1
|
Zhang S, Chen Z, Zhao J, Diao S, Tian L, Zhao Y, Li F, Zhu GP. Interfamily Grafted Hybrids Vitis vinifera/ Schisandra chinensis Resulted in Transcriptomic, Phenotypic, and Metabolic Changes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1676. [PMID: 38931108 PMCID: PMC11207768 DOI: 10.3390/plants13121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Long-distance transfer of genetic material and metabolites between rootstock and scions is well documented in homo-grafted hybrids but has rarely been reported in genetically-distant grafts where the rootstock and scion belong to different families. In this study, we grafted Vitis vinifera scions onto Schisandra chinensis stocks and obtained 20 vegetative hybrids, Vitis vinifera/Schisandra chinensis (Vs). After 25 years of growth, we found that the phenotypes of the leaves, internodes, and fruits of the Vs hybrids above the graft union resembled an intermediate phenotype between V. vinifera and S. chinensis, and the new traits were stable when propagated vegetatively. We further analyzed genetic differences between Vv plants and Vs hybrids using high-throughput sequencing, while metabolomes were analyzed by liquid chromatography-mass spectrometry (LC-MS). We found a total of 2113 differentially expressed genes (DEGs). GO annotation and KEGG pathway enrichment analysis showed that these DEGs enriched mainly in oxidation-reduction and metabolic processes. Seventy-nine differentially expressed miRNAs (DEMs) containing 27 known miRNAs and 52 novel miRNAs were identified. A degradation analysis detected 840 target genes corresponding to 252 miRNAs, of which 12 DEMs and their corresponding target gene expression levels were mostly negatively correlated. Furthermore, 1188 differential metabolic compounds were identified. In particular, in Vs hybrids, the abundance of the metabolites schizandrin and gomisin as the main medicinal ingredients in S. chinensis were down-regulated and up-regulated, respectively. Our data demonstrated the effects of interfamily grafts on the phenotype, transcript profile and metabolites of the scion, and also provided new insight into the genetic, phenotypic, and metabolic plasticity associated with genetically distant grafted hybrids.
Collapse
Affiliation(s)
- Shulin Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Zhuo Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Junhui Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming 650223, China
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
| | - Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Ying Zhao
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China;
| | - Fangdong Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
| | - Gao-Pu Zhu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| |
Collapse
|
2
|
Liu M, Wang C, Ji H, Sun M, Liu T, Wang J, Cao H, Zhu Q. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: an overview. FRONTIERS IN PLANT SCIENCE 2024; 15:1368692. [PMID: 38736445 PMCID: PMC11082881 DOI: 10.3389/fpls.2024.1368692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Meiying Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoran Wang
- College of Agriculture & Forestry Technology, Weifang Vocational College, Weifang, China
| | - Hongliang Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Maoxiang Sun
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Tongyu Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Jiahao Wang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Xie S, Liu Y, Chen H, Yang B, Ge M, Zhang Z. Effects of gibberellin applications before flowering on the phenotype, ripening, and flavonoid compounds of Syrah grape berries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6100-6111. [PMID: 35474458 DOI: 10.1002/jsfa.11962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Vitis vinifera L. cv. Syrah grapevines in most Chinese viticulture regions generally have compact clusters that increase the susceptibility to diseases and inhibit coloration of the inner berries. Gibberellic acid (GA3 ) is a plant growth regulator that is widely used during grape cultivation to elongate the rachis, control fruit set, and decrease cluster compactness. In this study, Syrah grapevines were treated with GA3 before flowering in 2019 and 2020 to determine the optimal GA3 treatment concentrations and times for decreasing bunch compactness, while minimizing the negative effects on the wine grape cluster weight. RESULTS Pre-flowering GA3 applications at 3, 5, and 7 mg L-1 , especially treatment at 20 days before flowering, decreased Syrah grape bunch compactness by decreasing the fruit set rate and promoting bunch elongation, with minimal adverse effects on the healthy grape cluster weight in both years. The 7 mg L-1 GA3 treatment at 20 days before flowering significantly increased reducing sugar, total phenolic, tannin, and total anthocyanin contents of Syrah grape berries in 2019 and 2020. Moreover, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, hierarchical cluster, and principal component analysis results indicated GA3 applications before flowering (3, 5, and 7 mg L-1 ) significantly affected the accumulation of different anthocyanins in Syrah grape berries. Notably, the application of 7 mg L-1 GA3 at 20 days before flowering resulted in the highest anthocyanin content. CONCLUSION Pre-flowering gibberellin application can decrease bunch compactness and improve the quality of Syrah grape berries. These findings reflect the potential utility of gibberellin treatments for decreasing cluster compactness and increasing the quality of wine grapes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Xie
