1
|
Ge X, Li Y, Zhao F, Ma X, Li J, Jiang Y, Cui W, Wang X, Tang L. Global prevalence of Porcine Astrovirus: A systematic review and meta-analysis. Prev Vet Med 2025; 238:106465. [PMID: 39954603 DOI: 10.1016/j.prevetmed.2025.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Porcine astrovirus (PAstV) is a widespread enteric virus in pigs, often co-infecting with other enteric viruses and contributing to diarrhea, leading to significant economic losses in the global swine industry. This study aims to identify the factors influencing PAstV prevalence by conducting a statistical meta-analysis of global data and evaluating heterogeneity across various subgroups. A systematic literature search was performed across PubMed, Web of Science, CNKI, Wanfang, and VIP databases, covering studies from the inception of the databases up to December 2023. A random-effects model was employed to estimate the global pooled prevalence of PAstV infection, and subgroup analyses were performed to evaluate the impact of different continents, years, detection methods, and sample types on the prevalence. Publication bias was assessed using a funnel plot and Egger's test. A total of 45 studies from 10 countries across three continents, involving 376 articles, were included in the meta-analysis. The global pooled prevalence of PAstV infection was found to be 28.19 % (95 % CI, 21.94 %-34.89 %). Subgroup analysis indicated significant differences in PAstV prevalence across continents, with Asia at 26.25 % (95 % CI, 25.41 %-27.09 %), Europe at 36.19 % (95 % CI, 34.09 %-38.33 %), and North America at 63.24 %. The prevalence of PAstV was highest between 2012 and 2014 (49.86 %, 95 % CI, 47.21 %-52.51 %), followed by a decreasing trend that stabilized below 30 % from 2015 to 2023. The analysis showed no significant influence of detection methods on PAstV prevalence. However, the prevalence in non-fecal samples (43.09 %, 95 % CI: 41.05 %-45.15 %) was significantly higher than in fecal samples (22.92 %, 95 % CI: 21.87 %-23.99 %). Additionally, the prevalence of PAstV in asymptomatic pigs (36.71 %, 95 % CI, 34.97 %-38.48 %) exceeded that in diarrheic pigs (28.18 %, 95 % CI, 26.94 %-29.44 %). Among different age groups, nursery pigs(6-10 weeks) exhibited the highest infection rate (63.19 %, 95 % CI, 58.45 %-67.75 %), followed by weaning pigs(3-6 weeks) (60.00 %, 95 % CI, 56.48 %-63.45 %), finisher pigs(>10 weeks) (49.89 %, 95 % CI, 46.59 %-53.19 %), sows (35.33 %, 95 % CI, 31.45 %-39.37 %), with suckling pigs(0-3 weeks) showing the lowest rate (31.93 %, 95 % CI, 30.23 %-33.68 %). This study highlights the widespread nature of PAstV infection in pig populations globally, with notable variations in prevalence across regions, years, and sample types. The high prevalence of asymptomatic infections underscores the need for enhanced PAstV surveillance and control measures.
Collapse
Affiliation(s)
- Xiaoyu Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yize Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Feipeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin'ao Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
2
|
Cui D, Li S, Yin B, Li C, Zhang L, Li Z, Huang J. Rapid Rescue of Goose Astrovirus Genome via Red/ET Assembly. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:297-306. [PMID: 38582780 DOI: 10.1007/s12560-024-09593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
The host-specific infection of Avian Astrovirus (AAstVs) has posed significant challenges to the poultry industry, resulting in substantial economic losses. However, few reports exist on the functional consequences of genome diversity, cross-species infectivity and mechanisms governing virus replication of AAstVs, making it difficult to develop measures to control astrovirus transmission. Reverse genetics technique can be used to study the function of viruses at the molecular level, as well as investigating pathogenic mechanisms and guide vaccine development and disease treatment. Herein, the reverse genetics technique of goose astrovirus GAstV/JS2019 strain was developed based on use of a reconstructed vector including CMV promotor, hammerhead ribozyme (HamRz), hepatitis delta virus ribozyme (HdvRz), and SV40 tail, then the cloned viral genome fragments were connected using Red/ET recombineering. The recombinant rGAstV-JS2019 was readily rescued by transfected the infectious clone plasmid into LMH cells. Importantly, the rescued rGAstV/JS2019 exhibited similar growth kinetics comparable to those of the parental GAstV/JS2019 isolate in cultured cells. Our research results provide an alternative and more effective reverse genetic tool for a detailed understanding of viral replication, pathogenic mechanisms, and molecular mechanisms of evolution.
Collapse
Affiliation(s)
- Daqing Cui
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Shujun Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Boxuan Yin
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Changyan Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
3
|
Horigan S, Kettenburg G, Kistler A, Ranaivoson HC, Andrianiaina A, Andry S, Raharinosy V, Randriambolamanantsoa TH, Tato CM, Lacoste V, Heraud JM, Dussart P, Brook CE. Detection, characterization, and phylogenetic analysis of novel astroviruses from endemic Malagasy fruit bats. Virol J 2024; 21:195. [PMID: 39180123 PMCID: PMC11344347 DOI: 10.1186/s12985-024-02471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Bats (order: Chiroptera) are known to host a diverse range of viruses, some of which present a human public health risk. Thorough viral surveillance is therefore essential to predict and potentially mitigate zoonotic spillover. Astroviruses (family: Astroviridae) are an understudied group of viruses with a growing amount of indirect evidence for zoonotic transfer. Astroviruses have been detected in bats with significant prevalence and diversity, suggesting that bats may act as important astrovirus hosts. Most astrovirus surveillance in wild bat hosts has, to date, been restricted to single-gene PCR detection and concomitant Sanger sequencing; additionally, many bat species and many geographic regions have not yet been surveyed for astroviruses at all. Here, we use metagenomic Next Generation Sequencing (mNGS) to detect astroviruses in three species of Madagascar fruit bats, Eidolon dupreanum, Pteropus rufus, and Rousettus madagascariensis. We detect numerous partial sequences from all three species and one near-full length astrovirus sequence from Rousettus madagascariensis, which we use to characterize the evolutionary history of astroviruses both within bats and the broader mammalian clade, Mamastrovirus. Taken together, applications of mNGS implicate bats as important astrovirus hosts and demonstrate novel patterns of bat astrovirus evolutionary history, particularly in the Southwest Indian Ocean region.
Collapse
Affiliation(s)
- Sophia Horigan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| | | | - Amy Kistler
- Chan Zuckerburg Biohub, San Francisco, CA, USA
| | - Hafaliana C Ranaivoson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Angelo Andrianiaina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Santino Andry
- Department of Entomology, University of Antananarivo, Antananarivo, Madagascar
| | | | | | | | - Vincent Lacoste
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jean-Michel Heraud
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Epidemic and Pandemic Preparedness and Prevention, Global Influenza Programme, World Health Organization, Geneva, Switzerland
| | - Philippe Dussart
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Cara E Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Zhou Y, Zhang Y, Jia W. Next-generation sequencing technology reveals the viruses carried by poultry in the live poultry market of Guangdong, China. Vet Microbiol 2024; 295:110136. [PMID: 38875877 DOI: 10.1016/j.vetmic.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to analyze the species and abundance of viruses carried by avian species in live poultry markets. In 2022, we collected 196 bird samples from two representative live poultry markets in Guangdong, China, of which 147 were randomly selected for metatranscriptome sequencing to construct a metatranscriptome library. This analysis yielded 17 viral families. Statistical analysis of the virus abundance of the six libraries showed that Picornaviridae, Retroviridae, Coronaviridae, and Othomyxoviridae were more abundant in the J1, J2, and J3 libraries, and Coronaviridae, Retroviridae, and Faviviridae were more abundant in the Y1, Y2, and E1 libraries. Finally, samples were screened using nested PCR and three viruses were identified. The positive results combined with high-throughput sequencing abundance data showed a positive correlation between virus abundance and the number of positive samples. This study provides scientific data to support the diagnosis and prevention of avian viral diseases.
