1
|
Liu M, Hu SY, Li M, Sun H, Yuan ML. Comparative mitogenomic analysis provides evolutionary insights into Formica (Hymenoptera: Formicidae). PLoS One 2024; 19:e0302371. [PMID: 38857223 PMCID: PMC11164359 DOI: 10.1371/journal.pone.0302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/02/2024] [Indexed: 06/12/2024] Open
Abstract
Formica is a large genus in the family Formicidae with high diversity in its distribution, morphology, and physiology. To better understand evolutionary characteristics of Formica, the complete mitochondrial genomes (mitogenomes) of two Formica species were determined and a comparative mitogenomic analysis for this genus was performed. The two newly sequenced Formica mitogenomes each included 37 typical mitochondrial genes and a large non-coding region (putative control region), as observed in other Formica mitogenomes. Base composition, gene order, codon usage, and tRNA secondary structure were well conserved among Formica species, whereas diversity in sequence size and structural characteristics was observed in control regions. We also observed several conserved motifs in the intergenic spacer regions. These conserved genomic features may be related to mitochondrial function and their highly conserved physiological constraints, while the diversity of the control regions may be associated with adaptive evolution among heterogenous habitats. A negative AT-skew value on the majority chain was presented in each of Formica mitogenomes, indicating a reversal of strand asymmetry in base composition. Strong codon usage bias was observed in Formica mitogenomes, which was predominantly determined by nucleotide composition. All 13 mitochondrial protein-coding genes of Formica species exhibited molecular signatures of purifying selection, as indicated by the ratio of non-synonymous substitutions to synonymous substitutions being less than 1 for each protein-coding gene. Phylogenetic analyses based on mitogenomic data obtained fairly consistent phylogenetic relationships, except for two Formica species that had unstable phylogenetic positions, indicating mitogenomic data are useful for constructing phylogenies of ants. Beyond characterizing two additional Formica mitogenomes, this study also provided some key evolutionary insights into Formica.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Hao Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Wang Z, Xu X, Zheng Y, Xu Z, Li Y, Chen H. Analysis of the Overlength Main Noncoding Region in Metacarcinus magister (Decapoda: Brachyura) and a Phylogenetic Study of the Cancroidea Species. Genes (Basel) 2024; 15:437. [PMID: 38674372 PMCID: PMC11049931 DOI: 10.3390/genes15040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Complete mitochondrial genomes (mitogenomes) can provide important information regarding the molecular evolution and phylogenetic relationships of marine invertebrates, especially in Brachyura. Only one Cancroidea species of mitogenomes has been sequenced before; in this research, the mitogenomic characteristics of Metacarcinus magister (Cancridae: Cancroidea) are newly studied. The length of the M. magister mitogenome was 48,820 bp, and it contained the typical 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. We performed a series of analyses on the characteristics of the mNCR of M. magister. The phylogenetics, life circumstances, and selective pressures were all analyzed to explain the formation of this length, which revealed the length of the M. magister mitogenome to be approximately three times greater than the normal length of Brachyuran mitogenomes. Phylogenetic analyses based on a dataset of 215 Decapodan mitogenomes indicated that all Eriphioidea crabs were clustered together as a group. Moreover, the rearrangement mechanism of the Cancroidea species was predicted to provide stronger evidence for the phylogenetic analysis. In general, the results obtained in this study will contribute to a better understanding of the cause of the unusual length of the M. magister mitogenome and provide new insights into the phylogeny of Brachyura.
Collapse
|
3
|
Cardoso DC, Baldez BCL, Pereira AH, Kalapothakis E, Rosse IC, Cristiano MP. De novo assembly of the complete mitochondrial genome of Mycetophylax simplex Emery, 1888 through organelle targeting revels no substantial expansion of gene spacers, but rather some slightly shorter genes. Mol Genet Genomics 2024; 299:16. [PMID: 38411741 DOI: 10.1007/s00438-024-02099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024]
Abstract
Mitochondria play a key role in cell biology and have their own genome, residing in a highly oxidative environment that induces faster changes than the nuclear genome. Because of this, mitochondrial markers have been exploited to reconstruct phylogenetic and phylogeographic relationships in studies of adaptation and molecular evolution. In this study, we determined the complete mitogenome of the fungus-farming ant Mycetophylax simplex (Hymenoptera, Formicidae) and conducted a comparative analysis among 29 myrmicine ant mitogenomes. Mycetophylax simplex is an endemic ant that inhabits sand dunes along the southern Atlantic coast. Specifically, the species occur in the ecosystem known as "restinga", within the Atlantic Forest biome. Due to habitat degradation, land use and decline of restinga habitats, the species is considered locally extinct in extremely urban beaches and is listed as vulnerable on the Brazilian Red List (ICMBio). We employed a mitochondrion-targeting approach to obtain the complete mitogenome through high-throughput DNA sequencing technology. This method allowed us to determine the mitogenome with high performance, coverage and low cost. The circular mitogenome has a length of 16,367 base pairs enclosing 37 genes (13 protein-coding genes, 22 tRNAs and 2 rRNAs) along with one control region (CR). All the protein-coding genes begin with a typical ATN codon and end with the canonical stop codons. All tRNAs formed the fully paired acceptor stems and fold into the typical cloverleaf-shaped secondary structures. The gene order is consistent with the shared Myrmicinae structure, and the A + T content of the majority strand is 81.51%. Long intergenic spacers were not found but some gene are slightly shorter. The phylogenetic relationships based on concatenated nucleotide and amino acid sequences of the 13 protein-coding genes, using Maximum Likelihood and Bayesian Inference methods, indicated that mitogenome sequences were useful in resolving higher-level relationship within Formicidae.
