1
|
Wang Z, Ren J, Han Z, Wang J, Gu S, Zhou Y, Han Z, Zhai Y, Zhang S, An X, Yu D, Hu Z, Hai T, Li Z. Foetal microchimerism occurs in pigs. Cell Prolif 2022; 55:e13333. [PMID: 36073746 PMCID: PMC9628235 DOI: 10.1111/cpr.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Zhengzhu Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhiqiang Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shigang Gu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Zhen Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
2
|
Stas MR, Koch M, Stadler M, Sawyer S, Sassu EL, Mair KH, Saalmüller A, Gerner W, Ladinig A. NK and T Cell Differentiation at the Maternal-Fetal Interface in Sows During Late Gestation. Front Immunol 2020; 11:582065. [PMID: 33013937 PMCID: PMC7516083 DOI: 10.3389/fimmu.2020.582065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The phenotype and function of immune cells that reside at the maternal-fetal interface in humans and mice have been, and still are, extensively studied with the aim to fully comprehend the complex immunology of pregnancy. In pigs, information regarding immune cell phenotypes is limited and mainly focused on early gestation whereas late gestation has not yet been investigated. We designed a unique methodology tailored to the porcine epitheliochorial placenta, which allowed us to address immune phenotypes separately in the maternal endometrium (ME) and fetal placenta (FP) by flow cytometry. In-depth phenotyping of NK cells, non-conventional and conventional T cells within maternal blood (mBld), ME, FP, and fetal spleen (fSpln) revealed major differences between these anatomic sites. In both maternal compartments, all NK cells were perforin+ and had NKp46-defined phenotypes indicative of late-stage differentiation. Likewise, T cells with a highly differentiated phenotype including CD2+CD8α+CD27dim/–perforin+ γδ T cells, CD27–perforin+ cytolytic T cells (CTLs), and T-bet+ CD4+CD8α+CD27– effector memory T (Tem) cells prevailed within these compartments. The presence of highly differentiated T cells was also reflected in the number of cells that had the capacity to produce IFN-γ. In the FP, we found NK cells and T cell populations with a naive phenotype including CD2+CD8α–CD27+perforin– γδ T cells, T-bet–CD4+CD8α–CD27+ T cells, and CD27+perforin– CTLs. However, also non-naive T cell phenotypes including CD2+CD8α+CD27+perforin– γδ T cells, T-bet+CD4+CD8α+CD27– Tem cells, and a substantial proportion of CD27–perforin+ CTLs resided within this anatomic site. Currently, the origin or the cues that steer the differentiation of these putative effector cells are unclear. In the fSpln, NKp46high NK cells and T cells with a naive phenotype prevailed. This study demonstrated that antigen-experienced immune cell phenotypes reside at the maternal-fetal interface, including the FP. Our methodology and our findings open avenues to study NK and T cell function over the course of gestation. In addition, this study lays a foundation to explore the interplay between immune cells and pathogens affecting swine reproduction.
Collapse
Affiliation(s)
- Melissa R Stas
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Koch
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Spencer Sawyer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
3
|
Gash KK, Yang M, Fan Z, Regouski M, Rutigliano HM, Polejaeva IA. Assessment of microchimerism following somatic cell nuclear transfer and natural pregnancies in goats. J Anim Sci 2019; 97:3786-3794. [PMID: 31353395 DOI: 10.1093/jas/skz248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
Microchimerism is defined as the presence of a small population of cells or DNA in 1 organism originated from a genetically different organism. It is well established that this phenomenon occurs in humans and mice as cells are exchanged between mother and fetus during gestation. Currently, no information is available about the presence of maternal microchimerism in goats, and the only published study is limited to an evaluation of fetal and fetal-fetal microchimerism in blood samples following natural breeding. In order to determine whether bidirectional fetal-maternal cell or DNA trafficking occurs in goats, we assessed: 1) fetal microchimerism in surrogates that gave birth to somatic cell nuclear transfer (SCNT)-derived transgenic offspring (n = 4), 2) maternal microchimerism following natural breeding of SCNT-derived transgenic does with a nontransgenic buck (n = 4), and 3) fetal-fetal microchimerism in nontransgenic twins of transgenic offspring (n = 3). Neomycin-resistance gene (NEO) gene was selected as the marker to detect the presence of the αMHC-TGF-β1-Neo transgene in kidney, liver, lung, lymph node, and spleen. We found no detectable maternal or fetal-fetal microchimerism in the investigated tissues of nontransgenic offspring. However, fetal microchimerism was detected in lymph node tissue of one of the surrogate dams carrying a SCNT pregnancy. These results indicate occurrence of cell trafficking from fetus to mother during SCNT pregnancies. The findings of this study have direct implications on the use and disposal of nontransgenic surrogates and nontransgenic offspring.