Collapse
Affiliation(s)
- Yang Zhou
- National Avian Influenza Para-Reference Laboratory(Guangzhou), Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, National Local Joint Engineering Laboratory of Zoonosis Prevention and Control Agents, Key Laboratory of Zoonoses of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory for Prevention and Control of Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuxin Zhang
- National Avian Influenza Para-Reference Laboratory(Guangzhou), Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, National Local Joint Engineering Laboratory of Zoonosis Prevention and Control Agents, Key Laboratory of Zoonoses of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory for Prevention and Control of Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory(Guangzhou), Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, National Local Joint Engineering Laboratory of Zoonosis Prevention and Control Agents, Key Laboratory of Zoonoses of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory for Prevention and Control of Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Alipour F, Holmes C, Lu YY, Hill KA, Kari L. Leveraging machine learning for taxonomic classification of emerging astroviruses. Front Mol Biosci 2024; 10:1305506. [PMID: 38274100 PMCID: PMC10808839 DOI: 10.3389/fmolb.2023.1305506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Astroviruses are a family of genetically diverse viruses associated with disease in humans and birds with significant health effects and economic burdens. Astrovirus taxonomic classification includes two genera, Avastrovirus and Mamastrovirus. However, with next-generation sequencing, broader interspecies transmission has been observed necessitating a reexamination of the current host-based taxonomic classification approach. In this study, a novel taxonomic classification method is presented for emergent and as yet unclassified astroviruses, based on whole genome sequence k-mer composition in addition to host information. An optional component responsible for identifying recombinant sequences was added to the method's pipeline, to counteract the impact of genetic recombination on viral classification. The proposed three-pronged classification method consists of a supervised machine learning method, an unsupervised machine learning method, and the consideration of host species. Using this three-pronged approach, we propose genus labels for 191 as yet unclassified astrovirus genomes. Genus labels are also suggested for an additional eight as yet unclassified astrovirus genomes for which incompatibility was observed with the host species, suggesting cross-species infection. Lastly, our machine learning-based approach augmented by a principal component analysis (PCA) analysis provides evidence supporting the hypothesis of the existence of human astrovirus (HAstV) subgenus of the genus Mamastrovirus, and a goose astrovirus (GoAstV) subgenus of the genus Avastrovirus. Overall, this multipronged machine learning approach provides a fast, reliable, and scalable prediction method of taxonomic labels, able to keep pace with emerging viruses and the exponential increase in the output of modern genome sequencing technologies.
Collapse
Affiliation(s)
- Fatemeh Alipour
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Connor Holmes
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Yang Young Lu
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Kathleen A. Hill
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lila Kari
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
6
|
Kuczera K, Orłowska A, Smreczak M, Frant M, Trębas P, Rola J. Prevalence of Astroviruses in Different Animal Species in Poland. Viruses 2024; 16:80. [PMID: 38257780 PMCID: PMC10819871 DOI: 10.3390/v16010080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Astroviruses (AstVs) are small RNA viruses characterized by a high mutation rate, the ability to recombine, and interspecies transmission, which allows them to infect a multitude of hosts including humans, companion animals, and farmed animals as well as wildlife. AstVs are stable in the environment, and their transmission is usually through the fecal-oral route or via contaminated water and food. Although direct zoonotic transmission was not confirmed, interspecies transmission events have occurred or have been indicated to occur in the past between wild and domestic animals and humans. They cause large economic losses, mainly in the poultry sector, due to gastroenteritis and mortality. In young children, they are the second most common cause of diarrhea. This study involved 166 intestine samples and pools of spleen, lymph node, and kidney samples collected from 352 wild animals, 52 pigs, and 31 companion animals. Astroviruses were detected in the intestine samples and were separately detected in pools of tissue samples prepared for individual animals using a heminested RT-PCR protocol. Amplicons were subjected to Sanger sequencing, and a phylogenetic analysis of 320 nt RNA-dependent RNA polymerase (RdRp) fragments referring to known nt sequences of astroviruses was performed. Astroviral RNA was detected in the intestine samples and/or tissue pools of red foxes (nine positive intestines and six positive tissue pools), rats (two positive intestines and three positive tissue pools), a cat (one AstV detected in an intestine sample), pigs (eight positive tissue pools), and wild boars (two positive pools of spleens, kidneys, and lymph nodes). No astroviral RNA was detected in wild mustelids, dogs, or other small wild animals including rodents. A phylogenetic analysis revealed that the astroviruses detected during this study were mostly host-specific, such as porcine, canine, and rat astroviruses that were highly homologous to the sequences of reference strains. In one of two wild boars, an AstV distinct to porcine species was found with the highest nt identity to Avastroviruses, i.e., turkey astroviruses, which suggests potential cross-species transmission of the virus, as previously described. Here, we present the first detection of astroviruses in the population of wild animals, companion animals, and pigs in Poland, confirming that astroviruses are frequent pathogens circulating in animals in the field. Our study also suggests potential cross-species transmission of Avaastrovirus to wild boars; however, further molecular characterization is needed.
Collapse
Affiliation(s)
- Konrad Kuczera
- Voivodship Veterinary Inspectorate Katowice, ul. Brynowska 25a, 40-585 Katowice, Poland;
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| | - Maciej Frant
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland;
| | - Paweł Trębas
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| |
Collapse
|
7
|
Horigan S, Kistler A, Ranaivoson HC, Andrianianina A, Andry S, Kettenburg G, Raharinosy V, Randriambolamanantsoa TH, Tato CM, Lacoste V, Heraud JM, Dussart P, Brook CE. Detection, characterization, and phylogenetic analysis of a near-whole genome sequence of a novel astrovirus in an endemic Malagasy fruit bat, Rousettus madagascariensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564436. [PMID: 37961349 PMCID: PMC10635015 DOI: 10.1101/2023.10.27.564436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bats (order: Chiroptera ) are known to host a diverse range of viruses, some of which present a public health risk. Thorough viral surveillance is therefore essential to predict and potentially mitigate zoonotic spillover. Astroviruses (family: Astroviridae ) are an understudied group of viruses with a growing amount of indirect evidence for zoonotic transfer. Astroviruses have been detected in bats with significant prevalence and diversity, suggesting that bats may act as important astrovirus hosts. Most astrovirus surveillance in wild bat hosts has, to date, been restricted to single-gene PCR detection and concomitant Sanger sequencing; additionally, many bat species and many geographic regions have not yet been surveyed for astroviruses at all. Here, we use metagenomic Next Generation Sequencing (mNGS) to detect astroviruses in three species of Madagascar fruit bats, Eidolon dupreanum, Pteropus rufus, and Rousettus madagascariensis . We detect numerous partial sequences from all three species and one near-full length astrovirus sequence from Rousettus madagascariensis , which we use to characterize the evolutionary history of astroviruses both within bats and the broader mammalian clade, Mamastrovirus . Taken together, applications of mNGS implicate bats as important astrovirus hosts and demonstrate novel patterns of bat astrovirus evolutionary history, particularly in the Southwest Indian Ocean region.