Collapse
Affiliation(s)
- Danon Clemes Cardoso
- Genetics and Evolution of Ants Research Group - GEF, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil.
| | - Brenda Carla Lima Baldez
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil
| | - Adriana Heloísa Pereira
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Izinara Cruz Rosse
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maykon Passos Cristiano
- Genetics and Evolution of Ants Research Group - GEF, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil
| |
Collapse
|
4
|
Li K, Yu SW, Hu H, Feng YF, Storey KB, Ma Y, Zhang JY, Yu DN. The Phylogenetic Relationship of Lamiinae (Coleoptera: Cerambycidae) Using Mitochondrial Genomes. Genes (Basel) 2023; 15:13. [PMID: 38275595 PMCID: PMC10815127 DOI: 10.3390/genes15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Lamiinae is the largest subfamily of the Cerambycidae (longhorn beetles), with approximately 21,863 described species. Previous phylogenetic studies of Lamiinae showed that this subfamily was monophyletic, but the relationship between the tribes of Lamiinae is still controversial. Partial molecular data and species morphological characteristics are not sufficient to resolve species phylogenetic studies perfectly. At the same time, the full mitochondrial genome contains more comprehensive genetic data. Benefiting from the development of next-generation sequencing (NGS), mitochondrial genomes can be easily acquired and used as reliable molecular markers to investigate phylogenetic relationships within Cerambycidae. Using NGS technology, we obtained 11 mitochondrial genome sequences of Lamiinae species. Based on this newly generated mitochondrial genome dataset matrix, we reconstructed the phylogeny of Lamiinae. The Bayesian Inference and Maximum Likelihood analyses strongly support the monophyly of four tribes (Lamiini, Batocerini, Mesosini, and Saperdini), whereas the tribe Acanthocinini was identified as paraphyletic. Other mitochondrial structural features were also observed: the start codon in the nad1 gene of all 11 mitochondrial genomes is TTG; 17-22 bp intergenic spacers (IGS) with a 'TACTA' motif were found between trnS2 and nad1. Moreover, two long IGS were found in Mesosa myops and Batocera sp. Tandem repeats were found in the IGS of Batocera sp.
Collapse
Affiliation(s)
- Ke Li
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Sheng-Wu Yu
- Longquan Protection Center of Qianjiangyuan-Baishanzu National Park, Lishui 323700, China
| | - Hao Hu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yu-Feng Feng
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yue Ma
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Dan-Na Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Comparative Mitogenome Analyses Uncover Mitogenome Features and Phylogenetic Implications of the Parrotfishes (Perciformes: Scaridae). BIOLOGY 2023; 12:biology12030410. [PMID: 36979102 PMCID: PMC10044791 DOI: 10.3390/biology12030410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
In order to investigate the molecular evolution of mitogenomes among the family Scaridae, the complete mitogenome sequences of twelve parrotfish species were determined and compared with those of seven other parrotfish species. The comparative analysis revealed that the general features and organization of the mitogenome were similar among the 19 parrotfish species. The base composition was similar among the parrotfishes, with the exception of the genus Calotomus, which exhibited an unusual negative AT skew in the whole mitogenome. The PCGs showed similar codon usage, and all of them underwent a strong purifying selection. The gene rearrangement typical of the parrotfishes was detected, with the tRNAMet inserted between the tRNAIle and tRNAGln, and the tRNAGln was followed by a putative tRNAMet pseudogene. The parrotfish mitogenomes displayed conserved gene overlaps and secondary structure in most tRNA genes, while the non-coding intergenic spacers varied among species. Phylogenetic analysis based on the thirteen PCGs and two rRNAs strongly supported the hypothesis that the parrotfishes could be subdivided into two clades with distinct ecological adaptations. The early divergence of the sea grass and coral reef clades occurred in the late Oligocene, probably related to the expansion of sea grass habitat. Later diversification within the coral reef clade could be dated back to the Miocene, likely associated with the geomorphology alternation since the closing of the Tethys Ocean. This work provided fundamental molecular data that will be useful for species identification, conservation, and further studies on the evolution of parrotfishes.
Collapse
|
6
|
Complete Nucleotide Sequence of the Mitogenome of Tapinoma ibericum (Hymenoptera: Formicidae: Dolichoderinae), Gene Organization and Phylogenetics Implications for the Dolichoderinae Subfamily. Genes (Basel) 2022; 13:genes13081325. [PMID: 35893062 PMCID: PMC9332376 DOI: 10.3390/genes13081325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The ant Tapinoma ibericum Santschi, 1925 is native to the Iberian Peninsula. This species, as well as other species from the Tapinoma nigerrimum complex, could form supercolonies that make these species potentially invasive and could give rise to pests. Recently a mature colony from this species has been found in the Isle of Wight (United Kingdom). Mitogenomes have been used to study the taxonomy, biogeography and genetics of species, improving the development of strategies against pest invasion. However, the number of available mitogenomes from the subfamily Dolichoderinae is still scarce and only two of these mitogenomes belong to Tapinoma species. Herein, the complete mitogenome of T. ibericum is presented in order to increase the molecular information of the genus. The T. ibericum mitogenome, retrieved by Next-Generation Sequencing data, is 15,715 bp in length. It contains the typical set of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs and the A + T-rich control region. Comparisons of the T. ibericum mitogenome with other dolichoderine mitogenomes revealed the existence of four gene rearrangements in relation with the ancestral insect mitogenome. One of these rearrangements, involving the tRNA-Ile, tRNA-Gln and tRNA-Met genes, was found in most of the analyzed ant mitogenomes. Probably this rearrangement was an ancestral or plesiomorphic character in Formicidae. Interestingly, another rearrangement that affects to tRNA-Trp, tRNA-Cys and tRNA-Tyr genes was found only in Tapinoma species. This change could be a synapomorphic character for the genus Tapinoma, and could be used as a phylogenetic marker. Additionally, a phylogenetic analysis was performed using the protein-coding gene sequences from available Dolichoderinae mitogenomes, as well as mitogenomes from representative species from other Formicidae subfamilies. Results support the monophyletic nature of the genus Tapinoma placing it within the same clade as the rest of Dolichoderinae species.
