1
|
Kollmansperger S, Anders M, Werner J, Saller AM, Weiss L, Süß SC, Reiser J, Schneider G, Schusser B, Baumgartner C, Fenzl T. Nociception in Chicken Embryos, Part II: Embryonal Development of Electroencephalic Neuronal Activity In Ovo as a Prerequisite for Nociception. Animals (Basel) 2023; 13:2839. [PMID: 37760239 PMCID: PMC10525651 DOI: 10.3390/ani13182839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Chicken culling has been forbidden in Germany since 2022; male/female selection and male elimination must be brought to an embryonic status prior to the onset of nociception. The present study evaluated the ontogenetic point at which noxious stimuli could potentially be perceived/processed in the brain in ovo. EEG recordings from randomized hyperpallial brain sites were recorded in ovo and noxious stimuli were applied. Temporal and spectral analyses of the EEG were performed. The onset of physiological neuronal signals could be determined at developmental day 13. ERP/ERSP/ITC analysis did not reveal phase-locked nociceptive responses. Although no central nociceptive responses were documented, adequate EEG responses to noxious stimuli from other brain areas cannot be excluded. The extreme stress impact on the embryo during the recording may overwrite the perception of noniceptive stimuli. The results suggest developmental day 13 as the earliest embryonal stage being able to receive and process nociceptive stimuli.
Collapse
Affiliation(s)
- Sandra Kollmansperger
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| | - Malte Anders
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Julia Werner
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Anna M. Saller
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Larissa Weiss
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Stephanie C. Süß
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Judith Reiser
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Gerhard Schneider
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| | - Benjamin Schusser
- Department of Molecular Life Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany;
| | - Christine Baumgartner
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Thomas Fenzl
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| |
Collapse
|
2
|
van Staaveren N, Tobalske BW, Brost J, Sharma R, Beaufrère H, Elias A, Harlander-Matauschek A. Biomechanics of landing in injured and uninjured chickens and the role of meloxicam. Poult Sci 2023; 102:102794. [PMID: 37307632 PMCID: PMC10276282 DOI: 10.1016/j.psj.2023.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
Birds use their legs and wings when transitioning from aerial to ground locomotion during landing. To improve our understanding of the effects of footpad dermatitis (FPD) and keel bone fracture (KBF) upon landing biomechanics in laying hens, we measured ground-reaction forces generated by hens (n = 37) as they landed on force plates (Bertec Corporation, Columbus, OH) from a 30 cm drop or 170 cm jump in a single-blinded placebo-controlled trial using a cross-over design where birds received an anti-inflammatory (meloxicam, 5 mg/kg body mass) or placebo treatment beforehand. We used generalized linear mixed models to test for effects of health status, treatment and their interaction on landing velocity (m/s), maximum resultant force (N), and impulse (force integrated with respect to time [N s]). Birds with FPD and KBF tended to show divergent alterations to their landing biomechanics when landing from a 30 cm drop, with a higher landing velocity and maximum force in KBF compared to FPD birds, potentially indicative of efforts to either reduce the use of their wings or impacts on inflamed footpads. In contrast, at 170 cm jumps fewer differences between birds of different health statuses were observed likely due to laying hens being poor flyers already at their maximum power output. Our results indicate that orthopedic injuries, apart from being welfare issues on their own, may have subtle influences on bird mobility through altered landing biomechanics that should be considered.
Collapse
Affiliation(s)
- Nienke van Staaveren
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Bret W Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Jacob Brost
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Rahul Sharma
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Hugues Beaufrère
- Department of Veterinary Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Audrey Elias
- School of Physical Therapy & Rehabilitation Science, University of Montana, Missoula, MT, USA
| | | |
Collapse
|
3
|
Sanchez-Migallon Guzman D, Hawkins MG. Treatment of Pain in Birds. Vet Clin North Am Exot Anim Pract 2023; 26:83-120. [PMID: 36402490 DOI: 10.1016/j.cvex.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This article provides an overview of the current understanding of evidence-based clinical analgesic use in birds. The field of avian analgesia has dramatically expanded during the last 20 years, affording more options for alleviating both acute and chronic pain. These options include opioids, nonsteroidal anti-inflammatory drugs, local anesthetics, and/or other drugs like gabapentin, amantadine, and cannabinoids, acting at different points in the nociceptive system thereby helping to provide greater pain relief while reducing the risk of adverse effects when combined.