Collapse
|
8
|
Diakoudi G, Buonavoglia A, Pellegrini F, Capozza P, Vasinioti VI, Cardone R, Catella C, Camero M, Parisi A, Capozzi L, Mendoza-Roldan JA, Otranto D, Bànyai K, Martella V, Lanave G. Identification of new astroviruses in synanthropic squamates. Res Vet Sci 2023; 161:103-109. [PMID: 37331242 DOI: 10.1016/j.rvsc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Astroviruses have been identified in a wide variety of animal species and are associated with gastro-intestinal disease in humans. Pathologies due to extra-intestinal localization are known in different hosts. We report the detection of astroviruses in synanthropic squamate reptile species (Podercis siculus and Tarentola mauritanica). Fecal samples were collected from 100 squamates from urban and peri-urban areas of three regions in South Italy and tested for the presence of astroviruses using a broadly reactive (pan-astrovirus) RT-PCR protocol targeting the RNA-dependent RNA polymerase. Astrovirus RNA was detected in 11% of the samples and for six strains a 3 kb-long fragment at the 3' end of the genome was sequenced, obtaining information on the complete capsid-encoding ORF2 sequence. Viral RNA was also detected in the brain of one of the positive animals. The sequences generated from the astrovirus strains shared low nucleotide identities in the ORF2 (< 43.7%) with other known reptilian astrovirus sequences, hinting to the massive genetic diversity of members of this viral family. Based on the partial RdRp gene of the sequenced strains, however, we observed species-specific patterns, regardless of the geographic origin of the animals, and we also identified a possible inter-species transmission event between geckoes and lizards.
Collapse
Affiliation(s)
- Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | | | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Roberta Cardone
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Putignano, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Putignano, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Krisztián Bànyai
- Veterinary Medical Research Institute, Budapest, Hungary; University of Veterinary Medicine, Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| |
Collapse
|
9
|
Qureshi MI, Worthington BM, Liu Y, Cheung WYM, Su S, Zheng Z, Li L, Lam TTY, Guan Y, Zhu H. Discovery of novel Mamastroviruses in Bactrian camels and dromedaries reveals complex recombination history. Virus Evol 2023; 9:veac125. [PMID: 36694817 PMCID: PMC9869654 DOI: 10.1093/ve/veac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Virus emergence may occur through interspecies transmission and recombination of viruses coinfecting a host, with potential to pair novel and adaptive gene combinations. Camels are known to harbor diverse ribonucleic acid viruses with zoonotic and epizootic potential. Among them, astroviruses are of particular interest due to their cross-species transmission potential and endemicity in diverse host species, including humans. We conducted a molecular epidemiological survey of astroviruses in dromedaries from Saudi Arabia and Bactrian camels from Inner Mongolia, China. Herein, we deployed a hybrid sequencing approach coupling deep sequencing with rapid amplification of complementary deoxyribonucleic acid ends to characterize two novel Bactrian and eight dromedary camel astroviruses, including both partial and complete genomes. Our reported sequences expand the known diversity of dromedary camel astroviruses, highlighting potential recombination events among the astroviruses of camelids and other host species. In Bactrian camels, we detected partially conserved gene regions bearing resemblance to human astrovirus types 1, 4, and 8 although we were unable to recover complete reading frames from these samples. Continued surveillance of astroviruses in camelids, particularly Bactrian species and associated livestock, is highly recommended to identify patterns of cross-species transmission and to determine any epizootic threats and zoonotic risks posed to humans. Phylogenomic approaches are needed to investigate complex patterns of recombination among the astroviruses and to infer their evolutionary history across diverse host species.
Collapse
Affiliation(s)
| | | | - Yongmei Liu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, Lab Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR 000, China,Exploration, Knowledge, Intelligence and Health, Gewuzhikang (EKIH) Pathogen Research Institute, 13/F, Building 3, 3 Binglang Road, Futian District, Shenzhen, Guangdong 518045, China
| | | | - Shuo Su
- Ministry of Education (MOE), Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunity, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Zuoyi Zheng
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
| | - Lifeng Li
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, Lab Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR 000, China,Exploration, Knowledge, Intelligence and Health, Gewuzhikang (EKIH) Pathogen Research Institute, 13/F, Building 3, 3 Binglang Road, Futian District, Shenzhen, Guangdong 518045, China
| | - Tommy T -Y Lam
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, Lab Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR 000, China,Exploration, Knowledge, Intelligence and Health, Gewuzhikang (EKIH) Pathogen Research Institute, 13/F, Building 3, 3 Binglang Road, Futian District, Shenzhen, Guangdong 518045, China,Laboratory of Data Discovery for Health Limited, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR 000, China
| | - Yi Guan
- *Corresponding author: E-mail: ;
| | | |
Collapse
|
10
|
A Review of Emerging Goose Astrovirus Causing Gout. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1635373. [PMID: 36072471 PMCID: PMC9441354 DOI: 10.1155/2022/1635373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
In recent years, an infection in geese caused by goose astrovirus (GAstV) has repeatedly occurred in coastal areas of China and rapidly spread to inland provinces. The infection is characterized by joint and visceral gout and is fatal. The disease has caused huge economic losses to China's goose industry. GAstV is a nonenveloped, single-stranded, positive-sense RNA virus. As it is a novel virus, there is no specific classification. Here, we review the current understanding of GAstV. The virus structure, isolation, diagnosis and detection, innate immune regulation, and transmission route are discussed. In addition, since GAstV can cause gout in goslings, the possible role of GAstV in gout formation and uric acid metabolism is discussed. We hope that this review will inform researchers to rapidly develop effective methods to prevent and treat this disease.
Collapse
|
11
|
Raji AA, Omar AR. Pathogenesis of Chicken Astrovirus Related Illnesses. Front Vet Sci 2022; 9:899901. [PMID: 35754540 PMCID: PMC9231584 DOI: 10.3389/fvets.2022.899901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Of the several known viruses, chicken astrovirus (CAstV) has been associated with diarrhea, runting-stunting syndrome, severe kidney disease, and gout, and white chick syndrome (WCS) in young broiler chicks. Discovered in 2004, CAstV consists of two genogroups with an expanding subgroup because of the diversity exhibited in its viral capsid sequence. Despite these findings, there exists a dearth of knowledge on its pathogenesis. This review highlights the pathogenesis and development of in vivo and in vitro models.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience and Department of Veterinary pathology and Microbiology Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
12
|
Zhang P, Su H, Peng R, Chan JFW, Bai S, Wang G, Huang Y, Hu X, Luo J, Liu S, Li Y, Xue L, Yang F, Zhao M, Zhang Y, Tang C, Shen S, Cui X, Niu L, Lu G, Yuen KY, Deng F, Zhang W, Yin F, Du J. Identification of a Novel Astrovirus in Pinnipeds. Front Microbiol 2022; 13:845601. [PMID: 35602043 PMCID: PMC9116510 DOI: 10.3389/fmicb.2022.845601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Astroviruses infect human and animals and cause diarrhea, fever, and vomiting. In severe cases, these infections may be fatal in infants and juvenile animals. Previous evidence showed that humans in contact with infected animals can develop serological responses to astroviruses. Mamastrovirus 11 is a species of Mamastrovirus and was first reported in 2018. It was detected in the fecal samples of a California sea lion. The genome sequence of its capsid protein (CP) was submitted to GenBank. However, the genome sequence of its non-structural protein region was not elucidated. In the present study, we characterized the genome sequences of the novel astroviruses AstroV-HMU-1 and AstroV-like-HMU-2. These were obtained from California sea lions (Zalophus californianus) and walruses (Odobenus rosmarus) presenting with loose stools. A phylogenetic analysis revealed that the CP of AstroV-HMU-1 closely clustered with Mamastrovirus 11 while its RNA-dependent RNA polymerase (RdRp) and serine protease (SP) were closely related to the mink astrovirus in the genus Mamastrovirus. The genome of AstroV-HMU-1 provided basic information regarding the NS protein regions of Mamastrovirus 11. Recombination analyses showed that the genomes of Z. californianus AstroV-HMU-1, VA2/human and the mink astrovirus may have recombined long ago. The NS of AstroV-like-HMU-2 segregated from the Astroviridae in the deep root of the phylogenetic tree and exhibited 36% amino acid identity with other mamastroviruses. Thus, AstroV-like-HMU-2 was proposed as a member of a new genus in the unclassified Astroviridae. The present study suggested that that the loose stools of pinnipeds may be the result of occasional infection by this novel astrovirus. This discovery provides a scientific basis for future investigations into other animal-borne infectious diseases.