Collapse
|
7
|
Yan L, Hou Z, Ma J, Wang H, Gao J, Zeng C, Chen Q, Yue B, Zhang X. Complete mitochondrial genome of Episymploce splendens (Blattodea: Ectobiidae): A large intergenic spacer and lacking of two tRNA genes. PLoS One 2022; 17:e0268064. [PMID: 35653382 PMCID: PMC9162313 DOI: 10.1371/journal.pone.0268064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
The complete mitochondrial genome of Episymploce splendens, 15,802 bp in length, was determined and annotated in this study. The mito-genome included 13 PCGs, 20 tRNAs and 2 rRNAs. Unlike most typical mito-genomes with conservative gene arrangement and exceptional economic organization, E. splendens mito-genome has two tRNAs (tRNA-Gln and tRNA-Met) absence and a long intergenic spacer sequence (93 bp) between tRNA-Val and srRNA, showing the diversified features of insect mito-genomes. This is the first report of the tRNAs deletion in blattarian mito-genomes and we supported the duplication/random loss model as the origin mechanism of the long intergenic spacer. Two Numts, Numt-1 (557 bp) and Numt-2 (975 bp) transferred to the nucleus at about 14.15 Ma to 22.34 Ma, and 19.19 Ma to 24.06 Ma respectively, were found in E. splendens. They can be used as molecular fossils in insect phylogenetic relationship inference. Our study provided useful data for further studies on the evolution of insect mito-genome.
Collapse
Affiliation(s)
- Lin Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenzhen Hou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinnan Ma
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Gao
- Sichuan Key Laboratory of Medicinal Periplaneta Americana, Sichuan Gooddoctor Pharmaceutical Group, Chengdu, China
| | - Chenjuan Zeng
- Sichuan Key Laboratory of Medicinal Periplaneta Americana, Sichuan Gooddoctor Pharmaceutical Group, Chengdu, China
| | - Qin Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
8
|
Benito JB, Porter ML, Niemiller ML. The mitochondrial genomes of five spring and groundwater amphipods of the family Crangonyctidae (Crustacea: Amphipoda) from eastern North America. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1662-1667. [PMID: 34104729 PMCID: PMC8143621 DOI: 10.1080/23802359.2021.1926350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We sequenced the mitochondrial genomes of one spring-dwelling (Crangonyx forbesi) and four groundwater amphipods (Bactrurus brachycaudus, Stygobromus allegheniensis, S. pizzinii, and S. t. potomacus) from eastern North America using a shotgun sequencing approach on an Illumina HiSeq 4000 (Illumina, San Diego, CA). All five mitochondrial genomes encoded 13 protein-coding genes, 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs) representative of subphylum Crustacea. Although the four groundwater species exhibited gene orders nearly identical to the ancestral pancrustacean gene order, the spring-dwelling species, C. forbesi, possessed a transposition of the trnH–nad4–nad4l loci downstream after nad6–cytb–trnS2. Moreover, a long nad5 locus, longer rrnL, and rrnS loci, and unconventional start codons distinguished C. forbesi from the four groundwater amphipods. Overall, our five amphipod mitogenomes add to the increasing publicly available mitogenome resources for amphipods that are not only valuable for studying the evolutionary relationships of this diverse group of crustaceans but for exploring the evolution of mitochondrial genomes in general.
Collapse
Affiliation(s)
- Joseph B Benito
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
9
|
Park J, Xi H, Park J. Complete Genome Sequence of a Blochmannia Endosymbiont of Colobopsis nipponica. Microbiol Resour Announc 2021; 10:e01195-20. [PMID: 33927044 PMCID: PMC8086219 DOI: 10.1128/mra.01195-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Blochmannia endosymbionts (Gammaproteobacteria) live in bacteriocytes, which are specialized cells found in the genus Camponotus and its neighbor genera. In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Colobopsis nipponica, which originated from a colony collected in the Republic of Korea.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jonghyun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
10
|
Comparative mitogenomics and phylogenetics of the stinging wasps (Hymenoptera: Aculeata). Mol Phylogenet Evol 2021; 159:107119. [PMID: 33609704 DOI: 10.1016/j.ympev.2021.107119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
The stinging wasps (Hymenoptera: Aculeata) include diverse groups such as vespid wasps, ants and bees. Phylogenetic relationships among major lineages of stinging wasps have been inferred from molecular and morphological data. However, the genomic features of the mitochondrial genomes and their phylogenetic utility remain to be explored. In this study, we determined 23 mitochondrial genomes from the Aculeata. Four Mutillidae species showed relatively low A + T content compared to other species of the Aculeata (69.7%-77.4%). Eleven out of 44 species, mainly from the Chrysididae and the Pompilidae, showed reversals of GC skews. Gene rearrangements occurred across the species. Patterns of tRNA rearrangement were conserved in some groups, including the Chrysididae, Bethylidae, Pompilidae, Scolioidea and Vespoidea. Rearrangement of protein-coding genes were found in 12 out of 44 species of the Aculeata, including all four species from the Chrysididae, both species from the Bethylidae, one species from the Dryinidae, all three Scolioidea species and two Apoidea species. Phylogenetic inference showed a long branch in species with unusual genomic features, such as in the Mutillidae and Bethylidae. By excluding these species, we found paraphyly of the Chrysidoidea and a sister group relationship between the Formicoidea and Vespoidea. These results improve our understanding of the evolution of mitochondrial genomes in the Aculeata and, in general, the evolution across this subclade.
