1
|
Gorobeyko UV, Sheremetyeva IN, Kazakov DV, Guskov VY. A new type of tandem repeats in Myotis petax (Chiroptera, Vespertilionidae) mitochondrial control region. Mol Biol Rep 2023; 50:5137-5146. [PMID: 37115485 DOI: 10.1007/s11033-023-08468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Tandem repeats in mitochondrial DNA control region are known to different animal taxa, including bat species of the family Vespertilionidae. The long R1-repeats in the bat ETAS-domain are often presented in a variable copy number and may exhibit both inter-individual and intra-individual sequence diversity. The function of repeats in the control region is still unclear, but it has been shown that repetitive sequences in some animal groups (shrews, cats and sheep) may include parts of ETAS1 and ETAS2 conservative blocks of mitochondrial DNA. METHODS AND RESULTS Analysis of the control region sequences for 31 Myotis petax specimens allowed the identification of the inter-individual variability and clarification of the composition of the R1-repeats. The copy number of the R1-repeats varies from 4 to 7 in individuals. The specimens examined do not exhibit a size heteroplasmy previously described for Myotis species. The unusual short 30 bp R1-repeats have been detected in M. petax for the first time. The ten specimens from Amur Region and Primorsky Territory have one or two copies of these additional repeats. CONCLUSIONS It was determined that the R1-repeats in M. petax control region consist of parts of the ETAS1 and ETAS2 blocks. The origin of the additional repeats seems to be related to the 51 bp deletion in the central part of the R1-repeat unit and subsequent duplication. Comparison of repetitive sequences in the control region of closely-related Myotis species identified the occurrence of incomplete repeats also resulting from the short deletions, but distinct from additional repeats of M. petax.
Collapse
Affiliation(s)
- Uliana Vasilievna Gorobeyko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, 159 Prospect Stoletiya St., Vladivostok, 690022, Russia.
| | - Irina Nikolaevna Sheremetyeva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, 159 Prospect Stoletiya St., Vladivostok, 690022, Russia
| | - Denis Vasilievich Kazakov
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 6 Volodarskogo St., Tyumen, 625003, Russia
| | - Valentin Yurievich Guskov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, 159 Prospect Stoletiya St., Vladivostok, 690022, Russia
| |
Collapse
|
2
|
Zhang G, Geng D, Guo Q, Liu W, Li S, Gao W, Wang Y, Zhang M, Wang Y, Bu Y, Niu H. Genomic landscape of mitochondrial DNA insertions in 23 bat genomes: characteristics, loci, phylogeny, and polymorphism. Integr Zool 2021; 17:890-903. [PMID: 34496458 DOI: 10.1111/1749-4877.12582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of mitochondrial DNA to the nuclear genome gives rise to the nuclear DNA sequences of mitochondrial origin (NUMTs), considered as a driving force in genome evolution. In this study, NUMTs in 23 bat genomes were investigated and compared systematically. The results showed that NUMTs existed in 22 genomes except for Noctilio leporinus, suggesting that mitochondrial fragment insertion in the nuclear genome was a common event in bat genomes. However, remarkable variations in NUMTs number, cumulative length, and proportion in the nuclear genome were discovered across bat species. Further orthologous NUMT loci analysis of the Phyllostomidae family indicated that the NUMTs insertion events in bat genomes were homoplasy-free. The NUMTs were mainly inserted into the intergenic regions, particularly, co-localized with repetitive sequences (especially transposable elements). However, several NUMTs were inserted into genes, some of which were in the exon region of functional genes. One NUMT in the genome of Pteropus alecto surprisingly matched with cDNA of ATP8B3 that provided evidence of NUMTs with coding function. Phylogenic analysis on NUMTs originating from COXI and COXII loci highlighted 2 clusters of Yinpterochiroptera and Yangochiroptera for Chiroptera. Seven NUMTs from Rhinolophus ferrumequinum were amplified, and the sequencing results confirmed the reliability of the NUMT analysis. One of them was polymorphic for the presence or absence of the NUMT insertion, and each genotype of NUMT loci showed a distinct regional distribution pattern. The information obtained in this study provides novel insights into the NUMT organization and features in bat genomes and establishes a basis for further studying of the evolution of bat species.