Collapse
Affiliation(s)
- Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyan Peng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Jasper Fuk-Woo Chan
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shijie Bai
- Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Gaoyu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Yi Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Xiaoyuan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Jun Luo
- Dalian Sunasia Tourism Holding Co., Ltd., Dalian, China
| | - Sisi Liu
- Qingdao Polar Haichang Ocean Park, Qingdao, China
| | - Youyou Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Liying Xue
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingming Zhao
- TCM School of Hainan Medical University, Haikou, China
| | - Yun Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Chuanning Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiuji Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Kwok-Yung Yuen
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weijia Zhang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
13
|
Fei Z, Jiao A, Xu M, Wu J, Wang Y, Yu J, Lu L, Jiang W, Zhu G, Sun W, Chen Z, Zhang Y, Ren S, Liu F, Zhang L. Genetic diversity and evolution of goose astrovirus in the east of China. Transbound Emerg Dis 2022; 69:e2059-e2072. [PMID: 35384346 DOI: 10.1111/tbed.14542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Goose astrovirus (GAstV), an agent of fatal visceral gout in goslings, has been widely circulating in eastern China since 2017, but little is known about its genetic diversity and systematic evolution. In this study, we isolated and sequenced nine nearly full-length GAstV genomes and conducted comprehensive genetic diversity and evolutionary analysis and compared them with other reported GAstV sequences. Our results indicated that two genotypic species of GAstV were circulating in China, and GAstV-2 subgenotype II-c had arisen as the dominant genotype in Shandong province and across the whole country. Multiple alignment of GAstV amino acid sequences revealed several characteristic mutations in GAstV-2 II-c strains, as well as additional residues in the nine new isolates which varied over time. Phylogenetic analysis of three open reading frames demonstrated different evolutionary histories. Evidence of natural recombination was also detected in GAstV, with most of the recombination occurring in the GAstV-2 II-c subgenotype. Molecular adaptation analyses revealed that the evolution of GAstV was shaped by strong negative selection, although a number of amino acids, which potentially affect host infection and cell entry, were subjected to positive pressure. Overall, these findings improve our understanding of the epidemiology and evolution of GAstV and may help in the development of vaccines and diagnostics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhiguo Fei
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Anqi Jiao
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Minli Xu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China.,College of Life Sciences, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong, China
| | - Yu Wang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Jiang Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Lu Lu
- Emerging Economic Formats Research Institute, Shandong Management University, 3500 Dingxiang Road, Jinan, Shandong, China
| | - Wanchun Jiang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199 Guangming South Street, Handan, Hebei, China
| | - Gaungwei Zhu
- Qilu Normal University, 2 Wenbo Road, Jinan, Shandong, China
| | - Wenbo Sun
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Zhi Chen
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Sufang Ren
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Fei Liu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| |
Collapse
|
14
|
Sajewicz-Krukowska J, Jastrzębski JP, Grzybek M, Domańska-Blicharz K, Tarasiuk K, Marzec-Kotarska B. Transcriptome Sequencing of the Spleen Reveals Antiviral Response Genes in Chickens Infected with CAstV. Viruses 2021; 13:2374. [PMID: 34960643 PMCID: PMC8708055 DOI: 10.3390/v13122374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Astrovirus infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as a decreased egg production, breeding disorders, poor weight gain, and even increased mortality. The commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for the "white chicks syndrome" associated with an increased embryo/chick mortality. CAstV-mediated pathogenesis in chickens occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding possible changes in gene expression in the chicken spleen in response to CAstV infection. We aim to investigate changes in gene expression triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of five birds each. One group was inoculated with CAstV, and the other used as the negative control. At 4 days post infection, spleen samples were collected and immediately frozen at -70 °C for RNA isolation. We analyzed the isolated RNA, using RNA-seq to generate transcriptional profiles of the chickens' spleens and identify differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative reverse-transcription PCR (qRT-PCR). A total of 31,959 genes was identified in response to CAstV infection. Eventually, 45 DEGs (p-value < 0.05; log2 fold change > 1) were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on four genes (IFIT5, OASL, RASD1, and DDX60) confirmed the RNA-seq results. The most differentially expressed genes encode putative IFN-induced CAstV restriction factors. Most DEGs were associated with the RIG-I-like signaling pathway or more generally with an innate antiviral response (upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, and IFI6; downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, and YWHAB). The study provides a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proves that, in the spleen, CAstV infection in chickens predominantly affects the cell cycle and immune signaling.
Collapse
Affiliation(s)
- Joanna Sajewicz-Krukowska
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland;
| | - Katarzyna Domańska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Barbara Marzec-Kotarska
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
15
|
Roach SN, Langlois RA. Intra- and Cross-Species Transmission of Astroviruses. Viruses 2021; 13:v13061127. [PMID: 34208242 PMCID: PMC8230745 DOI: 10.3390/v13061127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Astroviruses are non-enveloped, single-stranded RNA viruses that infect mammalian and avian species. In humans, astrovirus infections are one of the most common causes of gastroenteritis in children. Infection has also been linked to serious neurological complications, especially in immunocompromised individuals. More extensive disease has also been characterized in non-human mammalian and avian species. To date, astroviruses have been detected in over 80 different avian and mammalian hosts. As the number of hosts continues to rise, the need to understand how astroviruses transmit within a given species as well as to new host species becomes increasingly important. Here, we review the current understanding of astrovirus transmission, the factors that influence viral spread, and the potential for cross-species transmission. Additionally, we highlight the current gaps in knowledge and areas of future research that will be key to understanding astrovirus transmission and zoonotic potential.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
16
|
Human Astrovirus 1-8 Seroprevalence Evaluation in a United States Adult Population. Viruses 2021; 13:v13060979. [PMID: 34070419 PMCID: PMC8229645 DOI: 10.3390/v13060979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Human astroviruses are an important cause of viral gastroenteritis globally, yet few studies have investigated the serostatus of adults to establish rates of previous infection. Here, we applied biolayer interferometry immunosorbent assay (BLI-ISA), a recently developed serosurveillance technique, to measure the presence of blood plasma IgG antibodies directed towards the human astrovirus capsid spikes from serotypes 1-8 in a cross-sectional sample of a United States adult population. The seroprevalence rates of IgG antibodies were 73% for human astrovirus serotype 1, 62% for serotype 3, 52% for serotype 4, 29% for serotype 5, 27% for serotype 8, 22% for serotype 2, 8% for serotype 6, and 8% for serotype 7. Notably, seroprevalence rates for capsid spike antigens correlate with neutralizing antibody rates determined previously. This work is the first seroprevalence study evaluating all eight classical human astrovirus serotypes.