Collapse
|
11
|
Yu P, Zhou L, Yang WT, Miao LJ, Li Z, Zhang XJ, Wang Y, Gui JF. Comparative mitogenome analyses uncover mitogenome features and phylogenetic implications of the subfamily Cobitinae. BMC Genomics 2021; 22:50. [PMID: 33446100 PMCID: PMC7809818 DOI: 10.1186/s12864-020-07360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Loaches of Cobitinae, widely distributed in Eurasian continent, have high economic, ornamental and scientific value. However, the phylogeny of Cobitinae fishes within genera or family level remains complex and controversial. Up to now, about 60 Cobitinae mitogenomes had been deposited in GenBank, but their integrated characteristics were not elaborated. RESULTS In this study, we sequenced and analyzed the complete mitogenomes of a female Cobits macrostigma. Then we conducted a comparative mitogenome analysis and revealed the conserved and unique characteristics of 58 Cobitinae mitogenomes, including C. macrostigma. Cobitinae mitogenomes display highly conserved tRNA secondary structure, overlaps and non-coding intergenic spacers. In addition, distinct base compositions were observed among different genus and significantly negative linear correlation between AT% and AT-skew were found among Cobitinae, genus Cobitis and Pangio mitogenomes, respectively. A specific 3 bp insertion (GCA) in the atp8-atp6 overlap was identified as a unique feature of loaches, compared to other Cypriniformes fish. Additionally, all protein coding genes underwent a strong purifying selection. Phylogenetic analysis strongly supported the paraphyly of Cobitis and polyphyly of Misgurnus. The strict molecular clock predicted that Cobitinae might have split into northern and southern lineages in the late Eocene (42.11 Ma), furthermore, mtDNA introgression might occur (14.40 Ma) between ancestral species of Cobitis and ancestral species of Misgurnus. CONCLUSIONS The current study represents the first comparative mitogenomic and phylogenetic analyses within Cobitinae and provides new insights into the mitogenome features and evolution of fishes belonging to the cobitinae family.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Tao Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Barbosa JTV, Barbosa MS, Morais S, Santana AEG, Almeida C. Mitochondrial genomes of genus Atta (Formicidae: Myrmicinae) reveal high gene organization and giant intergenic spacers. Genet Mol Biol 2020; 42:e20180055. [PMID: 31188925 PMCID: PMC7197989 DOI: 10.1590/1678-4685-gmb-2018-0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022] Open
Abstract
The ants of the genus Atta are considered important pests to
agriculture in the Americas, although Atta species are also
important contributors to ecosystem functions in the various habitats in which
they occur. The aim of this study was to assemble four complete mitochondrial
genomes of the genus Atta, construct the phylogenomic tree, and
analyze the gene content, order, and organization. The mitogenomes of A.
colombica, A. opaciceps, A.
texana, and A. sexdens rubropilosa comprise
18,392, 19,257, 19,709, and 19,748 bp, respectively. The four Atta mitogenomes
showed the charactistics typical of those of insects, with 13 protein-coding
genes, 22 tRNAs, and 2 rRNAs, with genes displayed in the conventional order.
Analysis for intergenic spacer regions showed that Atta
intergenic spacers are larger than those of the outgroups. Phylogenomic analyses
using partial cytochrome oxidase I gene sequences showed similar topologies to
previous phylogenetic analyses, with high clade support values. We conclude that
Atta mitogenomes are characterized by high conservation in
gene order and have giant intergenic spacers in the genus
Atta.
Collapse
Affiliation(s)
- Josefa T V Barbosa
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Arapiraca, AL, Brazil
| | - Marcílio S Barbosa
- Laboratory of Genetics Resources, Campus Arapiraca, Universidade Federal de Alagoas, Arapiraca, AL, Brazil
| | - Suzyane Morais
- Laboratory of Genetics Resources, Campus Arapiraca, Universidade Federal de Alagoas, Arapiraca, AL, Brazil
| | - Antônio E G Santana
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Arapiraca, AL, Brazil
| | - Cicero Almeida
- Laboratory of Genetics Resources, Campus Arapiraca, Universidade Federal de Alagoas, Arapiraca, AL, Brazil
| |
Collapse
|
13
|
Wang J, Dai XY, Xu XD, Zhang ZY, Yu DN, Storey KB, Zhang JY. The complete mitochondrial genomes of five longicorn beetles (Coleoptera: Cerambycidae) and phylogenetic relationships within Cerambycidae. PeerJ 2019; 7:e7633. [PMID: 31534857 PMCID: PMC6732212 DOI: 10.7717/peerj.7633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
Cerambycidae is one of the most diversified groups within Coleoptera and includes nearly 35,000 known species. The relationships at the subfamily level within Cerambycidae have not been convincingly demonstrated and the gene rearrangement of mitochondrial genomes in Cerambycidae remains unclear due to the low numbers of sequenced mitogenomes. In the present study, we determined five complete mitogenomes of Cerambycidae and investigated the phylogenetic relationship among the subfamilies of Cerambycidae based on mitogenomes. The mitogenomic arrangement of all five species was identical to the ancestral Cerambycidae type without gene rearrangement. Remarkably, however, two large intergenic spacers were detected in the mitogenome of Pterolophia sp. ZJY-2019. The origins of these intergenic spacers could be explained by the slipped-strand mispairing and duplication/random loss models. A conserved motif was found between trnS2 and nad1 gene, which was proposed to be a binding site of a transcription termination peptide. Also, tandem repeat units were identified in the A + T-rich region of all five mitogenomes. The monophyly of Lamiinae and Prioninae was strongly supported by both MrBayes and RAxML analyses based on nucleotide datasets, whereas the Cerambycinae and Lepturinae were recovered as non-monophyletic.
Collapse
Affiliation(s)
- Jun Wang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xin-Yi Dai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xiao-Dong Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key lab of wildlife biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | | | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key lab of wildlife biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
14
|
The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics. Int J Biol Macromol 2019; 137:767-773. [PMID: 31269414 DOI: 10.1016/j.ijbiomac.2019.06.239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/21/2022]
Abstract
In this study, the mitochondrial genomes of three Stenogastrinae species, Eustenogaster scitula, Liostenogaster nitidipennis and Parishnogaster mellyi were sequenced and annotated, and a total of 16 vespid mtgenomes are comparatively analyzed. Our results indicate that codon usage bias is mainly dominated by mutational pressure, and affected only slightly by natural selection. Selective pressure analysis of protein-coding genes (PCGs) shows that the highest evolutionary rate is present in NADH complex I, and the lowest in cox1. Compared with the reported mtgenomes of other Vespidae, in Stenogastrinae, trnH is shifted to a new position. Phylogenetic analyses are performed using Bayesian method and Maximum Parsimony. Phylogenetic analysis further confirms that the Stenogastrinae is the sister group of all remaining Vespidae. Divergence time of Stenogastrinae from other Vespidae is estimated at ~ 166 Mya. Our results also support that eusociality evolved twice in the family Vespidae.
