluorescence staining, expression of relevant players of the immunoproteasome was detectable in the inflamed skeletal muscle tissue from IIM patients. In fact, two subunits of the immunoproteasome, β1i or β5i were upregulated in sporadic inclusion body myositis, immune-mediated necrotizing myopathies and dermatomyositis muscle biopsies and co-localized with the MHC class I expressing myofibers. Double immunofluorescence revealed that both myofibers and muscle infiltrating cells, including CD8+ T-cells and CD68 + macrophages in IIMs expressed β1i or β5i. In addition, we have also investigated the role of the immunoproteasome in myoblasts during in vitro inflammatory conditions. Using human primary myoblasts cultures we found that pro-inflammatory cytokines, TNF-α or IFN-γ upregulate β1i or β5i. Selective inhibition or depletion of β5i amplified the TNF-α or IFN-γ mediated expression of cytokines/chemokines (myokines) in myoblasts. Furthermore, we demonstrated that specific inhibitors of β1i or β5i reduced the cell surface expression of MHC class I in myoblasts induced by IFN-γ. Taken together, our data suggest that the immunoproteasome is involved in pathologic MHC class I expression and maintenance of myokine production in IIMs. Thus, induction of the immunoproteasome was identified as a pathomechanism underlying inflammation in IIMs.
Collapse
|