Collapse
|
17
|
Jakubczak A, Kowalczyk M, Mazurkiewicz I, Kondracki M. Detection of mink astrovirus in Poland and further phylogenetic comparison with other European and Canadian astroviruses. Virus Genes 2021; 57:258-265. [PMID: 33860418 PMCID: PMC8164600 DOI: 10.1007/s11262-021-01834-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Mink astrovirus infection remains a poorly understood disease entity, and the aetiological agent itself causes disease with a heterogeneous course, including gastrointestinal and neurological symptoms. This paper presents cases of astrovirus infection in mink from continental Europe. RNA was isolated from the brains and intestines of animals showing symptoms typical of shaking mink syndrome (n = 6). RT-PCR was used to amplify astrovirus genetic material, and the reaction products were separated on a 1% agarose gel. The specificity of the reaction was confirmed by sequencing fragment coding RdRP protein (length of sequencing product 170 bp) from all samples. The presence of astrovirus RNA was detected in each of the samples tested. Sequencing and bioinformatic analysis indicated the presence of the same variant of the virus in all samples. Comparison of the variant with the sequences available in bioinformatics databases confirmed that the Polish isolates form a separate clade, closely related to Danish isolates. The dissimilarity of the Polish variant to those isolated in other countries ranged from 2.4% (in relation to Danish isolates) to 7.1% (in relation to Canadian isolates). Phylogenetic relationships between variants appear to be associated with the geographic distances between them. To our knowledge, this work describes the first results on the molecular epidemiology of MAstV in continental Europe. The detection of MAstV in Central Europe indicates the need for further research to broaden our understanding of the molecular epidemiology of MAstV in Europe.
Collapse
Affiliation(s)
- Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland.
| | - Marek Kowalczyk
- Institute of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Ilona Mazurkiewicz
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Marcin Kondracki
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
18
|
Zhang X, Deng T, Song Y, Liu J, Jiang Z, Peng Z, Guo Y, Yang L, Qiao H, Xia Y, Li X, Wang Z, Bian C. Identification and genomic characterization of emerging goose astrovirus in central China, 2020. Transbound Emerg Dis 2021; 69:1046-1055. [PMID: 33687791 DOI: 10.1111/tbed.14060] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023]
Abstract
Astroviruses are a non-enveloped virus with large host range breadth. AstV-associated gastroenteritis in human and animal, nephritis in chicken, gout in gosling and hepatitis in duckling pose great threats to public health and poultry industry. Since early 2020, continuous emergence of fatal goose astrovirus (GAstV) infections characterized by articular and visceral gout was reported in China. Here, we described two outbreaks of emerging gout disease in two different goose farms of central China. Two virulent GAstV strains, designated as HNKF-1/China/2020 and HNSQ-6/China/2020, were isolated, and the fifth passage of the isolates could cause urate crystals accumulated in the allantoic fluid and even deposited around great vessels and embryo bodies. Meanwhile, the source of these GAstV outbreaks was tracked to goose hatcheries. The prevalence of GAstV in the goose embryos with hatch failure was confirmed, and embryo-origin HNXX-6/China/2020 was further isolated. The complete genome of these three newly isolates was then sequenced and analysed. The results showed that Chinese GAstVs have formed two distinct groups, and the three GAstV isolates, as well as most of the Chinese GAstVs, belong to the G-I group. There are several amino acid mutations in the three newly identified GAstVs, such as A520T, S535R, V555I and A782T in ORF1a and Q229P in ORF2, suggesting the field stains, HNKF-1/China/2020 and HNSQ-6/China/2020, might derive from the weak goose embryo via vertical transmission. Moreover, the phylogenetic analysis of the complete viral genome and individual viral proteins revealed that Chinese GAstV strains have been constantly evolving towards more complicated and various directions. Our study reported the recently emerging GAstV outbreaks in central China, and further analysed the genetic characteristics of three virulent G-I GAstV isolates from commercial goose farms and goose hatchery, indicating the diverse transmission of the virus and providing a basis for developing effective preventive measures and control strategies.
Collapse
Affiliation(s)
- Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tongwei Deng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yuzhen Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jian Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yiwen Guo
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yanxun Xia
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinzheng Li
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
19
|
Nadan S, Taylor MB, Page NA. Circulation of classic and recombinant human astroviruses detected in South Africa: 2009 to 2014. J Clin Virol 2020; 135:104719. [PMID: 33388529 DOI: 10.1016/j.jcv.2020.104719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Astroviruses (AstVs) are associated with diarrhoeal and extra-intestinal infections in human, animal and avian species. A prevalence of 7% was reported in selected regions in SA while AstVs detected from clinical stool specimens were almost identical phylogenetically to strains identified in environmental and water samples. This study investigated the molecular diversity of astroviruses circulating between 2009 and 2014 in South Africa (SA). METHODS Astroviruses detected in stool specimens collected from hospitalised children were investigated retrospectively. Astroviruses were characterised using type-specific RT-PCR, partial nucleotide sequence analyses in ORF1 and ORF2 and whole genome sequencing. Different genotypes were compared with clinical features to investigate genotype-related associations. The Vesikari severity scale (VSS) was evaluated for scoring astrovirus diarrhoeal infections. RESULTS Of 405 astroviruses detected, 49.9 % (202/405) were characterised into 32 genotypes comprising 66.3 % (134/202) putative-recombinants and 33.7 % (68/202) classic strains. No trends by year of collection, age or site were observed. Whole genome analysis in eight strains revealed that genotypes assigned by partial nucleotide sequence analyses to five astroviruses were incorrect. Bivariate analyses showed there were no significant associations between genotypes and clinical symptoms or severity of infection. A comparison of Vesikari parameters with astrovirus-positive proxy values demonstrated that Vesikari scores for duration of diarrhoea and admission temperatures would result in a milder infection rating in astrovirus-positive cases. CONCLUSIONS Diverse genotypes co-circulated with putative-recombinants predominating. Astrovirus classification was complicated by the lack of a consistent characterisation system and reliable reference database. The VSS should be used cautiously to rate astrovirus diarrhoea. While surveillance in communities and out-patient clinics must be continued, screening for human astroviruses in alternate hosts is needed to determine the reservoir species.
Collapse
Affiliation(s)
- Sandrama Nadan
- Centre for Enteric Diseases, National Institute for Communicable Disease, Private Bag X4, Sandringham, 2131, South Africa.