Collapse
|
15
|
Yu P, Yang X, Zhou W, Yang W, Zhou L, Liu X, Wan Q, Zhang J. Comparative mitogenomic and phylogenetic analysis of Apalone spinifera and Apalone ferox (Testudines: Trionychidae). Genetica 2019; 147:165-176. [PMID: 30887216 DOI: 10.1007/s10709-019-00059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
The soft-shell turtles Apalone spinifera (AS) and Apalone ferox (AF) are two important economic species. AF is found in the Yellow River of China, and is a confirmed member of the Trionychidae family. However, the classification of AS was in dispute. Mitochondrial genomes (mitogenomes) have been widely used for species identification, as well as population and phylogenetic analysis. In order to understand the phylogenetic and mitogenomic features of AS and AF, the complete mitogenomes were sequenced, annotated and analyzed in this study. The complete mitogenomes of AS and AF are 16,817 bp and 16,756 bp in length, respectively. Both mitogenomes contain 37 genes, seven short intergenic spacers and two long intergenic spacers. Comparative analysis showed that there are 1,137 variation sites (6.79%) between the two mitogenomes. AS and AF mitogenomes both show a usage preference in terms of nucleotides, codons and amino acids. In addition, the non-synonymous substitution rate/synonymous substitution rate indicates that all protein-coding genes (PCGs) have undergone a strong purifying selection. Phylogenetic trees constructed by 13 PCGs show a clear phylogenetic relationship of the soft-shell turtles and suggest that AS is a sister species to AF of the genus Apalone. The data could be useful for further research of species identification, population analysis and the mitogenomic features of soft-shell turtles.
Collapse
Affiliation(s)
- Peng Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoli Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Weishang Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Wentao Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Quan Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China. .,Mingguang Modern Agricultural Science and Technology Cooperation Promotion Service Center, Mingguang, 239400, China.
| |
Collapse
|
16
|
Vieira GA, Prosdocimi F. Accessible molecular phylogenomics at no cost: obtaining 14 new mitogenomes for the ant subfamily Pseudomyrmecinae from public data. PeerJ 2019; 7:e6271. [PMID: 30697483 PMCID: PMC6348091 DOI: 10.7717/peerj.6271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
The advent of Next Generation Sequencing has reduced sequencing costs and increased genomic projects from a huge amount of organismal taxa, generating an unprecedented amount of genomic datasets publicly available. Often, only a tiny fraction of outstanding relevance of the genomic data produced by researchers is used in their works. This fact allows the data generated to be recycled in further projects worldwide. The assembly of complete mitogenomes is frequently overlooked though it is useful to understand evolutionary relationships among taxa, especially those presenting poor mtDNA sampling at the level of genera and families. This is exactly the case for ants (Hymenoptera:Formicidae) and more specifically for the subfamily Pseudomyrmecinae, a group of arboreal ants with several cases of convergent coevolution without any complete mitochondrial sequence available. In this work, we assembled, annotated and performed comparative genomics analyses of 14 new complete mitochondria from Pseudomyrmecinae species relying solely on public datasets available from the Sequence Read Archive (SRA). We used all complete mitogenomes available for ants to study the gene order conservation and also to generate two phylogenetic trees using both (i) concatenated set of 13 mitochondrial genes and (ii) the whole mitochondrial sequences. Even though the tree topologies diverged subtly from each other (and from previous studies), our results confirm several known relationships and generate new evidences for sister clade classification inside Pseudomyrmecinae clade. We also performed a synteny analysis for Formicidae and identified possible sites in which nucleotidic insertions happened in mitogenomes of pseudomyrmecine ants. Using a data mining/bioinformatics approach, the current work increased the number of complete mitochondrial genomes available for ants from 15 to 29, demonstrating the unique potential of public databases for mitogenomics studies. The wide applications of mitogenomes in research and presence of mitochondrial data in different public dataset types makes the "no budget mitogenomics" approach ideal for comprehensive molecular studies, especially for subsampled taxa.
Collapse
Affiliation(s)
- Gabriel A. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco Prosdocimi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Meza-Lázaro RN, Poteaux C, Bayona-Vásquez NJ, Branstetter MG, Zaldívar-Riverón A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1203-1214. [PMID: 29385929 DOI: 10.1080/24701394.2018.1431228] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We assembled mitogenomes from 21 ant workers assigned to four morphospecies (E. ruidum spp. 1-4) and putative hybrids of the Ectatomma ruidum complex (E. ruidum spp. 2x3), and to E. tuberculatum using NGS data. Mitogenomes from specimens of E. ruidum spp. 3, 4 and 2 × 3 had a high proportion of polymorphic sites. We investigated whether polymorphisms in mitogenomes are due to nuclear mt paralogues (numts) or due to the presence of more than one mitogenome within an individual (heteroplasmy). We did not find loss of function signals in polymorphic protein-coding genes, and observed strong evidence for purifying selection in two haplotype-phased genes, which indicate the presence of two functional mitochondrial genomes coexisting within individuals instead of numts. Heteroplasmy due to hybrid paternal leakage is not supported by phylogenetic analyses. Our results reveal the presence of a fast-evolving secondary mitochondrial lineage of uncertain origin in the E. ruidum complex.
Collapse
Affiliation(s)
- Rubi N Meza-Lázaro
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| | - Chantal Poteaux
- b Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC), Université Paris 13, Sorbonne Paris Cité , Villetaneuse , France
| | | | - Michael G Branstetter
- d USDA-ARS Pollinating Insects Research Unit, Utah State University , Logan , UT , USA
| | - Alejandro Zaldívar-Riverón
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| |
Collapse
|
18
|
Du C, Zhang L, Lu T, Ma J, Zeng C, Yue B, Zhang X. Mitochondrial genomes of blister beetles (Coleoptera, Meloidae) and two large intergenic spacers in Hycleus genera. BMC Genomics 2017; 18:698. [PMID: 28874137 PMCID: PMC5585954 DOI: 10.1186/s12864-017-4102-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect mitochondrial genomes (mitogenomes) exhibit high diversity in some lineages. The gene rearrangement and large intergenic spacer (IGS) have been reported in several Coleopteran species, although very little is known about mitogenomes of Meloidae. RESULTS We determined complete or nearly complete mitogenomes of seven meloid species. The circular genomes encode 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) and two ribosomal RNAs (rRNAs), and contain a control region, with gene arrangement identical to the ancestral type for insects. The evolutionary rates of all PCGs indicate that their evolution is based on purifying selection. The comparison of tRNA secondary structures indicates diverse substitution patterns in Meloidae. Remarkably, all mitogenomes of the three studied Hycleus species contain two large intergenic spacers (IGSs). IGS1 is located between trnW and trnC, including a 9 bp consensus motif. IGS2 is located between trnS2 (UCN) and nad1, containing discontinuous repeats of a pentanucleotide motif and two 18-bp repeat units in both ends. To date, IGS2 is found only in genera Hycleus across all published Coleopteran mitogenomes. The duplication/random loss model and slipped-strand mispairing are proposed as evolutionary mechanisms for the two IGSs (IGS1, IGS2). The phylogenetic analyses using MrBayes, RAxML, and PhyloBayes methods based on nucleotide and amino acid datasets of 13 PCGs from all published mitogenomes of Tenebrionoids, consistently recover the monophylies of Meloidae and Tenebrionidae. Within Meloidae, the genus Lytta clusters with Epicauta rather than with Mylabris. Although data collected thus far could not resolve the phylogenetic relationships within Meloidae, this study will assist in future mapping of the Meloidae phylogeny. CONCLUSIONS This study presents mitogenomes of seven meloid beetles. New mitogenomes retain the genomic architecture of the Coleopteran ancestor, but contain two IGSs in the three studied Hycleus species. Comparative analyses of two IGSs suggest that their evolutionary mechanisms are duplication/random loss model and slipped-strand mispairing.