Collapse
Affiliation(s)
- Kirsten K Gash
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Min Yang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT.,School of Veterinary Medicine, Utah State University, Logan, UT
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT
| |
Collapse
|
4
|
Packthongsuk K, Rathbun T, Troyer D, Davis DL. Porcine Wharton's jelly cells distribute throughout the body after intraperitoneal injection. Stem Cell Res Ther 2018; 9:38. [PMID: 29444715 PMCID: PMC5813394 DOI: 10.1186/s13287-018-0775-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background Wharton's jelly cells (WJCs) have multiple differentiation potentials and are easily harvested in large numbers. WJCs are well tolerated in allogeneic environments and there is a growing list of their therapeutic effects. Most therapies require administering large numbers of cells and this is generally accomplished by intravenous injection. Here, we studied the locations of porcine WJCs in immune-competent, allogeneic hosts after intraperitoneal (IP) injection. Methods Male porcine WJCs were administered to female neonatal piglets by IP injection. The location of transplanted cells was examined at 6 h, 24 h, and 7 days after administration using confocal microscopy and polymerase chain reaction (PCR). Transplanted cells were also retrieved from the intestines of recipients and were cultured. Previously transplanted cells were identified by fluorescence in-situ hybridization (FISH) using a Y-chromosome probe. Results Allogeneic cells were identified in the small and large intestine, stomach, liver, spleen, diaphragm, omentum, kidney, pancreas, mesenteric lymph nodes, heart, lungs, uterus, bladder, and skeletal muscle. Male cells (SRY positive) were found in cultures of cells harvested from the intestinal mucosa 1 week after administration of male porcine WJCs. Conclusions Our results show that porcine WJCs distribute widely to the organs in immunocompetent allogeneic hosts after IP administration. They may distribute through the lymphatics initially, and a prominent site of incorporation is the mucosa of the gastrointestinal tract. In that location they could function in the niche of endogenous stem cells and provide secretory products to cells in the tissue damaged by intestinal disease. Electronic supplementary material The online version of this article (10.1186/s13287-018-0775-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kreeson Packthongsuk
- National Institute of Animal Health (NIAH) 50/2 Kasetklang, Pahonyothin Rd., Jatujak, Ladyao, Bangkok, 10900, Thailand
| | - Theresa Rathbun
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506, KS, USA
| | - Deryl Troyer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, 66506, KS, USA
| | - Duane L Davis
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506, KS, USA.
| |
Collapse
|
5
|
Lipták N, Hoffmann OI, Kerekes A, Iski G, Ernszt D, Kvell K, Hiripi L, Bősze Z. Monitoring of Venus transgenic cell migration during pregnancy in non-transgenic rabbits. Transgenic Res 2017; 26:291-299. [PMID: 27832434 PMCID: PMC5350230 DOI: 10.1007/s11248-016-9994-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Cell transfer between mother and fetus were demonstrated previously in several species which possess haemochorial placenta (e.g. in humans, mice, rats, etc.). Here we report the assessment of fetal and maternal microchimerism in non-transgenic (non-TG) New Zealand white rabbits which were pregnant with transgenic (TG) fetuses and in non-TG newborns of TG does. The TG construct, including the Venus fluorophore cDNA driven by a ubiquitous cytomegalovirus enhancer, chicken ß-actin promoter (CAGGS), was previously integrated into the rabbit genome by Sleeping Beauty transposon system. Three different methods [fluorescence microscopy, flow cytometry and quantitative polymerase chain reaction (QPCR)] were employed to search for TG cells and gene products in blood and other tissues of non-TG rabbits. Venus positive peripheral blood mononuclear cells (PBMCs) were not detected in the blood of non-TG littermates or non-TG does by flow cytometry. Tissue samples (liver, kidney, skeletal and heart muscle) also proved to be Venus negative examined with fluorescence microscopy, while histology sections and PBMCs of TG rabbits showed robust Venus protein expression. In case of genomic DNA (gDNA) sourced from tissue samples of non-TG rabbits, CAGGS promoter-specific fragments could not be amplified by QPCR. Our data showed the lack of detectable cell transfer between TG and non-TG rabbits during gestation.