Collapse
Affiliation(s)
- Guojun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Deqi Geng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qiulin Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wei Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yongfei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Min Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yilin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanzhen Bu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hongxing Niu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Gariboldi MC, Inserra PIF, Lucero S, Failla M, Perez SI, Vitullo AD. Unexpected low genetic variation in the South American hystricognath rodent Lagostomus maximus (Rodentia: Chinchillidae). PLoS One 2019; 14:e0221559. [PMID: 31513588 PMCID: PMC6742371 DOI: 10.1371/journal.pone.0221559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
The South American plains vizcacha, Lagostomus maximus inhabits primarily the Pampean and adjoining Espinal, Monte and Chaquenean regions of Argentina. In order to study the population genetic structure of L. maximus, a fragment of 560 bp of the mitochondrial DNA hypervariable region 1from 90 individuals collected from the 3 subspecies and 8 groups along Argentina was amplified and analyzed. We found 9 haplotypes. The haplotype network did not show an apparent phylogeographical signal. Although low levels of genetic variation were found in all the subspecies and groups analyzed, a radiation of L. maximus would have occurred from the North and Center of the Pampean region toward the rest of its geographic range in Argentina. Low levels of genetic diversity, the existence of a single genetically distinct population in Argentina and changes of its effective size indicate that metapopulation processes and changes in human population dynamics during the late-Holocene were important factors shaping the population genetic structure of L. maximus in Argentina.
Collapse
Affiliation(s)
- María Constanza Gariboldi
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sergio Lucero
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- División de Mastozoología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Sergio Iván Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Feijó A, Wang Y, Sun J, Li F, Wen Z, Ge D, Xia L, Yang Q. Research trends on bats in China: A twenty-first century review. Mamm Biol 2019; 98:163-172. [PMID: 32218717 PMCID: PMC7091750 DOI: 10.1016/j.mambio.2019.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/07/2019] [Indexed: 12/25/2022]
Abstract
In this century, China has sustained unparalleled economic development, leading to exponentially growing investments in scientific research. Yet, the demand for research-funding is large and tracing the current knowledge is a key step to define priority research topics. In this same span, studies on bats in China have uncovered an overlooked diversity and revealed novelties in bats’ evolutionary history and life-history aspects. All this 21st-century knowledge, however, is scattered and a large part is concealed from most of the international scientific community in Mandarin-language articles. Here, we summarize the post-millennium (2000–2017) research on bats in China and point out trends and future directions based on neglected topics, groups, and regions. In addition, we provide an up-to-date list of bat species in China. We retrieved 594 publications related to bats in China, nearly half were written in Mandarin. At least 147 bat species are present in China, which places it among the most bat-rich countries in the world. There was a significant positive trend on the number of publications, from 12.5 annual average in 2000–2005 to 46.5 in recent years, reflecting the Chinese economic-scientific development in this century. We found marked taxonomic and spatial biases. Half of the studies in this century focused on Rhinolophus, Myotis, and Hipposideros, and the southern and eastern provinces were the most studied. Systematic/taxonomy and Ecology were the predominant topics post-millennium, whereas only 10 articles have clear conservation-driven goals. Our review shows that the majority of studies were focused on the least concern, cave-dweller species, and on bat-rich provinces. Future projects should address the effects of human-modified landscapes on bat community to define proper conservation actions. We discuss some priority actions and projects that will help to enhance bat protection in China.