Collapse
Affiliation(s)
- Chao Du
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.,Nanchong Vocational and Technical College, Nanchong, 637131, Sichuan, People's Republic of China
| | - Lifang Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Ting Lu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Jingnan Ma
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Chenjuan Zeng
- Sichuan Key Laboratory of Medicinal American Cockroach, Chengdu, 610041, People's Republic of China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
19
|
Chen PY, Zheng BY, Liu JX, Wei SJ. Next-Generation Sequencing of Two Mitochondrial Genomes from Family Pompilidae (Hymenoptera: Vespoidea) Reveal Novel Patterns of Gene Arrangement. Int J Mol Sci 2016; 17:ijms17101641. [PMID: 27727175 PMCID: PMC5085674 DOI: 10.3390/ijms17101641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
Animal mitochondrial genomes have provided large and diverse datasets for evolutionary studies. Here, the first two representative mitochondrial genomes from the family Pompilidae (Hymenoptera: Vespoidea) were determined using next-generation sequencing. The sequenced region of these two mitochondrial genomes from the species Auplopus sp. and Agenioideus sp. was 16,746 bp long with an A + T content of 83.12% and 16,596 bp long with an A + T content of 78.64%, respectively. In both species, all of the 37 typical mitochondrial genes were determined. The secondary structure of tRNA genes and rRNA genes were predicted and compared with those of other insects. Atypical trnS1 using abnormal anticodons TCT and lacking D-stem pairings was identified. There were 49 helices belonging to six domains in rrnL and 30 helices belonging to three domains in rrns present. Compared with the ancestral organization, four and two tRNA genes were rearranged in mitochondrial genomes of Auplopus and Agenioideus, respectively. In both species, trnM was shuffled upstream of the trnI-trnQ-trnM cluster, and trnA was translocated from the cluster trnA-trnR-trnN-trnS1-trnE-trnF to the region between nad1 and trnL1, which is novel to the Vespoidea. In Auplopus, the tRNA cluster trnW-trnC-trnY was shuffled to trnW-trnY-trnC. Phylogenetic analysis within Vespoidea revealed that Pompilidae and Mutillidae formed a sister lineage, and then sistered Formicidae. The genomes presented in this study have enriched the knowledge base of molecular markers, which is valuable in respect to studies about the gene rearrangement mechanism, genomic evolutionary processes and phylogeny of Hymenoptera.
Collapse
Affiliation(s)
- Peng-Yan Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Bo-Ying Zheng
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Jing-Xian Liu
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
20
|
Duan XY, Peng XY, Qian ZQ. The complete mitochondrial genomes of two globally invasive ants, the Argentine ant Linepithema humile and the little fire ant Wasmannia auropunctata. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0555-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Characterization of the complete mitochondrial genome of the myrmicine ant Vollenhovia emeryi (Insecta: Hymenoptera: Formicidae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0535-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Kim MJ, Hong EJ, Kim I. Complete mitochondrial genome of Camponotus atrox (Hymenoptera: Formicidae): a new tRNA arrangement in Hymenoptera. Genome 2016; 59:59-74. [DOI: 10.1139/gen-2015-0080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sequenced the complete mitochondrial (mt) genome of Camponotus atrox (Hymenoptera: Formicidae), which is only distributed in Korea. The genome was 16 540 bp in size and contained typical sets of genes (13 protein-coding genes, 22 tRNAs, and 2 rRNAs). The C. atrox A+T-rich region, at 1402 bp, was the longest of all sequenced ant genomes and was composed of an identical tandem repeat consisting of six 100-bp copies and one 96-bp copy. A total of 315 bp of intergenic spacer sequence was spread over 23 regions. An alignment of the spacer sequences in ants was largely feasible among congeneric species, and there was substantial sequence divergence, indicating their potential use as molecular markers for congeneric species. The A/T contents at the first and second codon positions of protein-coding genes (PCGs) were similar for ant species, including C. atrox (73.9% vs. 72.3%, on average). With increased taxon sampling among hymenopteran superfamilies, differences in the divergence rates (i.e., the non-synonymous substitution rates) between the suborders Symphyta and Apocrita were detected, consistent with previous results. The C. atrox mt genome had a unique gene arrangement, trnI-trnM-trnQ, at the A+T-rich region and ND2 junction (underline indicates inverted gene). This may have originated from a tandem duplication of trnM-trnI, resulting in trnM-trnI-trnM-trnI-trnQ, and the subsequent loss of the first trnM and second trnI, resulting in trnI-trnM-trnQ.