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, 0031, South Africa; National Health Laboratory Services, Tshwane Academic Division, Pretoria, South Africa
| | - Nicola A Page
- Centre for Enteric Diseases, National Institute for Communicable Disease, Private Bag X4, Sandringham, 2131, South Africa; Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, 0031, South Africa
| |
Collapse
|
20
|
He D, Yang J, Jiang X, Lin Y, Chen H, Tang Y, Diao Y. A quantitative loop-mediated isothermal amplification assay for detecting a novel goose astrovirus. Poult Sci 2020; 99:6586-6592. [PMID: 33248574 PMCID: PMC7705033 DOI: 10.1016/j.psj.2020.09.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
In November 2017, a severe infectious disease that devastated the major goose-producing regions in China was found to be caused by a novel goose astrovirus (N-AstV). The objective of this study was to develop a quantitative loop-mediated isothermal amplification (qLAMP) assay for the rapid diagnosis of N-AstV characterized with gout, hemorrhage, and swellings of the kidneys. A set of 4 specific primers, 2 inner and 2 outer primers, targeting the ORF1a gene of N-AstV were designed for the assay which could be completed within 60 min at 65°C in a water bath or on a real-time PCR instrument for quantitative analysis. The qLAMP assay showed a high sensitivity with a detection limit of 1 × 101 copies of the target DNA/μL. There were no cross-reactions with other viruses, and the reproducibility of the assay was confirmed in intrasensitivity and intersensitivity assay tests with variability ranging from 0.61 to 2.21%. The results indicated that the qLAMP assay for N-AstV was a simple, accurate, rapid, sensitive, and specific, especially useful for field detection.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Yun Lin
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Hao Chen
- College of Life Science, Qufu Normal University, Qufu, Shandong Province, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| |
Collapse
|
21
|
Zhang R, Lan J, Li H, Chen J, Yang Y, Lin S, Xie Z, Jiang S. A novel method to rescue and culture duck Astrovirus type 1 in vitro. Virol J 2019; 16:112. [PMID: 31488178 PMCID: PMC6729042 DOI: 10.1186/s12985-019-1218-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/02/2019] [Indexed: 01/10/2023] Open
Abstract
Background Reverse genetics systems enable the manipulation of viral genomes and therefore serve as robust reverse genetic tools to study RNA viruses. A DNA-launched rescue system initiates the transcription of viral genomic cDNA from eukaryotic promoter in transfected cells, generating homogenous RNA transcripts in vitro and thus enhancing virus rescue efficiency. As one of the hazardous pathogens to ducklings, the current knowledge of the pathogenesis of duck astrovirus type 1 (DAstV-1) is limited. The construction of a DNA-launched rescue system can help to accelerate the study of the virus pathogenesis. However, there is no report of such a system for DAstV-1. Methods In this study, a DNA-launched infectious clone of DAstV-1 was constructed from a cDNA plasmid, which contains a viral cDNA sequence flanked by hammerhead ribozyme (HamRz) and a hepatitis delta virus ribozyme (HdvRz) sequence at both terminals of the viral genome. A silent nucleotide mutation creating a Bgl II site in the ORF2 gene was made to distinguish the rescued virus (rDAstV-1) from the parental virus (pDAstV-1). Immunofluorescence assay (IFA) and western blot were conducted for rescued virus identification in duck embryo fibroblast (DEF) cells pre-treated with trypsin. The growth characteristics of rDAstV-1 and pDAstV-1 in DEF cells and the tissue tropism in 2-day-old ducklings of rDAstV-1 and pDAstV-1 were determined. Results The infectious DAstV-1 was successfully rescued from baby hamster kidney (BHK-21) cells and could propagate in DEF cells pre-treated with 1 μg/ml trypsin. Upon infection of DEF cells pre-treated with trypsin, DAstV-1 mRNA copies were identified after serial passaging, and the result showed that rDAstV-1 and pDAstV-1 shared similar replication kinetics. Animal experiment showed that the rDAstV-1 had an extensive tissue tropism, and the virus was capable of invading both the central and the peripheral immune organs in infected ducklings. Conclusions An improved DNA-launched reverse genetics system for DAstV-1 was firstly constructed. Infectious virus recovered from BHK-21 cells could propagate in DEF cells pre-treated with trypsin. This is the first report of the successful in vitro cultivation of DAstV-1. We believe this valuable experimental system will contribute to the further study of DAstV-1 genome function and pathogenesis.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Jingjing Lan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Haie Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Junhao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Yupeng Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Shaoli Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China.
| |
Collapse
|
22
|
Xin YY, Li LL, Ao YY, Xie ZP, Li JS, Duan ZJ, Yu JM, Zhang B. A novel astrovirus identified in wild rhesus monkey feces in China. Arch Virol 2019; 164:2385-2388. [PMID: 31209596 DOI: 10.1007/s00705-019-04319-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 11/28/2022]
Abstract
The discovery and analysis of pathogens carried by non-human primates are important for understanding zoonotic infections in humans. We identified a highly divergent astrovirus (AstV) from fecal matter from a rhesus monkey in China, which has been tentatively named "monkey-feces-associated AstV" (MkAstV). The full-length genome of MkAstV was determined to be 7377 nt in length. It exhibits the standard genomic AstV organization of three open reading frames (ORFs) and is most closely related to duck AstV (28%, 49%, and 35% amino acid sequence identity in ORF1a, ORF1b, and ORF2, respectively). Coincidentally, while this report was being prepared, an astrovirus sequence from Hainan black-spectacled toad became available in the GenBank database, showing 95%, 94% and 92% aa sequence identity in ORF1a, ORF1b and ORF2, respectively, to the corresponding ORFs of MkAstV. Phylogenetic analysis of ORF1a, ORF1b, and ORF2 indicated that MkAstV and the amphibian-related astroviruses formed an independent cluster in the genus Avastrovirus. The host of MkAstV remains unknown. Epidemiological and serological studies of this novel virus should be undertaken in primates, including humans.
Collapse
Affiliation(s)
- Yun-Yun Xin
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China.,Hunan Provincial People's Hospital, Changsha, 410000, Hunan, China
| | - Li-Li Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Yuan-Yun Ao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Zhi-Ping Xie
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Jin-Song Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Jie-Mei Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China.
| | - Bing Zhang
- Hunan Provincial People's Hospital, Changsha, 410000, Hunan, China.
| |
Collapse
|
23
|
Astrovirus and the microbiome. Curr Opin Virol 2019; 37:10-15. [PMID: 31163291 DOI: 10.1016/j.coviro.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Although astroviruses are most commonly associated with acute gastrointestinal illness in humans, their ability to infect a broad range of hosts and cause a spectrum of disease makes them widespread and complex pathogens. The precise mechanisms that dictate the course of astrovirus disease have not been studied extensively but are likely driven by multifactorial host-microbe interactions. Recent insights from studies of animal astrovirus infections have revealed both beneficial and detrimental effects for the host. However, further in-depth studies are needed to fully explore the consequences of astrovirus-induced changes in the gut microenvironment as well as the role of the microbiota in astrovirus infection.
Collapse
|
24
|
Wohlgemuth N, Honce R, Schultz-Cherry S. Astrovirus evolution and emergence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:30-37. [PMID: 30639546 PMCID: PMC7106029 DOI: 10.1016/j.meegid.2019.01.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Astroviruses are small, non-enveloped, positive-sense, single-stranded RNA viruses that belong to the Astroviridae family. Astroviruses infect diverse hosts and are typically associated with gastrointestinal illness; although disease can range from asymptomatic to encephalitis depending on the host and viral genotype. Astroviruses have high genetic variability due to an error prone polymerase and frequent recombination events between strains. Once thought to be species specific, recent evidence suggests astroviruses can spread between different host species, although the frequency with which this occurs and the restrictions that regulate the process are unknown. Recombination events can lead to drastic evolutionary changes and contribute to cross-species transmission events. This work reviews the current state of research on astrovirus evolution and emergence, especially as it relates to cross-species transmission and recombination of astroviruses.