- College of Enology, Northwest A & F University, Yangling, China
| | - Yunqi Liu
- College of Enology, Northwest A & F University, Yangling, China
| | - Huawei Chen
- College of Enology, Northwest A & F University, Yangling, China
| | - Bowei Yang
- College of Enology, Northwest A & F University, Yangling, China
| | - Maosheng Ge
- College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
4
|
Huang S, Gao Y, Xue M, Xu J, Liao R, Shang S, Yang X, Zhao Y, Li C, Liu Z, Feng H. BrKAO2 mutations disrupt leafy head formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2453-2468. [PMID: 35726066 DOI: 10.1007/s00122-022-04126-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The role of BrKAO2 in leafy head formation was confirmed by using two allelic Chinese cabbage mutants. Chinese cabbage yield and quality are determined by leafy head formation. Cloning and characterising the key genes regulating leafy head formation are essential for its varietal improvement. We used an EMS-mutagenised population of the heading type 'FT' Chinese cabbage line and identified two allelic non-heading mutants, i.e. nhm3-1 and nhm3-2. Genetic analysis showed that the mutant trait was controlled by a single recessive gene. MutMap and Kompetitive Allele Specific PCR genotyping revealed that BraA05g012440.3C was the candidate gene, which encodes ent-kaurenoic acid oxidase 2 in gibberellin (GA) biosynthetic pathway. It was named BrKAO2. Two non-synonymous mutations in the second BrKAO2 exon, respectively, accounted for the mutant phenotypes of nhm3-1 and nhm3-2. BrKAO2 was expressed during all leaf development stages, and there were no significant differences between the wild type and mutants in terms of BrKAO2 expression. The mutant phenotypes were restored to the wild type via exogenous GA3 application. RNA-Seq was performed on wild-type 'FT', nhm3-1, and nhm3-1 + GA3 rosette leaves, and several key genes involved in GA biosynthesis, signal transduction, and leafy head development were identified. These findings indicate that BrKAO2 is responsible for the leafy head formation in nhm3 mutants.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yue Gao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Meihui Xue
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Junjie Xu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Ruiqi Liao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shayu Shang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Xiaofei Yang
- Integrated Department, Wafangdian Agriculture Technology and Popularization Center, Dalian, 116300, China
| | - Yonghui Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chengyu Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
Evaluation and Genetic Analysis of Parthenocarpic Germplasms in Cucumber. Genes (Basel) 2022; 13:genes13020225. [PMID: 35205270 PMCID: PMC8872377 DOI: 10.3390/genes13020225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Parthenocarpy is an important agronomic trait in cucumber (Cucumis sativus L.) production. However, the systematic identification of parthenocarpic germplasms from national gene banks for cucumber improvement remains an international challenge. In this study, 201 cucumber lines were investigated, including different ecotypes. The percentages of parthenocarpic fruit set (PFS) and parthenocarpic fruit expansion (PFE) were evaluated in three experiments. In natural populations, the PFS rates fit a normal distribution, while PFE rates showed a skewed distribution, suggesting that both PFS and PFE rates are typical quantitative traits. Genetic analysis showed that parthenocarpy in different ecotypes was inherited in a similar incompletely dominant manner. A total of 5324 single nucleotide polymorphisms (SNPs) associated with parthenocarpy were detected in a Genome-wide association study (GWAS) of parthenocarpy in the 31 cucumber lines, from which six parthenocarpic loci, including two novel loci (Pfs1.1 and Pfs4.1), were identified. Consequently, fifteen of the elite lines that were screened presented relatively stronger parthenocarpy ability (PFS > 90%, PFE > 50%), among which six cucumber lines (18007s, 18008s, 18022s, 18076s, 18099s, and 18127s) exhibited weak first-fruit inhibition. Three lines (18011s, 18018s, and 18019s) were screened for super ovary parthenocarpy, which showed more attractive performance. Four low-temperature-enhanced parthenocarpy lines (18018s, 18022s, 18029s, and 18012s) were identified, which were suited for breeding for counter-season production. Our approaches could help increase efficiency and lead to parthenocarpy improvements for modern cucumber cultivars.