Collapse
Affiliation(s)
- Min Jee Kim
- College of Agriculture & Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eui Jeong Hong
- National Park Research Institute, Korea National Park Service, Wonju, Gangwon-do 570-811, Republic of Korea
| | - Iksoo Kim
- College of Agriculture & Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
23
|
Chen PY, Wei SJ, Liu JX. The mitochondrial genome of the Vespa mandarinia Smith (Hymenoptera: Vespidae: Vespinae) and a phylogenetic analysis of the Vespoidea. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4414-4415. [DOI: 10.3109/19401736.2015.1089550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Peng-Yan Chen
- Department of Entomology, South China Agricultural University, Guangzhou, China and
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing-Xian Liu
- Department of Entomology, South China Agricultural University, Guangzhou, China and
| |
Collapse
|
24
|
Zhou Y, Hu YL, Xu ZF, Wei SJ. The mitochondrial genome of the German wasp Vespula germanica (Fabricius, 1793) (Hymenoptera: Vespoidea: Vespidae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2917-8. [PMID: 26226592 DOI: 10.3109/19401736.2015.1060438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial genome of the German wasp Vespula germanica (Fabricius, 1793) (Hymenoptera: Vespidae) (GenBank accession no. KR703583) was sequenced in the study. It represents the first mitochondrial genome from the genus Vespula. There are totally 163 42 bp in the currently sequenced portion of the genome, containing 13 protein-coding, two rRNA, and 18 tRNA genes and a partial A + T-rich region. Four tRNA genes of trnI, trnQ, trnM and trnY located at the downstream of the A + T-rich region were failed to sequence. At least two rearrangement events occurred in the sequenced region compared with the pupative ancestral arrangement of insects, corresponding to the translocation or remote inversion of tnnY from trnW-trnC-trnY cluster to the region of trnI-trnQ-trnM cluster and translocation of trnL1 from the downstream to the upstream of nad1 gene. All protein-coding genes start with ATN codons. Twelve and one protein-coding genes stop with termination codon TAA and T, respectively. Phylogenetic analysis using the Bayesian method based on all codon positions of the 13 protein-coding genes supports the monophyly of Vespidae and Formicidae. Within the Formicidae, the Myrmicinae and Formicinae form a sister group and then sister to the Dolichoderinae, while within the Vespidae, the Eumeninae sister to the lineage of Vespinae + Polistinae.
Collapse
Affiliation(s)
- Yuan Zhou
- a Department of Entomology , South China Agricultural University , Guangzhou , China
| | - Yu-Lin Hu
- b Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China , and.,c College of Life Sciences, Hebei Normal University , Shijiazhuang , China
| | - Zai-Fu Xu
- a Department of Entomology , South China Agricultural University , Guangzhou , China
| | - Shu-Jun Wei
- b Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China , and
| |
Collapse
|
25
|
Lian ZQ, Wu XD, Xiao W, Sai QY, Gun SB. Complete sequence and characterization of the Silurus lanzhouensis (Siluriformes: Siluridae) mitochondrial genome. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2483-4. [PMID: 26171872 DOI: 10.3109/19401736.2015.1033709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial DNA (mtDNA) sequence of Silurus lanzhouensis was constructed from whole-genome Illumina sequencing data. The 16 523 bp circular genome comprises typical mtDNA components. All 13 protein-coding genes (PCGs) are initiated by an ATG except for COX1, which uses GTG. Some PCGs harbor TAG (ND2 and ND3) or an incomplete stop codon T (COX2, ND4, and CYTB), while others use TAA as their stop codon. 12S rRNA and 16S rRNA secondary structures are composed of four domains with 45 helices and six domains with 54 helices, respectively. All tRNAs are predicted to fold into the expected typical cloverleaf secondary structure except tRNA-Ser((AGN)). The largest intergenic spacer sequence was predicted to be the origin of light-strand replication. Eight conserved sequences were identified in the control region (CR). This complete S. lanzhouensis mitogenome provides useful data for further studies on molecular systematics, taxonomic status, stock evaluation, and conservation genetics.
Collapse
Affiliation(s)
- Zong-Qiang Lian
- a College of Animal Science and Technology, Gansu Agricultural University , Lanzhou , China and.,b Ningxia Fisheries Research Institute , Yinchuan , China
| | - Xu-Dong Wu
- a College of Animal Science and Technology, Gansu Agricultural University , Lanzhou , China and.,b Ningxia Fisheries Research Institute , Yinchuan , China
| | - Wei Xiao
- b Ningxia Fisheries Research Institute , Yinchuan , China
| | - Qing-Yun Sai
- b Ningxia Fisheries Research Institute , Yinchuan , China
| | - Shuang-Bao Gun
- a College of Animal Science and Technology, Gansu Agricultural University , Lanzhou , China and
| |
Collapse
|
26
|
Song SN, Chen PY, Wei SJ, Chen XX. The mitochondrial genome of Polistes jokahamae and a phylogenetic analysis of the Vespoidea (Insecta: Hymenoptera). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2783-4. [PMID: 26094985 DOI: 10.3109/19401736.2015.1053065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial genome sequence of Polistes jokahamae (Radoszkowski, 1887) (Hymenoptera: Vespidae) (GenBank accession no. KR052468) was sequenced. The current length with partial A + T-rich region of this mitochondrial genome is 16,616 bp. All the typical mitochondrial genes were sequenced except for three tRNAs (trnI, trnQ, and trnY) located between the A + T-rich region and nad2. At least three rearrangement events occurred in the sequenced region compared with the pupative ancestral arrangement of insects, corresponding to the shuffling of trnK and trnD, translocation or remote inversion of tnnY and translocation of trnL1. All protein-coding genes start with ATN codons. Eleven, one, and another one protein-coding genes stop with termination codon TAA, TA, and T, respectively. Phylogenetic analysis using the Bayesian method based on all codon positions of the 13 protein-coding genes supports the monophyly of Vespidae and Formicidae. Within the Formicidae, the Myrmicinae and Formicinae form a sister lineage and then sister to the Dolichoderinae, while within the Vespidae, the Eumeninae is sister to the lineage of Vespinae + Polistinae.
