1
|
Xu Y, Chang L, Chen Y, Dan Z, Zhou L, Tang J, Deng L, Tang G, Li C. USP26 Combats Age-Related Declines in Self-Renewal and Multipotent Differentiation of BMSC by Maintaining Mitochondrial Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406428. [PMID: 39377219 DOI: 10.1002/advs.202406428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Age-related declines in self-renewal and multipotency of bone marrow mesenchymal stem cells (BMSCs) limit their applications in tissue engineering and clinical therapy. Thus, understanding the mechanisms behind BMSC senescence is crucial for maintaining the rejuvenation and multipotent differentiation capabilities of BMSCs. This study reveals that impaired USP26 expression in BMSCs leads to mitochondrial dysfunction, ultimately resulting in aging and age-related declines in the self-renewal and multipotency of BMSCs. Specifically, decreased USP26 expression results in decreased protein levels of Sirtuin 2 due to its ubiquitination degradation, which leads to mitochondrial dysfunction in BMSCs and ultimately resulting in aging and age-related declines in self-renewal and multilineage differentiation potentials. Additionally, decreased USP26 expression in aging BMSCs is a result of dampened hypoxia-inducible factor 1α (HIF-1α) expression. HIF-1α facilitates USP26 transcriptional expression by increasing USP26 promoter activity through binding to the -191 - -198 bp and -262 - -269 bp regions on the USP26 promoter. Therefore, the identification of USP26 as being correlated with aging and age-related declines in self-renewal and multipotency of BMSCs, along with understanding its expression and action mechanisms, suggests that USP26 represents a novel therapeutic target for combating aging and age-related declines in the self-renewal and multipotent differentiation of BMSCs.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Leilei Chang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yong Chen
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu Province, 215300, China
- Institute of Traumatology and Orthopedics, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu Province, 215300, China
| | - Zhou Dan
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Li Zhou
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu Province, 215300, China
- Institute of Traumatology and Orthopedics, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu Province, 215300, China
| | - Jiyuan Tang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Guoqing Tang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu Province, 215300, China
- Institute of Traumatology and Orthopedics, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu Province, 215300, China
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| |
Collapse
|
2
|
Chen WF, Chuang JMJ, Yang SN, Chen NF, Bhattacharya M, Liu HT, Dhama K, Chakraborty C, Wen ZH. Gene expression profiling and the isocitrate dehydrogenase mutational landscape of temozolomide‑resistant glioblastoma. Oncol Lett 2024; 28:378. [PMID: 38939621 PMCID: PMC11209862 DOI: 10.3892/ol.2024.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/09/2024] [Indexed: 06/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer that occurs more frequently than other brain tumors. The present study aimed to reveal a novel mechanism of temozolomide resistance in GBM using bioinformatics and wet lab analyses, including meta-Z analysis, Kaplan-Meier survival analysis, protein-protein interaction (PPI) network establishment, cluster analysis of co-expressed gene networks, and hierarchical clustering of upregulated and downregulated genes. Next-generation sequencing and quantitative PCR analyses revealed downregulated [tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 1 (TIE1), calcium voltage-gated channel auxiliary subunit α2Δ1 (CACNA2D1), calpain 6 (CAPN6) and a disintegrin and metalloproteinase with thrombospondin motifs 6 (ADAMTS6)] and upregulated [serum amyloid (SA)A1, SAA2, growth differentiation factor 15 (GDF15) and ubiquitin specific peptidase 26 (USP26)] genes. Different statistical models were developed for these genes using the Z-score for P-value conversion, and Kaplan-Meier plots were constructed using several patient cohorts with brain tumors. The highest number of nodes was observed in the PPI network was for ADAMTS6 and TIE1. The PPI network model for all genes contained 35 nodes and 241 edges. Immunohistochemical staining was performed using isocitrate dehydrogenase (IDH)-wild-type or IDH-mutant GBM samples from patients and a significant upregulation of TIE1 (P<0.001) and CAPN6 (P<0.05) protein expression was demonstrated in IDH-mutant GBM in comparison with IDH-wild-type GBM. Structural analysis revealed an IDH-mutant model demonstrating the mutant residues (R132, R140 and R172). The findings of the present study will help the future development of novel biomarkers and therapeutics for brain tumors.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Jimmy Ming-Jung Chuang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - San-Nan Yang
- Department of Pediatrics, E-DA Hospital, School of Medicine, College of Medicine I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan, R.O.C
| | | | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan, R.O.C
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agriculture Research-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