Collapse
|
6
|
Gibberellic Acid (GA3) Applied to Flowering Heracleum sosnowskyi Decreases Seed Viability Even If Seed Development Is Not Inhibited. PLANTS 2022; 11:plants11030314. [PMID: 35161295 PMCID: PMC8840363 DOI: 10.3390/plants11030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
Abstract
Sosnowsky’s hogweed (Heracleum sosnowskyi Manden.), an important invasive species in Eastern Europe, is a monocarpic perennial plant that propagates exclusively by seeds. Hence, interfering with seed viability could help control its spread. In the present study, we investigated the effect of exogenous GA3 (25, 100 and 150 mg/L) sprayed twice onto flowering H. sosnowskyi plants on the development of fruits (mericarps) and their ability to germinate under field conditions over the growing seasons of 2018 and 2019. Mericarps from plants sprayed with GA3 failed to develop normally. The width/length ratio of mericarps decreased by 23% to 25% after 150 mg/L GA3 application and their average weight decreased between 7% and 39% under all GA3 treatments. X-ray radiographs revealed that the internal structure was malformed, with many of the mericarps lacking well-developed seeds. Proportionally fewer well-developed mericarps were produced by GA3-treated plants than water-sprayed control plants in 2018. Seed germination assessed outdoors in seeds buried in the ground was also severely reduced (from 58% to 99% after 150 mg/L GA3 application). This indicates that exogenous GA3 sprays result in incomplete seed development and a consequent decrease in viability and germination. As the highest GA3 dose used resulted in significantly reduced propagation of Sosnowsky’s hogweed through seeds in the field, GA3 provides a promising approach to the control of the spread of this invasive weed species.
Collapse
|
7
|
He H, Yamamuro C. Interplays between auxin and GA signaling coordinate early fruit development. HORTICULTURE RESEARCH 2022; 9:uhab078. [PMID: 35043212 PMCID: PMC8955447 DOI: 10.1093/hr/uhab078] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 05/25/2023]
Abstract
Phytohormones and their interactions are critical for fruit development and, are key topics in horticulture research. Auxin, together with gibberellic acid (GA), promotes cell division and expansion, thus subsequently regulates fruit development and enlargement after fertilization. Auxin and GA related mutants show parthenocarpy (fruit formation without fertilization of ovule) in many plant species, indicating that these hormones and possibly their interactions play a key role in the regulation of fruit initiation and development. Recent studies have shown clear molecular and genetic evidence that ARF/IAA and DELLA protein interact each other and regulate both auxin and GA signaling pathways in response to auxin and GA during fruit growth in horticultural plants, tomato (the most studied freshy fruit) and strawberry (the model of Rosaceae). These recent findings provide new insights into the mechanisms by which plant hormones auxin and GA regulate fruit development.