Collapse
Affiliation(s)
- David Sanchez-Migallon Guzman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Michelle G Hawkins
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
4
|
Reyes-Illg G, Martin JE, Mani I, Reynolds J, Kipperman B. The Rise of Heatstroke as a Method of Depopulating Pigs and Poultry: Implications for the US Veterinary Profession. Animals (Basel) 2022; 13:140. [PMID: 36611748 PMCID: PMC9817707 DOI: 10.3390/ani13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Depopulation of food-producing animals is becoming increasingly common in response to both disease outbreaks and supply chain disruptions. In 2019, the American Veterinary Medical Association released depopulation guidelines classifying certain heatstroke-based killing methods as "permitted in constrained circumstances", when circumstances of the emergency constrain reasonable implementation of "preferred" methods. Since then, tens of millions of birds and pigs have been killed by such methods, termed ventilation shutdown (VSD) Plus Heat and VSD Plus High Temperature and Humidity. While no research using validated measures of animal welfare assessment has been performed on these methods, their pathophysiology suggests that animals are likely to experience pain, anxiety, nausea, and heat distress prior to loss of consciousness. Heatstroke-based methods may result in prolonged suffering and often do not achieve 100% mortality. Potential and available alternative depopulation methods are briefly reviewed. The veterinary profession's ethical obligation to protect animal welfare in the context of depopulations is discussed.
Collapse
Affiliation(s)
| | - Jessica E. Martin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - James Reynolds
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Barry Kipperman
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Houck EL, Petritz OA, Chen LR, Fletcher OJ, Thomson AE, Flammer K. Clinicopathologic, Gross Necropsy, and Histopathologic Effects of High-Dose, Repeated Meloxicam Administration in Rhode Island Red Chickens (Gallus gallus domesticus). J Avian Med Surg 2022; 36:128-139. [DOI: 10.1647/20-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Wang WC, Yan FF, Hu JY, Amen OA, Cheng HW. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J Anim Sci 2018. [PMID: 29528406 DOI: 10.1093/jas/sky092] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Probiotics reduce stress-related inflammation and abnormal behaviors in humans and rodents via regulation of the microbiota-gut-brain axis. The objective of this study was to determine if probiotic, Bacillus subtilis, has similar functions in broiler chickens under heat stress (HS). Two hundred forty 1-d-old broiler chicks were assigned to 48 pens with 4 treatments: Thermoneutral (TN)-RD (regular diet), TN-PD (the regular diet mixed with 1 × 106 CFU/g feed probiotic), HS-RD and HS-PD. Probiotic (Sporulin) was fed from day 1; and HS at 32°C for 10 h daily was initiated at day 15. The data showed that final BW, average daily gain , and feed conversion efficiency were improved in PD groups as compared to RD groups regardless of the ambient temperature (P < 0.01). Heterophil to lymphocyte ratio was affected by treatment and its value was in the order of HS-RD > HS-PD > TN-RD > TN-PD birds (P < 0.01). Compared to TN birds, HS birds spent more time in wing spreading, panting, squatting close to the ground, drinking, sleeping, dozing, and sitting but spent less time in eating, standing, and walking (P < 0.05 or 0.01). In addition, HS birds had greater levels of hepatic IL-6, IL-10, heat shock protein (HSP)70, and HSP70 mRNA expression (P < 0.01) and greater levels of cecal IgA and IgY (P < 0.01) compared to TN birds. Within TN groups, TN-PD birds had greater concentrations of hepatic IL-10 (P < 0.05) and cecal IgA (P < 0.01) than TN-RD birds. Within HS groups, HS-PD birds spent less time in wing spreading, panting, squatting close to the ground, drinking, sleeping, dozing, and sitting but spent more time in eating, foraging, standing, and walking than HS-RD birds (P < 0.05 or 0.01). The HS-PD birds also had lower concentrations of hepatic IL-6 and HSP70 (P < 0.01), whereas greater levels of IL-10 (P < 0.05) and lower concentrations of cecal IgA and IgY (P < 0.01). These results indicate that broilers fed the probiotic, B. subtilis, are able to cope with HS more effectively by ameliorating heat-induced behavioral and inflammatory reactions through regulation of microbiota-modulated immunity.