Collapse
Affiliation(s)
- N Lipták
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary.
| | - O I Hoffmann
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - A Kerekes
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - G Iski
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - D Ernszt
- Department of Pharmaceutical Biotechnology, University of Pécs, Pécs, Hungary
| | - K Kvell
- Department of Pharmaceutical Biotechnology, University of Pécs, Pécs, Hungary
| | - L Hiripi
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Z Bősze
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| |
Collapse
|
6
|
Zeeh F, Suter MM, Mueller E, Brünisholz N, Zimmerman W, Ricklin M, Rüfenacht S, Olivry T, Roosje PJ. Chronological clinical and pathological documentation of porcine ulcerative dermatitis. Vet Dermatol 2016; 27:315-e78. [PMID: 27188958 DOI: 10.1111/vde.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Porcine ulcerative dermatitis syndrome (PUDS) is a rare disease of breeding sows with an unknown pathogenesis. OBJECTIVE To describe the evolution of clinical and histopathological lesions over the course of the disease and to elucidate the pathogenesis. ANIMAL A 24-month-old, pluriparous, large white sow presented during gestation with ulcerations around the teats compatible with PUDS. METHODS AND RESULTS Clinical and histopathological lesions were monitored over the course of the disease (i.e. during and after the subsequent pregnancy). A clear gestation-dependent flare of the lesions was observed with partial resolution occurring postpartum. The histological pattern presented as a lymphocytic interface dermatitis. CONCLUSIONS AND CLINICAL IMPORTANCE The findings in this case report link gestation with the development of clinical signs and histological changes. Multiparity appears to enhance severity and may finally result in a self-perpetuating disease. Therefore, it seems advisable to cull breeding sows after they have developed PUDS.
Collapse
Affiliation(s)
- Friederike Zeeh
- Department of Clinical Veterinary Medicine, Clinic for Swine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland
| | - Maja M Suter
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland.,DermFocus, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland
| | - Eliane Mueller
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland.,DermFocus, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland
| | - Natalia Brünisholz
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland.,DermFocus, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland
| | - Werner Zimmerman
- Department of Clinical Veterinary Medicine, Clinic for Swine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland
| | - Meret Ricklin
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland
| | - Silvia Rüfenacht
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Petra J Roosje
- DermFocus, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland.,Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, PO Box 8466, 3001, Bern, Switzerland
| |
Collapse
|
7
|
Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle. Sci Rep 2016; 6:24983. [PMID: 27117862 PMCID: PMC4846992 DOI: 10.1038/srep24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/04/2016] [Indexed: 12/27/2022] Open
Abstract
Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3−/−) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3+/+) were injected into NANOS3−/− Wagyu embryos. Subsequently, exogenous germ cells (NANOS3+/+) were identified in the NANOS3−/− ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies.