Collapse
Affiliation(s)
- Hai He
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chizuko Yamamuro
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
8
|
Sharif R, Su L, Chen X, Qi X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. HORTICULTURE RESEARCH 2022; 9:6497882. [PMID: 35031797 PMCID: PMC8788353 DOI: 10.1093/hr/uhab024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
In some horticultural crops, such as Cucurbitaceae, Solanaceae, and Rosaceae species, fruit set and development can occur without the fertilization of ovules, a process known as parthenocarpy. Parthenocarpy is an important agricultural trait that can not only mitigate fruit yield losses caused by environmental stresses but can also induce the development of seedless fruit, which is a desirable trait for consumers. In the present review, the induction of parthenocarpic fruit by the application of hormones such as auxins (2,4 dichlorophenoxyacetic acid; naphthaleneacetic acid), cytokinins (forchlorfenuron; 6-benzylaminopurine), gibberellic acids, and brassinosteroids is first presented. Then, the molecular mechanisms of parthenocarpic fruit formation, mainly related to plant hormones, are presented. Auxins, gibberellic acids, and cytokinins are categorized as primary players in initiating fruit set. Other hormones, such as ethylene, brassinosteroids, and melatonin, also participate in parthenocarpic fruit formation. Additionally, synergistic and antagonistic crosstalk between these hormones is crucial for deciding the fate of fruit set. Finally, we highlight knowledge gaps and suggest future directions of research on parthenocarpic fruit formation in horticultural crops.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Li Su
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
- Corresponding authors. E-mail: ,
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
9
|
Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. FORESTS 2020. [DOI: 10.3390/f11060633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plant hormone gibberellin (GA) is known to regulate elongating growth, seed germination, and the initiation of flower bud formation, and it has been postulated that GAs originally had functions in reproductive processes. Studies on the mechanism of induction of flowering by GA have been performed in Arabidopsis and other model plants. In coniferous trees, reproductive organ induction by GAs is known to occur, but there are few reports on the molecular mechanism in this system. To clarify the gene expression dynamics of the GA induction of the male strobilus in Cryptomeria japonica, we performed comprehensive gene expression analysis using a microarray. A GA-treated group and a nontreated group were allowed to set, and individual trees were sampled over a 6-week time course. A total of 881 genes exhibiting changed expression was identified. In the GA-treated group, genes related to ‘stress response’ and to ‘cell wall’ were initially enriched, and genes related to ‘transcription’ and ‘transcription factor activity’ were enriched at later stages. This analysis also clarified the dynamics of the expression of genes related to GA signaling transduction following GA treatment, permitting us to compare and contrast with the expression dynamics of genes implicated in signal transduction responses to other plant hormones. These results suggested that various plant hormones have complex influences on the male strobilus induction. Additionally, principal component analysis (PCA) using expression patterns of the genes that exhibited sequence similarity with flower bud or floral organ formation-related genes of Arabidopsis was performed. PCA suggested that gene expression leading to male strobilus formation in C. japonica became conspicuous within one week of GA treatment. Together, these findings help to clarify the evolution of the mechanism of induction of reproductive organs by GA.
Collapse
|
10
|
Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fleshy fruits are characterized by having a developmentally and genetically controlled, highly intricate ripening process, leading to dramatic modifications in fruit size, texture, color, flavor, and aroma. Climacteric fruits such as tomato, pear, banana, and melon show a ripening-associated increase in respiration and ethylene production and these processes are well-documented. In contrast, the hormonal mechanism of fruit development and ripening in non-climacteric fruit, such as strawberry, grape, raspberry, and citrus, is not well characterized. However, recent studies have shown that non-climacteric fruit development and ripening, involves the coordinated action of different hormones, such as abscisic acid (ABA), auxin, gibberellins, ethylene, and others. In this review, we discuss and evaluate the recent research findings concerning the hormonal regulation of non-climacteric fruit development and ripening and their cross-talk by taking grape, strawberry, and raspberry as reference fruit species.