Collapse
Affiliation(s)
- Anderson Feijó
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Yanqun Wang
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China.,Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang College, 415000 Xichang, Sichuan Province, China
| | - Jian Sun
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Feihong Li
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Zhixin Wen
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Deyan Ge
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Lin Xia
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Qisen Yang
- 119Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
5
|
Jebb D, Foley NM, Whelan CV, Touzalin F, Puechmaille SJ, Teeling EC. Population level mitogenomics of long-lived bats reveals dynamic heteroplasmy and challenges the Free Radical Theory of Ageing. Sci Rep 2018; 8:13634. [PMID: 30206380 PMCID: PMC6134106 DOI: 10.1038/s41598-018-31093-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Bats are the only mammals capable of true, powered flight, which drives an extremely high metabolic rate. The "Free Radical Theory of Ageing" (FTRA) posits that a high metabolic rate causes mitochondrial heteroplasmy and the progressive ageing phenotype. Contrary to this, bats are the longest-lived order of mammals given their small size and high metabolic rate. To investigate if bats exhibit increased mitochondrial heteroplasmy with age, we performed targeted, deep sequencing of mitogenomes and measured point heteroplasmy in wild, long lived Myotis myotis. Blood was sampled from 195 individuals, aged between <1 and at 6+ years old, and whole mitochondria deep-sequenced, with a subset sampled over multiple years. The majority of heteroplasmies were at a low frequency and were transitions. Oxidative mutations were present in only a small number of individuals, suggesting local oxidative stress events. Cohort data showed no significant increase in heteroplasmy with age, while longitudinal data from recaptured individuals showed heteroplasmy is dynamic, and does not increase uniformly over time. We show that bats do not suffer from the predicted, inevitable increase in heteroplasmy as posited by the FRTA, instead heteroplasmy was found to be dynamic, questioning its presumed role as a primary driver of ageing.
Collapse
Affiliation(s)
- David Jebb
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole M Foley
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Conor V Whelan
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Frédéric Touzalin
- Laboratoire Evolution et Diversité Biologique, Université Toulouse 3, Paul Sabatier, 31062, Toulouse Cedex 09, France
| | - Sebastien J Puechmaille
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Applied Zoology and Conservation, Zoological Institute, Greifswald University, Greifswald, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Shi H, Xing Y, Mao X. The little brown bat nuclear genome contains an entire mitochondrial genome: Real or artifact? Gene 2017; 629:64-67. [PMID: 28754635 DOI: 10.1016/j.gene.2017.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Nuclear mitochondrial DNA sequences (NUMTs) have been documented in almost all eukaryotic genomes studied. Recently, with the number of sequenced genomes increasing, extremely large NUMTs, even a nearly entire mitochondrial genome, have been reported in some plants and animals. However, few such studies provided strong experimental evidences for these important discoveries. In this study using a computer-based search method an entire mitochondrial genome (NUMT-1) was found in the nuclear genome of a bat species (Myotis lucifugus). This super-large NUMT shared a same scaffold with a 754bp nuclear genomic sequence and a second NUMT (NUMT-2, 3292bp). If NUMT-1 was real, it will be the largest NUMT found in animals and this finding will provide valuable insights into the mode of generation of NUMTs in the nuclear genome. Unfortunately, although the initial sequencing technology of the published M. lucifugus genome makes the possibility of artifact less likely, our results from both the PCR amplification followed by Sanger sequencing and mapping method based on the whole-genome resequencing datasets suggested that the scaffold containing the entire mitochondrial genome was artifact possibly due to a misassembly of mitochondrial and the nuclear DNA sequences. Our current study highlights the necessity to validate the authenticity of extremely large NUMTs identified in previous searches on whole-genome sequence assemblies.
Collapse
Affiliation(s)
- Huizhen Shi
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Yutong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
7
|
Chimeric mitochondrial peptides from contiguous regular and swinger RNA. Comput Struct Biotechnol J 2016; 14:283-97. [PMID: 27453772 PMCID: PMC4942731 DOI: 10.1016/j.csbj.2016.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist. Chimeric peptides are translated from contiguous regular and swinger RNA They are 200x rarer than mitochondrial swinger peptides Chimeric peptides integrated in regular mitochondrial proteins are downregulated Contiguous regular parts are matched positive controls for swinger parts The last point validates results beyond other statistical tests for robustness
Collapse
|
8
|
Shi H, Dong J, Irwin DM, Zhang S, Mao X. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera). Gene 2016; 581:161-9. [DOI: 10.1016/j.gene.2016.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
|