3
|
Liu X, Wang M, Wang Q, Zhang H. A ubiquitin-proteasome system-related signature to predict prognosis, immune infiltration, and therapy efficacy for breast cancer. Immunol Res 2024; 72:368-382. [PMID: 38036900 DOI: 10.1007/s12026-023-09440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an essential regulatory system for maintaining homeostasis, and its dysfunction may cause various diseases. The activity of proteasome and ubiquitin-conjugating enzymes has been found to be greatly increased in breast cancer (BC), indicating that the heterogeneity of UPS may be related to the progression of BC. Gene data was obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases and performed in multiple algorithms to construct a UPS-related signature for BC. Patients in the UPS low-risk group had greater overall and recurrence-free survival probability than those in the UPS high-risk group. This signature was closely associated with functional enrichment. Some high metabolism-related pathways were more active in the UPS high-risk group. The UPS low-risk group had more abundant anti-tumor immune cells, while in the UPS high-risk group, immunosuppressive cells were dominant. More importantly, we found that the UPS low-risk group was more sensitive to immunotherapy, while the UPS high-risk group responded better to radiotherapy. Drug sensitivity analysis identified more effective chemotherapy drugs in different UPS-related risk groups. This UPS-related signature may serve as a novel biomarker and independent prognostic factor for BC. It can effectively predict prognosis, immune infiltration, and therapy efficacy, providing new strategies for individualized treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meihuan Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Ye Y, Li M, Pan Q, Fang X, Yang H, Dong B, Yang J, Zheng Y, Zhang R, Liao Z. Machine learning-based classification of deubiquitinase USP26 and its cell proliferation inhibition through stabilizing KLF6 in cervical cancer. Comput Biol Med 2024; 168:107745. [PMID: 38064851 DOI: 10.1016/j.compbiomed.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE We aim to accurately distinguish ubiquitin-specific proteases (USPs) from other members within the deubiquitinating enzyme families based on protein sequences. Additionally, we seek to elucidate the specific regulatory mechanisms through which USP26 modulates Krüppel-like factor 6 (KLF6) and assess the subsequent effects of this regulation on both the proliferation and migration of cervical cancer cells. METHODS All the deubiquitinase (DUB) sequences were classified into USPs and non-USPs. Feature vectors, including 188D, n-gram, and 400D dimensions, were extracted from these sequences and subjected to binary classification via the Weka software. Next, thirty human USPs were also analyzed to identify conserved motifs and ascertained evolutionary relationships. Experimentally, more than 90 unique DUB-encoding plasmids were transfected into HeLa cell lines to assess alterations in KLF6 protein levels and to isolate a specific DUB involved in KLF6 regulation. Subsequent experiments utilized both wild-type (WT) USP26 overexpression and shRNA-mediated USP26 knockdown to examine changes in KLF6 protein levels. The half-life experiment was performed to assess the influence of USP26 on KLF6 protein stability. Immunoprecipitation was applied to confirm the USP26-KLF6 interaction, and ubiquitination assays to explore the role of USP26 in KLF6 deubiquitination. Additional cellular assays were conducted to evaluate the effects of USP26 on HeLa cell proliferation and migration. RESULTS 1. Among the extracted feature vectors of 188D, 400D, and n-gram, all 12 classifiers demonstrated excellent performance. The RandomForest classifier demonstrated superior performance in this assessment. Phylogenetic analysis of 30 human USPs revealed the presence of nine unique motifs, comprising zinc finger and ubiquitin-specific protease domains. 2. Through a systematic screening of the deubiquitinase library, USP26 was identified as the sole DUB associated with KLF6. 3. USP26 positively regulated the protein level of KLF6, as evidenced by the decrease in KLF6 protein expression upon shUSP26 knockdown in both 293T and Hela cell lines. Additionally, half-life experiments demonstrated that USP26 prolonged the stability of KLF6. 4. Immunoprecipitation experiments revealed a strong interaction between USP26 and KLF6. Notably, the functional interaction domain was mapped to amino acids 285-913 of USP26, as opposed to the 1-295 region. 5. WT USP26 was found to attenuate the ubiquitination levels of KLF6. However, the mutant USP26 abrogated its deubiquitination activity. 6. Functional biological assays demonstrated that overexpression of USP26 inhibited both proliferation and migration of HeLa cells. Conversely, knockdown of USP26 was shown to promote these oncogenic properties. CONCLUSIONS 1. At the protein sequence level, members of the USP family can be effectively differentiated from non-USP proteins. Furthermore, specific functional motifs have been identified within the sequences of human USPs. 2. The deubiquitinating enzyme USP26 has been shown to target KLF6 for deubiquitination, thereby modulating its stability. Importantly, USP26 plays a pivotal role in the modulation of proliferation and migration in cervical cancer cells.