Collapse
|
11
|
Koryznienė D, Jurkonienė S, Žalnierius T, Gavelienė V, Jankovska-Bortkevič E, Bareikienė N, Būda V. Heracleum sosnowskyi seed development under the effect of exogenous application of GA 3. PeerJ 2019; 7:e6906. [PMID: 31119089 PMCID: PMC6511387 DOI: 10.7717/peerj.6906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
Numerous studies have demonstrated the impact of exogenous gibberellin on fleshy fruit formation, but the effect on dry fruits is not yet well known. To test the role of gibberellin (GA3) in dry fruit formation, we analysed the impact of exogenous GA3 on the invasive plant Sosnowsky’s hogweed (H. sosnowskyi Manden.) seed development and germination. Treatment of GA3 concentrations of 0.07 mM, 0.14 mM, 0.28 mM, 0.43 mM was applied to flowers at the early stage of development. Seeds were collected from treated satellite umbels. It was observed that GA3treatment did not have a significant effect on the size of H. sosnowskyi seeds, but caused various changes in their shape. The data on semi-thin longitudinal sections of H. sosnowskyi mericarps and SEM micrographs of embryos showed that the embryos in GA3 (0.43 mM) treated variants were at torpedo stage, while in control variants—mature embryos. The germination of seeds of each variant was estimated by burying them in the soil. Our studies indicated that GA3 application reduced the germination of H. sosnowskyi seed from 98.0% (control) to 16.5% (GA3 concentration 0.43 mM). It was assumed that exogenous application of GA3 had influence on the development of dry Sosnowsky’s hogweed seeds and could be used to inhibit the spread of this invasive plant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincas Būda
- Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| |
Collapse
|
12
|
Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, Zheng T, Jia H, Song C, Fang J, Wang C. VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC PLANT BIOLOGY 2019; 19:111. [PMID: 30898085 PMCID: PMC6429806 DOI: 10.1186/s12870-019-1719-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive. RESULTS In this study, the morphological changes during flower development in response to GA treatments were examined in the 'Rosario Bianco' cultivar. The precise sequences of VvmiR160a/b/c/d/e and their VvARF10/16/17 target genes were cloned, sequenced and characterized. The phylogenetic relationship and intron-exon structure of VvARFs and other ARF family members derived from different species were investigated. All VvmiR160s (except VvmiR160b) and VvARF10/16/17 had the common cis-elements responsive to GA, which support their function in GA-mediated grape parthenocarpy. The cleavage role of VvmiR160s-mediated VvARF10/16/17 was verified in grape flowers. Moreover, spatio-temporal expression analysis demonstrated that among VvmiR160 family, VvmiR160a/b/c highly expressed at late stage of flower/berry development, while VvARF10/16/17showed a reverse expression trend. Interestingly, GA exhibited a long-term effect through inducing the expression of VvmiR160a/b/c/e to increase their cleavage product accumulations from 5 to 9 days after treatment, but GA enhanced the expressions of VvARF10/16/17 only at short term. Pearson correlation analysis based on expression data revealed a negative correlation between VvmiR160a/b/c and VvARF10/16/17 in flowers not berries during GA-induced grape parthenocarpy. CONCLUSIONS This work demonstrated that the negative regulation of VvARF10/16/17 expression by VvmiR160a/b/c as key regulatory factors is critical for GA-mediated grape parthenocarpy, and provide significant implications for molecular breeding of high-quality seedless berry.