Collapse
Affiliation(s)
- Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
25
|
Isolation and characterization of an astrovirus causing fatal visceral gout in domestic goslings. Emerg Microbes Infect 2018; 7:71. [PMID: 29674726 PMCID: PMC5908792 DOI: 10.1038/s41426-018-0074-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/26/2018] [Accepted: 03/17/2018] [Indexed: 11/09/2022]
Abstract
Astroviruses are recognized as a leading cause of gastroenteritis in humans and animals. They are also associated with extra-intestinal diseases, such as hepatitis in ducklings, nephritis in chickens, and encephalitis in cattle. In February 2017, a fatal infection of goslings characterized by visceral urate deposition was reported in the Shandong province, China. Our systematic investigation led to the isolation of an astrovirus, designated AAstV/Goose/CHN/2017/SD01, and similar disease was reproduced by experimental infection of healthy goslings, fulfilling Koch's postulates. The isolated astrovirus replicated well and resulted in 100% mortality of goose embryos. Complete genome sequence analysis revealed that the isolate was genetically distinct from known astroviruses and closely related to members of the avastrovirus genogroup II. Experimental infection showed that the isolate was highly pathogenic in goslings, causing clinical signs, growth repression and in many cases mortality. Histopathological examination indicated that lesions occurred mainly in the kidneys of infected birds. However, virus-specific genomic RNA was detected in all representative tissues, and virus shedding was detected up to 12 days after inoculation, suggesting that the isolate was able to spread systemically and replicate efficiently in vivo. Collectively, our study demonstrates, for the first time, the etiological role of a genetically distinct astrovirus in the fatal infection of goslings.
Collapse
|
26
|
Construction of a reverse genetic system for porcine astrovirus. Arch Virol 2018; 163:1511-1518. [DOI: 10.1007/s00705-018-3771-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
|
27
|
Boujon CL, Koch MC, Seuberlich T. The Expanding Field of Mammalian Astroviruses: Opportunities and Challenges in Clinical Virology. Adv Virus Res 2017; 99:109-137. [PMID: 29029723 DOI: 10.1016/bs.aivir.2017.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astroviruses are best known as being one of the leading causes of diarrhea in infants and were first described in this context in 1975. In its first years, astrovirus research was mainly restricted to electron microscopy and serology studies. The ability to culture some of these viruses in vitro allowed a first consequent step forward, especially at the molecular level. Since the emergence of more powerful genetic methods, though, the face of this research field has dramatically changed and evolved. From the exponential number of discoveries of new astrovirus strains in the most varied of animal species to their association with atypical diseases, these viruses revealed a lot of surprises, and many more are probably still waiting to be uncovered. This chapter summarizes the most important knowledge about astroviruses and discusses the implication of the latest findings in this area of research.
Collapse
|
28
|
Agunos A, Pierson FW, Lungu B, Dunn PA, Tablante N. Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases. Avian Dis 2017; 60:553-75. [PMID: 27610715 DOI: 10.1637/11413-032416-review.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and significant public health consequences; however, epidemiologic reports have only documented severe human cases clustered in Asia and not in North America. In contrast, avian Chlamydia and MRSA reports clustered mainly in Europe and less so in North America and other regions. Knowledge gaps in other zoonoses or other agents were identified, including potential direct (i.e., nonmosquito-borne) transmission of WNV from flocks to poultry workers, the public health and clinical significance of poultry-derived (livestock-associated) MRSA, the zoonotic significance of other viruses, and the role of poultry allergens in the pathophysiology of respiratory diseases of poultry workers. Across all pathogens reviewed, the use of personal protective equipment was commonly cited as the most important preventive measure to reduce the zoonotic spread of these diseases and the use of biosecurity measures to reduce horizontal transmission in flock populations. The studies also emphasized the need for flock monitoring and an integrated approach to prevention (i.e., veterinary-public health coordination with regard to diagnosis, and knowledge translation and education in the general population) to reduce zoonotic transmission.
Collapse
Affiliation(s)
- Agnes Agunos
- A Public Health Agency of Canada, Guelph, Ontario, Canada N1G5B2
| | - F William Pierson
- B Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Bwalya Lungu
- C Department of Food Science and Technology, University of California, Davis, CA 95616
| | - Patricia A Dunn
- D Animal Diagnostic Laboratory (PADLS-PSU), Pennsylvania State University, University Park, PA 16802
| | - Nathaniel Tablante
- E Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20740
| |
Collapse
|
29
|
Cortez V, Meliopoulos VA, Karlsson EA, Hargest V, Johnson C, Schultz-Cherry S. Astrovirus Biology and Pathogenesis. Annu Rev Virol 2017; 4:327-348. [PMID: 28715976 DOI: 10.1146/annurev-virology-101416-041742] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astroviruses are nonenveloped, positive-sense single-stranded RNA viruses that cause gastrointestinal illness. Although a leading cause of pediatric diarrhea, human astroviruses are among the least characterized enteric RNA viruses. However, by using in vitro methods and animal models to characterize virus-host interactions, researchers have discovered several important properties of astroviruses, including the ability of the astrovirus capsid to act as an enterotoxin, disrupting the gut epithelial barrier. Improved animal models are needed to study this phenomenon, along with the pathogenesis of astroviruses, particularly in those strains that can cause extraintestinal disease. Much like for other enteric viruses, the current dogma states that astroviruses infect in a species-specific manner; however, this assumption is being challenged by growing evidence that these viruses have potential to cross species barriers. This review summarizes these remarkable facets of astrovirus biology, highlighting critical steps toward increasing our understanding of this unique enteric pathogen.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , , .,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Cydney Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| |
Collapse
|
30
|
Donato C, Vijaykrishna D. The Broad Host Range and Genetic Diversity of Mammalian and Avian Astroviruses. Viruses 2017; 9:v9050102. [PMID: 28489047 PMCID: PMC5454415 DOI: 10.3390/v9050102] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023] Open
Abstract
Astroviruses are a diverse family of viruses that infect a wide range of mammalian and avian hosts. Here we describe the phylogenetic diversity and current classification methodology of astroviruses based on the ORF1b and ORF2 genes, highlighting the propensity of astroviruses to undergo interspecies transmission and genetic recombination which greatly increase diversity and complicate attempts at a unified and comprehensive classification strategy.
Collapse
Affiliation(s)
- Celeste Donato
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Dhanasekaran Vijaykrishna
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Duke-NUS Medical School, Singapore 169857, Singapore.
| |
Collapse
|
31
|
Xue J, Han T, Xu M, Zhao J, Zhang G. The first serological investigation of Chicken astrovirus infection in China. Biologicals 2017; 47:22-24. [PMID: 28347631 DOI: 10.1016/j.biologicals.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/16/2022] Open
Abstract
Chicken astrovirus (CAstV) is associated with 'white chick' syndrome, which increases embryo mortality and reduces hatchability in chickens. In the present study, 1760 sera were collected from 21 provinces in China to detect antibodies directed against CAstV with an ELISA. The sera were from different varieties of chicken in 85 flocks and all the flocks produced positive reactions. The overall seroprevalence in the birds tested was 60.68%. The prevalence increased from 34.17% to 74.44% with the increase of age. The positivity rates in layer flocks, layer parent flocks, broiler flocks, broiler parent flocks, and domestic chicken flocks were 70.17%, 89.00%, 31.67%, 59.05%, and 45.79%, respectively. These data indicate that CAstV infections are very common in China. This is the first report of the seroprevalence of CAstV infections in China.
Collapse
Affiliation(s)
- Jia Xue
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Tao Han
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China; Beijing TianTech Co., Ltd, 100085 Beijing, China
| | - Meiyu Xu
- Diagnostic & Research Center of Livestock and Poultry Epidemic Diseases, China Agricultural University, 100193 Beijing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China; Diagnostic & Research Center of Livestock and Poultry Epidemic Diseases, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
32
|
Vu DL, Bosch A, Pintó RM, Guix S. Epidemiology of Classic and Novel Human Astrovirus: Gastroenteritis and Beyond. Viruses 2017; 9:v9020033. [PMID: 28218712 PMCID: PMC5332952 DOI: 10.3390/v9020033] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Since they were identified in 1975, human astroviruses have been considered one of the most important agents of viral acute gastroenteritis in children. However, highly divergent astroviruses infecting humans have been recently discovered and associated with extra-intestinal infections. The report of cases of fatal meningitis and encephalitis, especially in immunocompromised individuals, has broadened their disease spectrum. Although zoonotic transmission among animal and human astroviruses has not been clearly recognized, the genetic similarity between some human and animal viruses makes it likely to occur. This review provides an update on the epidemiology of both classic and novel human astroviruses, and a comprehensive view on confirmed or potential association between astrovirus and human disease.