Collapse
Affiliation(s)
- W C Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - F F Yan
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - J Y Hu
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN
| | - O A Amen
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Assuit University, Egypt
| | - H W Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN
| |
Collapse
|
7
|
Singh PM, Johnson CB, Gartrell B, Mitchinson S, Jacob A, Chambers P. Analgesic effects of morphine and butorphanol in broiler chickens. Vet Anaesth Analg 2017; 44:538-545. [DOI: 10.1016/j.vaa.2016.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/21/2016] [Accepted: 05/03/2016] [Indexed: 11/26/2022]
|
8
|
Di Giminiani P, Sandercock DA, Malcolm EM, Leach MC, Herskin MS, Edwards SA. Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails. Physiol Behav 2016; 165:119-26. [PMID: 27422675 PMCID: PMC5038977 DOI: 10.1016/j.physbeh.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 11/29/2022]
Abstract
The assessment of nociceptive thresholds is employed in animals and humans to evaluate changes in sensitivity potentially arising from tissue damage. Its application on the intact pig tail might represent a suitable method to assess changes in nociceptive thresholds arising from tail injury, such as tail docking or tail biting. The Pressure Application Measurement (PAM) device is used here for the first time on the tail of pigs to determine the reliability of the methods and to provide novel data on mechanical nociceptive thresholds (MNT) associated with four different age groups (9, 17, 24 and 32 weeks) and with proximity of the target region to the body of the animal. We recorded an overall acceptable level of intra-individual reliability, with mean values of CV ranging between 30.1 and 32.6%. Across all age groups, the first single measurement of MNT recorded at region 1 (proximal) was significantly higher (P < 0.05) than the following two. This was not observed at tail regions 2 and 3 (more distal). Age had a significant effect (P < 0.05) on the mean thresholds of nociception with increasing age corresponding to higher thresholds. Furthermore, a significant effect of proximity of tail region to the body was observed (P < 0.05), with MNT being higher in the proximal tail region in pigs of 9, 17 and 24 weeks of age. There was also a significant positive correlation (P < 0.05) between mechanical nociceptive thresholds and age/body size of the animals. To the best of our knowledge, no other investigation of tail nociceptive thresholds has been performed with the PAM device or alternative methods to obtain mechanical nociceptive thresholds in intact tails of pigs of different age/body size. The reliability of the data obtained with the PAM device support its use in the measurement of mechanical nociceptive threshold in pig tails. This methodological approach is possibly suitable for assessing changes in tail stump MNTs after tail injury caused by tail docking and biting. Mechanical nociceptive thresholds were quantified for the first time in pig tails. The PAM device allowed determining anatomical and age-specific thresholds in pigs. A platform for the assessment of painful conditions in pigs is proposed.
Collapse
Affiliation(s)
- Pierpaolo Di Giminiani
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - Dale A Sandercock
- Aarhus University, Department of Animal Science, AU-FOULUM, Tjele, Denmark
| | - Emma M Malcolm
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Matthew C Leach
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mette S Herskin
- Animal and Veterinary Science Research Group, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH16 4SA, United Kingdom
| | - Sandra A Edwards
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|