Collapse
Affiliation(s)
- Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528 Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001 Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
13
|
Wang C, Jogaiah S, Zhang W, Abdelrahman M, Fang JG. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3639-3650. [PMID: 29905866 DOI: 10.1093/jxb/ery172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/22/2018] [Indexed: 05/18/2023]
Abstract
Grapevine, Vitis vinifera, is an important economic fruit crop that is highly sensitive to gibberellin (GA), and the exogenous application of GA can efficiently induce grapevine parthenocarpy. However, the molecular mechanisms underlying this process remain elusive. In this study, morphological changes during flower development in response to GA treatments were examined in the 'Zuijinxiang' cultivar. To obtain insights into the roles of miRNA159s in GA-induced grapevine parthenocarpy, VvmiR159a, VvmiR159b, VvmiR159c, and their target gene VvGAMYB were isolated, sequenced and characterized. Spatial-temporal expression analyses showed that VvmiR159c exhibited the highest expression levels at 4 d before flowering, followed by a gradual decrease, while VvGAMYB displayed an opposite pattern of expression with the lowest expression at the corresponding stage in response to GA treatment. A cleavage interaction between VvmiR159s and VvGAMYB and variations of their cleavage roles were confirmed in grapevine floral development. In addition, the potential roles of VvmiR159s in GA signaling were investigated through DELLA-protein repressors, indicating that GA-DELLA (SLR1)-VvmiR159c-VvGAMYB is the key signaling regulatory module in grapevine. Our findings provide novel insights into the GA-responsive roles of VvmiR159s in modulating grapevine floral development, which have important implications for the molecular breeding of high-quality seedless grapevine berry.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, India
| | - WenYing Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, Egypt
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan
| | - Jing Gui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Hui WK, Wang Y, Chen XY, Zayed MZ, Wu GJ. Analysis of Transcriptional Responses of the Inflorescence Meristems in Jatropha curcas Following Gibberellin Treatment. Int J Mol Sci 2018; 19:ijms19020432. [PMID: 29389867 PMCID: PMC5855654 DOI: 10.3390/ijms19020432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
Abstract
Jatropha curcas L. seeds an oilseed plant with great potential for biodiesel production. However, low seed yield, which was limited by its lower female flowers, was a major drawback for its utilization. Our previous study found that the flower number and female-to-male ratio were increased by gibberellin treatment. Here, we compared the transcriptomic profiles of inflorescence meristem at different time points after gibberellic acid A3 (GA3) treatment. The present study showed that 951 differentially expressed genes were obtained in response to gibberellin treatment, compared with control samples. The 6-h time point was an important phase in the response to exogenous gibberellin. Furthermore, the plant endogenous gibberellin, auxin, ethylene, abscisic acid, and brassinolide-signaling transduction pathways were repressed, whereas the genes associated with cytokinin and jasmonic acid signaling were upregulated for 24-h time point following GA3 treatment. In addition, the floral meristem determinacy genes (JcLFY, JcSOC1) and floral organ identity genes (JcAP3, JcPI, JcSEP1-3) were significantly upregulated, but their negative regulator (JcSVP) was downregulated after GA3 treatment. Moreover, the effects of phytohormone, which was induced by exogenous plant growth regulator, mainly acted on the female floral differentiation process. To the best of our knowledge, this data is the first comprehensive analysis of the underlying transcriptional response mechanism of floral differentiation following GA3 treatment in J. curcas, which helps in engineering high-yielding varieties of Jatropha.
Collapse
Affiliation(s)
- Wen-Kai Hui
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiao-Yang Chen
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Mohamed Zaky Zayed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21527, Egypt.