Collapse
|
8
|
Johansson F, Richter-Boix A, Gomez-Mestre I. Morphological Consequences of Developmental Plasticity in Rana temporaria are not Accommodated into Among-Population or Among-Species Variation. Evol Biol 2015. [DOI: 10.1007/s11692-015-9363-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Garrels W, Mukherjee A, Holler S, Cleve N, Talluri TR, Barg-Kues B, Diederich M, Köhler P, Petersen B, Lucas-Hahn A, Niemann H, Izsvák Z, Ivics Z, Kues WA. Identification and re-addressing of a transcriptionally permissive locus in the porcine genome. Transgenic Res 2015; 25:63-70. [DOI: 10.1007/s11248-015-9914-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/23/2015] [Indexed: 01/21/2023]
|
10
|
Tc1-like Transposase Thm3 of Silver Carp (Hypophthalmichthys molitrix) Can Mediate Gene Transposition in the Genome of Blunt Snout Bream (Megalobrama amblycephala). G3-GENES GENOMES GENETICS 2015; 5:2601-10. [PMID: 26438298 PMCID: PMC4683633 DOI: 10.1534/g3.115.020933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tc1-like transposons consist of an inverted repeat sequence flanking a transposase gene that exhibits similarity to the mobile DNA element, Tc1, of the nematode, Caenorhabditis elegans. They are widely distributed within vertebrate genomes including teleost fish; however, few active Tc1-like transposases have been discovered. In this study, 17 Tc1-like transposon sequences were isolated from 10 freshwater fish species belonging to the families Cyprinidae, Adrianichthyidae, Cichlidae, and Salmonidae. We conducted phylogenetic analyses of these sequences using previously isolated Tc1-like transposases and report that 16 of these elements comprise a new subfamily of Tc1-like transposons. In particular, we show that one transposon, Thm3 from silver carp (Hypophthalmichthys molitrix; Cyprinidae), can encode a 335-aa transposase with apparently intact domains, containing three to five copies in its genome. We then coinjected donor plasmids harboring 367 bp of the left end and 230 bp of the right end of the nonautonomous silver carp Thm1 cis-element along with capped Thm3 transposase RNA into the embryos of blunt snout bream (Megalobrama amblycephala; one- to two-cell embryos). This experiment revealed that the average integration rate could reach 50.6% in adult fish. Within the blunt snout bream genome, the TA dinucleotide direct repeat, which is the signature of Tc1-like family of transposons, was created adjacent to both ends of Thm1 at the integration sites. Our results indicate that the silver carp Thm3 transposase can mediate gene insertion by transposition within the genome of blunt snout bream genome, and that this occurs with a TA position preference.
Collapse
|
11
|
Abstract
The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging.
Collapse
Affiliation(s)
- Gökhan Gün
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, Neustadt, Germany
- Molecular Biology & Genetics, Istanbul Technical University, Istanbul, Turkey
- Histology and Embryology Department, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Wilfried A. Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, Neustadt, Germany
| |
Collapse
|
12
|
Turchiano G, Latella MC, Gogol-Döring A, Cattoglio C, Mavilio F, Izsvák Z, Ivics Z, Recchia A. Genomic analysis of Sleeping Beauty transposon integration in human somatic cells. PLoS One 2014; 9:e112712. [PMID: 25390293 PMCID: PMC4229213 DOI: 10.1371/journal.pone.0112712] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a non-viral integrating vector system with proven efficacy for gene transfer and functional genomics. However, integration efficiency is negatively affected by the length of the transposon. To optimize the SB transposon machinery, the inverted repeats and the transposase gene underwent several modifications, resulting in the generation of the hyperactive SB100X transposase and of the high-capacity “sandwich” (SA) transposon. In this study, we report a side-by-side comparison of the SA and the widely used T2 arrangement of transposon vectors carrying increasing DNA cargoes, up to 18 kb. Clonal analysis of SA integrants in human epithelial cells and in immortalized keratinocytes demonstrates stability and integrity of the transposon independently from the cargo size and copy number-dependent expression of the cargo cassette. A genome-wide analysis of unambiguously mapped SA integrations in keratinocytes showed an almost random distribution, with an overrepresentation in repetitive elements (satellite, LINE and small RNAs) compared to a library representing insertions of the first-generation transposon vector and to gammaretroviral and lentiviral libraries. The SA transposon/SB100X integrating system therefore shows important features as a system for delivering large gene constructs for gene therapy applications.
Collapse
Affiliation(s)
- Giandomenico Turchiano
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Carmela Latella
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Fulvio Mavilio
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Genethon, Evry, France
| | | | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Alessandra Recchia
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| |
Collapse
|