Collapse
Affiliation(s)
- Sheng-Nan Song
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology , Institute of Insect Sciences, Zhejiang University , Hangzhou , China and
| | - Peng-Yan Chen
- b Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China
| | - Shu-Jun Wei
- b Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China
| | - Xue-Xin Chen
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology , Institute of Insect Sciences, Zhejiang University , Hangzhou , China and
| |
Collapse
|
27
|
Yang S, Li X, Cai LG, Qian ZQ. Characterization of the complete mitochondrial genome of Formica selysi (Insecta: Hymenoptera: Formicidae: Formicinae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3378-80. [PMID: 25703846 DOI: 10.3109/19401736.2015.1018229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome of Formica selysi has been assembled from Illumina sequencing data with an average coverage of 2733X. The circular genome was 16,752 bp in length, and consists of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and one D-loop region. All PCGs initiated with ATN codons and terminated with the TAA codon. The nucleotide composition was highly asymmetric (40.33% A, 11.07% C, 5.66% G and 42.94% T) with an overall GC content of 16.73%. Unlike those of most other insects, the mitochondrial genome of F. selysi was characterized by an obviously high proportion of intergenic spacers. These data would contribute to the evolutionary studies of this and related ant taxa.
Collapse
Affiliation(s)
- Sen Yang
- a College of Life Sciences, Shaanxi Normal University , Xi'an , Shaanxi , P. R. China .,b Department of Physical Education , Xianyang Normal University , Xianyang , Shaanxi , P. R. China , and
| | - Xin Li
- c State Key Laboratory of Plant Cell and Chromosome Engineering , National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , P. R. China
| | - Lei-Gang Cai
- a College of Life Sciences, Shaanxi Normal University , Xi'an , Shaanxi , P. R. China
| | - Zeng-Qiang Qian
- a College of Life Sciences, Shaanxi Normal University , Xi'an , Shaanxi , P. R. China
| |
Collapse
|
28
|
Two nearly complete mitogenomes of wheat stem borers, Cephus pygmeus (L.) and Cephus sareptanus Dovnar-Zapolskij (Hymenoptera: Cephidae): an unusual elongation of rrnS gene. Gene 2015; 558:254-64. [PMID: 25576223 DOI: 10.1016/j.gene.2014.12.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/24/2014] [Accepted: 12/31/2014] [Indexed: 11/23/2022]
Abstract
Two nearly complete mitochondrial genomes (mitogenomes) of wheat stem borers, Cephus pygmeus and Cephus sareptanus (Hymenoptera: Cephidae), were sequenced, characterised and compared with the previously known mitogenome of Cephus cinctus. The gene orders are mostly conserved, except for translocation of trnM and swapped position of trnI and trnQ. An A+T bias was found, but a deviation from strand asymmetry was also detected on the J strand. All protein coding genes (PCGs) are initiated by ATN codons, except for nad1, nad2 and atp8, and all are terminated with TAA, TA- or T- as a stop codon. The predicted secondary structures of rrnS and rrnL genes are mostly consistent with reported hymenopteran species. However, an unusual elongation in rrnS, not know elsewhere in the order, was discovered in Cephus species. Three autonomous sequences detected in domains I and II are mainly responsible for the length expansions.
Collapse
|
29
|
Mao M, Gibson T, Dowton M. Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes. Mol Phylogenet Evol 2014; 84:34-43. [PMID: 25542648 DOI: 10.1016/j.ympev.2014.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/27/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022]
Abstract
Higher-level hymenopteran relationships remain unresolved in both morphological and molecular analyses. In this study, we present the most comprehensive analyses of hymenopteran relationships based on 48 mitochondrial (mt) genomes. One complete and two nearly complete mt genomes representing three hymenopteran superfamilies were newly sequenced. We assessed the influence of inclusion/exclusion of 3rd codon positions, alignment approaches, partition schemes and phylogenetic approaches on topology and nodal support within the Hymenoptera. The results showed that the topologies were sensitive to the variation of dataset and analytical approach. However, some robust and highly supported relationships were recovered: the Ichneumonomorpha was monophyletic; the Trigonalyoidea+Megalyroidea and the Diaprioidea+Chalcidoidea were consistently recovered; the Cynipoidea was generally recovered as the sister group to the Diaprioidea+Chalcidoidea. In addition, the monophyletic Aculeata and Proctotrupomorpha were recovered in some analyses. Several gene rearrangements were detected in each of the three newly sequenced mt genomes. Specifically, the Ibalia leucospoides mt genome harbors a large inversion of a gene block from trnE to trnS2. Inverted, duplicated A+T rich regions were detected in the Ibalia leucospoides mt genome, which probably played an important role during the formation of the large gene block inversion via recombination.
Collapse
Affiliation(s)
- Meng Mao
- Centre for Medical Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Tracey Gibson
- Centre for Medical Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mark Dowton
- Centre for Medical Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
30
|
Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome Biol Evol 2014; 6:3326-43. [PMID: 25480682 PMCID: PMC4466343 DOI: 10.1093/gbe/evu265] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
Insect mitochondrial genomes (mtDNA) are usually double helical and circular molecules containing 37 genes that are encoded on both strands. The arrangement of the genes is not constant for all species, and produces distinct gene orders (GOs) that have proven to be diagnostic in defining clades at different taxonomic levels. In general, it is believed that distinct taxa have a very low chance of sharing identically arranged GOs. However, examples of identical, homoplastic local rearrangements occurring in distinct taxa do exist. In this study, we sequenced the complete mtDNAs of the ants Formica fusca and Myrmica scabrinodis (Formicidae, Hymenoptera) and compared their GOs with those of other Insecta. The GO of F. fusca was found to be identical to the GO of Dytrisia (the largest clade of Lepidoptera). This finding is the first documented case of an identical GO shared by distinct groups of Insecta, and it is the oldest known event of GO convergent evolution in animals. Both Hymenoptera and Lepidoptera acquired this GO early in their evolution. Using a phylogenetic approach combined with new bioinformatic tools, the chronological order of the evolutionary events that produced the diversity of the hymenopteran GOs was determined. Additionally, new local homoplastic rearrangements shared by distinct groups of insects were identified. Our study showed that local and global homoplasies affecting the insect GOs are more widespread than previously thought. Homoplastic GOs can still be useful for characterizing the various clades, provided that they are appropriately considered in a phylogenetic and taxonomic context.
Collapse
Affiliation(s)
- Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Andrea Basso
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNE), University of Padova, Agripolis, Legnaro (PD), Italy Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Antonio Scupola
- Natural History Museum (Museo di Storia Naturale), Verona, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| |
Collapse
|