| | - Guo-Jiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
15
|
Liu L, Wang Z, Liu J, Liu F, Zhai R, Zhu C, Wang H, Ma F, Xu L. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. HORTICULTURE RESEARCH 2018; 5:1. [PMID: 29736250 PMCID: PMC5798812 DOI: 10.1038/s41438-017-0012-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 05/06/2023]
Abstract
Phytohormones play crucial roles in fruit set regulation and development. Here, gibberellins (GA4+7), but not GA3, induced pear parthenocarpy. To systematically investigate the changes upon GA4+7 induced pear parthenocarpy, dynamic changes in histology, hormone and transcript levels were observed and identified in unpollinated, pollinated and GA4+7-treated ovaries. Mesocarp cells continued developing in both GA4+7-treated and pollinated ovaries. In unpollinated ovaries, mesocarp cells stopped developing 14 days after anthesis. During fruit set process, GA4+7, but not GA1+3, increased after pollination. Abscisic acid (ABA) accumulation was significantly repressed by GA4+7 or pollination, but under unpollinated conditions, ABA was produced in large quantities. Moreover, indole-3-acetic acid biosynthesis was not induced by GA4+7 or pollination treatments. Details of this GA-auxin-ABA cross-linked gene network were determined by a comparative transcriptome analysis. The indole-3-acetic acid transport-related genes, mainly auxin efflux carrier component genes, were induced in both GA4+7-treated and pollinated ovaries. ABA biosynthetic genes of the 9-cis-epoxycarotenoid dioxygenase family were repressed by GA4+7 and pollination. Moreover, directly related genes in the downstream parthenocarpy network involved in cell division and expansion (upregulated), and MADS-box family genes (downregulated), were also identified. Thus, a model of GA-induced hormonal balance and its effects on parthenocarpy were established.
Collapse
Affiliation(s)
- Lulu Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Zhigang Wang
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Jianlong Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fengxia Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Rui Zhai
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Chunqin Zhu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Huibin Wang
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fengwang Ma
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Lingfei Xu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| |
Collapse
|
16
|
Grimplet J, Tello J, Laguna N, Ibáñez J. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size. FRONTIERS IN PLANT SCIENCE 2017; 8:632. [PMID: 28496449 PMCID: PMC5406470 DOI: 10.3389/fpls.2017.00632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/07/2017] [Indexed: 05/21/2023]
Abstract
Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja)Logroño, Spain
| | | | | | | |
Collapse
|
17
|
Cardone MF, D'Addabbo P, Alkan C, Bergamini C, Catacchio CR, Anaclerio F, Chiatante G, Marra A, Giannuzzi G, Perniola R, Ventura M, Antonacci D. Inter-varietal structural variation in grapevine genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:648-661. [PMID: 27419916 DOI: 10.1111/tpj.13274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 05/10/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varieties.
Collapse
Affiliation(s)
- Maria Francesca Cardone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, TR-06800, Turkey
| | - Carlo Bergamini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | | | - Fabio Anaclerio
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Giorgia Chiatante
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Annamaria Marra
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Giuliana Giannuzzi
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Rocco Perniola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| | - Mario Ventura
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Donato Antonacci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo, Research Unit for viticulture and enology in Southern Italy, Turi (BA), Italy
| |
Collapse
|
18
|
Pollen Morphology and Boron Concentration in Floral Tissues as Factors Triggering Natural and GA-Induced Parthenocarpic Fruit Development in Grapevine. PLoS One 2015; 10:e0139503. [PMID: 26440413 PMCID: PMC4595136 DOI: 10.1371/journal.pone.0139503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/12/2015] [Indexed: 12/24/2022] Open
Abstract
Parthenocarpic fruit development (PFD) reduces fruit yield and quality in grapevine. Parthenocarpic seedless berries arise from fruit set without effective fertilization due to defective pollen germination. PFD has been associated to micronutrient deficiency but the relation of this phenomenon with pollen polymorphism has not been reported before. In this work, six grapevine cultivars with different tendency for PFD and grown under micronutrient-sufficient conditions were analyzed to determine pollen structure and germination capability as well as PFD rates. Wide variation in non-germinative abnormal pollen was detected either among cultivars as well as for the same cultivar in different growing seasons. A straight correlation with PFD rates was found (R2 = 0.9896), suggesting that natural parthenocarpy is related to defective pollen development. Such relation was not observed when PFD was analyzed in grapevine plants exposed to exogenous gibberellin (GA) or abscissic acid (ABA) applications at pre-anthesis. Increase (GA treatment) or reduction (ABA treatment) in PFD rates without significative changes in abnormal pollen was determined. Although these plants were maintained at sufficient boron (B) condition, a down-regulation of the floral genes VvBOR3 and VvBOR4 together with a reduction of floral B content in GA-treated plants was established. These results suggest that impairment in B mobility to reproductive tissues and restriction of pollen tube growth could be involved in the GA-induced parthenocarpy.