Collapse
Affiliation(s)
- Diem-Lan Vu
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| |
Collapse
|
33
|
Johnson C, Hargest V, Cortez V, Meliopoulos VA, Schultz-Cherry S. Astrovirus Pathogenesis. Viruses 2017; 9:E22. [PMID: 28117758 PMCID: PMC5294991 DOI: 10.3390/v9010022] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/16/2022] Open
Abstract
Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1) in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems.
Collapse
Affiliation(s)
- Cydney Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
34
|
Gastañaduy AS, Bégué RE. Acute Gastroenteritis Viruses. Infect Dis (Lond) 2017. [PMCID: PMC7173516 DOI: 10.1016/b978-0-7020-6285-8.00162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute diarrhea is the leading cause of morbidity and second commonest cause of mortality in children <5 years old worldwide. Most acute diarrheal illnesses are caused by viruses. Noroviruses are the commonest cause of diarrhea in all age groups combined, and rotaviruses are still the leading cause of diarrhea for children <5 years old. Transmission is mainly by the fecal–oral route through person-to-person contact, contaminated food and water. Most cases of viral diarrhea are mild and self-limiting, but severe cases occur, leading to dehydration and death. Repeated episodes lead to malnutrition. Most cases can be managed at home with oral rehydration solutions and feeding a regular diet. Vaccines will be the best preventive measure. Only rotavirus vaccines are available. Breast-feeding, vitamin A supplementation and zinc significantly reduce the frequency and/or severity of diarrhea.
Collapse
|
35
|
Marvin SA. The Immune Response to Astrovirus Infection. Viruses 2016; 9:v9010001. [PMID: 28042824 PMCID: PMC5294970 DOI: 10.3390/v9010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
Astroviruses are one of the leading causes of pediatric gastroenteritis worldwide and are clinically importantly pathogens in the elderly and immunocompromised populations. Although the use of cell culture systems and small animal models have enhanced our understanding of astrovirus infection and pathogenesis, little is known about the immune response to astrovirus infection. Studies from humans and animals suggest that adaptive immunity is important in restricting classic and novel astrovirus infections, while studies from animal models and cell culture systems suggest that an innate immune system plays a role in limiting astrovirus replication. The relative contribution of each arm of the immune system in restricting astrovirus infection remains unknown. This review summarizes our current understanding of the immune response to astrovirus infection and highlights some of the key questions that stem from these studies. A full understanding of the immune response to astrovirus infection is required to be able to treat and control astrovirus-induced gastroenteritis.
Collapse
Affiliation(s)
- Shauna A Marvin
- Biology Department, Drake University, Des Moines, IA 50311, USA.
| |
Collapse
|
36
|
Vu DL, Cordey S, Brito F, Kaiser L. Novel human astroviruses: Novel human diseases? J Clin Virol 2016; 82:56-63. [PMID: 27434149 DOI: 10.1016/j.jcv.2016.07.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
Astroviruses are small, non-enveloped, single-stranded positive RNA viruses that belong to the Astroviridae family. While classical human astroviruses (HAstV) are a well-recognized cause of acute non-bacterial diarrhea among young children worldwide, novel astroviruses, named HAstV-MLB and HAstV-VA/HMO, have been identified recently in humans by molecular assays. They are phylogenetically more related to animal astroviruses than to classical human astroviruses, thus suggesting cross-species transmission. Serological studies demonstrated a surprisingly high seroprevalence in certain populations and highlighted a high infection rate in the early years of life. Although their pathogenic role has not yet been clearly determined, novel astrovirus RNA sequences have been identified in different biological specimens of symptomatic patients, including the feces, plasma, cerebrospinal fluid, and brain biopsies. Thus, there is evidence that they could contribute not only to digestive tract infection, but also to unexpected clinical syndromes, notably encephalitis and meningitis. Severe infections affect mainly immunocompromised patients. These findings indicate that novel astroviruses should be considered in the differential diagnosis of immunocompromised patients with meningitis or encephalitis of unknown origin.
Collapse
Affiliation(s)
- Diem-Lan Vu
- Laboratory of Virology, Division of Laboratory Medicine and Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | - Samuel Cordey
- Laboratory of Virology, Division of Laboratory Medicine and Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | - Francisco Brito
- Swiss Institute of Bioinformatics, University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | - Laurent Kaiser
- Laboratory of Virology, Division of Laboratory Medicine and Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
37
|
Type I Interferon Response Limits Astrovirus Replication and Protects against Increased Barrier Permeability In Vitro and In Vivo. J Virol 2015; 90:1988-96. [PMID: 26656701 DOI: 10.1128/jvi.02367-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Little is known about intrinsic epithelial cell responses against astrovirus infection. Here we show that human astrovirus type 1 (HAstV-1) infection induces type I interferon (beta interferon [IFN-β]) production in differentiated Caco2 cells, which not only inhibits viral replication by blocking positive-strand viral RNA and capsid protein synthesis but also protects against HAstV-1-increased barrier permeability. Excitingly, we found similar results in vivo using a murine astrovirus (MuAstV) model, providing new evidence that virus-induced type I IFNs may protect against astrovirus replication and pathogenesis in vivo. IMPORTANCE Human astroviruses are a major cause of pediatric diarrhea, yet little is known about the immune response. Here we show that type I interferon limits astrovirus infection and preserves barrier permeability both in vitro and in vivo. Importantly, we characterized a new mouse model for studying astrovirus replication and pathogenesis.
Collapse
|
38
|
Karlsson EA, Small CT, Freiden P, Feeroz MM, Matsen FA, San S, Hasan MK, Wang D, Jones-Engel L, Schultz-Cherry S. Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections. PLoS Pathog 2015; 11:e1005225. [PMID: 26571270 PMCID: PMC4646697 DOI: 10.1371/journal.ppat.1005225] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.
Collapse
Affiliation(s)
- Erik A Karlsson
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Christopher T Small
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pamela Freiden
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - MM Feeroz
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sorn San
- National Veterinary Research Institute, Phnom Penh, Cambodia
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - David Wang
- Department of Pathology & Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Lisa Jones-Engel
- University of Washington, National Primate Research Center, Seattle, Washington, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
39
|
EFSA Panel on Biological Hazards (BIOHAZ). Risk to public and/or animal health of the treatment of dead‐in‐shell chicks (Category 2 material) to be used as raw material for the production of biogas or compost with Category 3 approved method. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
40
|
Detection of a mammalian-like astrovirus in bird, European roller (Coracias garrulus). INFECTION GENETICS AND EVOLUTION 2015; 34:114-21. [DOI: 10.1016/j.meegid.2015.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/04/2015] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
|
41
|
Abstract
Although RNA viruses exhibit a high frequency of host jumps, major differences exist among the different virus families. Astroviruses infect a wide range of hosts, affecting both public health systems and economic production chains. Here we delineate the ecological and adaptive processes that drive the cross-species transmission of astroviruses. We observe that distinct transmission zones determine the prevailing astrovirus host and virus diversity, which in turn suggests that no single host group (e.g., bats) can be the natural reservoir, as illustrated through our phylogenetic analysis.
Collapse
|