Collapse
|
19
|
Cheng C, Jiao C, Singer SD, Gao M, Xu X, Zhou Y, Li Z, Fei Z, Wang Y, Wang X. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 2015; 16:128. [PMID: 25888129 PMCID: PMC4348105 DOI: 10.1186/s12864-015-1324-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gibberellins are well known for their growth control function in flower, fruit and seed development, and as such, exogenous gibberellic acid (GA) application plays an important role in viticulture. Unfortunately, the mechanism by which GA3 acts in the regulation of these complicated developmental processes in grape remains unclear. RESULTS In the present study, we demonstrated that application of GA3 to 'Kyoho' grapevine inflorescences at pre-bloom promoted flower opening, and induced fruit coloring as well as seed abortion. In an attempt to obtain a deeper understanding of the molecular mechanisms driving these responses to GA3 treatment, we performed large-scale transcriptome sequencing of grape flowers following GA3 treatment using Illumina sequencing technology. Global expression profiles of GA3-treated and untreated grape flowers were compared and a large number of GA3-responsive genes were identified. Gene ontology (GO) term classification and biochemical pathway analyses indicated that GA3 treatment caused changes in the levels of transcripts involved in cellular processes, reproduction, hormone and secondary metabolism, as well as the scavenging and detoxification of reactive oxygen species (ROS). These findings suggest that GA3-induced morphological alterations may be related to the control of hormone biosynthesis and signaling, regulation of transcription factors, alteration of secondary metabolites, and the stability of redox homeostasis. CONCLUSIONS Taken together, this comprehensive inflorescence transcriptome data set provides novel insight into the response of grape flowers to GA3 treatment, and also provides possible candidate genes or markers that could be used to guide future efforts in this field.
Collapse
Affiliation(s)
- Chenxia Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaozhao Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, 100193, China.
| | - Yiming Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA. .,USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
20
|
Qiao L, Zhang X, Han X, Zhang L, Li X, Zhan H, Ma J, Luo P, Zhang W, Cui L, Li X, Chang Z. A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2015; 6:770. [PMID: 26483801 PMCID: PMC4588698 DOI: 10.3389/fpls.2015.00770] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/07/2015] [Indexed: 05/19/2023]
Abstract
The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat "Chinese Spring." Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat.
Collapse
Affiliation(s)
- Linyi Qiao
- Department of Biological Sciences, College of Life Science, Shanxi UniversityTaiyuan, China
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural SciencesTaiyuan, China
| | - Xiaojun Zhang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural SciencesTaiyuan, China
| | - Xiao Han
- Biotechnology Research Insititute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Lei Zhang
- National Key Facility for Gene Resources and Gene Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Li
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural SciencesTaiyuan, China
| | - Haixian Zhan
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural SciencesTaiyuan, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Peigao Luo
- Department of Biotechnology, College of Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Wenping Zhang
- National Key Facility for Gene Resources and Gene Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Biotechnology, College of Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Lei Cui
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural SciencesTaiyuan, China
| | - Xiaoyan Li
- Beijing Anzhen Hospital Affiliated to the Capital Medical University/Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijing, China
- *Correspondence: Xiaoyan Li, Beijing Anzhen Hospital Affiliated to the Capital Medical University/Beijing Institute of Heart Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Beijing 100029, China
| | - Zhijian Chang
- Department of Biological Sciences, College of Life Science, Shanxi UniversityTaiyuan, China
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural SciencesTaiyuan, China
- Zhijian Chang, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, No. 81 Longcheng Street, Taiyuan 030031, Shanxi, China
| |
Collapse
|