Collapse
Affiliation(s)
- Ying Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Meng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qilong Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xin Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China; Laboratory of Non-communicable Chronic Disease Control, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, China
| | - Hong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Bingying Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jiaying Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Renxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
5
|
Guo Y, Cui S, Chen Y, Guo S, Chen D. Ubiquitin specific peptidases and prostate cancer. PeerJ 2023; 11:e14799. [PMID: 36811009 PMCID: PMC9939025 DOI: 10.7717/peerj.14799] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/04/2023] [Indexed: 02/18/2023] Open
Abstract
Protein ubiquitination is an important post-translational modification mechanism, which regulates protein stability and activity. The ubiquitination of proteins can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific proteases (USPs), the largest DUB subfamily, can regulate cellular functions by removing ubiquitin(s) from the target proteins. Prostate cancer (PCa) is the second leading type of cancer and the most common cause of cancer-related deaths in men worldwide. Numerous studies have demonstrated that the development of PCa is highly correlated with USPs. The expression of USPs is either high or low in PCa cells, thereby regulating the downstream signaling pathways and causing the development or suppression of PCa. This review summarized the functional roles of USPs in the development PCa and explored their potential applications as therapeutic targets for PCa.
Collapse
Affiliation(s)
- Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
6
|
Real FM, Lao-Pérez M, Burgos M, Mundlos S, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:231-244. [PMID: 35535962 DOI: 10.1002/jez.b.23142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-β signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.
Collapse
Affiliation(s)
- Francisca M Real
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
7
|
Tang J, Luo Y, Xiao L. USP26 promotes anaplastic thyroid cancer progression by stabilizing TAZ. Cell Death Dis 2022; 13:326. [PMID: 35397626 PMCID: PMC8994751 DOI: 10.1038/s41419-022-04781-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive human malignancies, with no effective treatment currently available. The Hippo tumor suppressor pathway is highly conserved in mammals and plays an important role in carcinogenesis. TAZ is one of major key effectors of the Hippo pathway. However, the mechanism supporting abnormal TAZ expression in ATC remains to be characterized. In the present study, we identified USP26, a DUB enzyme in the ubiquitin-specific proteases family, as a bona fide deubiquitylase of TAZ in ATC. USP26 was shown to interact with, deubiquitylate, and stabilize TAZ in a deubiquitylation activity-dependent manner. USP26 depletion significantly decreased ATC cell proliferation, migration, and invasion. The effects induced by USP26 depletion could be rescued by further TAZ overexpression. Depletion of USP26 decreased the TAZ protein level and the expression of TAZ/TEAD target genes in ATC, including CTGF, ANKRD1, and CYR61. In general, our findings establish a previously undocumented catalytic role for USP26 as a deubiquitinating enzyme of TAZ and provides a possible target for the therapy of ATC.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Liver Surgery, Xiangya Hospital, Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Central South University, Changsha, China.
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Xiao
- Department of Liver Surgery, Xiangya Hospital, Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Central South University, Changsha, China.
| |
Collapse
|
8
|
Xiong Y, Yu C, Zhang Q. Ubiquitin-Proteasome System-Regulated Protein Degradation in Spermatogenesis. Cells 2022; 11:1058. [PMID: 35326509 PMCID: PMC8947704 DOI: 10.3390/cells11061058] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a prolonged and highly ordered physiological process that produces haploid male germ cells through more than 40 steps and experiences dramatic morphological and cellular transformations. The ubiquitin proteasome system (UPS) plays central roles in the precise control of protein homeostasis to ensure the effectiveness of certain protein groups at a given stage and the inactivation of them after this stage. Many UPS components have been demonstrated to regulate the progression of spermatogenesis at different levels. Especially in recent years, novel testis-specific proteasome isoforms have been identified to be essential and unique for spermatogenesis. In this review, we set out to discuss our current knowledge in functions of diverse USP components in mammalian spermatogenesis through: (1) the composition of proteasome isoforms at each stage of spermatogenesis; (2) the specificity of each proteasome isoform and the associated degradation events; (3) the E3 ubiquitin ligases mediating protein ubiquitination in male germ cells; and (4) the deubiquitinases involved in spermatogenesis and male fertility. Exploring the functions of UPS machineries in spermatogenesis provides a global picture of the proteome dynamics during male germ cell production and shed light on the etiology and pathogenesis of human male infertility.
Collapse
Affiliation(s)
- Yi Xiong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Zhejiang University, Sir Run Run Shaw Hospital, 3 East Qing Chun Rd, Hangzhou 310020, China;
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
9
|
The osteoprotective role of USP26 in coordinating bone formation and resorption. Cell Death Differ 2022; 29:1123-1136. [PMID: 35091692 PMCID: PMC9177963 DOI: 10.1038/s41418-021-00904-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Bone homeostasis is maintained through a balance of bone formation by osteoblasts and bone resorption by osteoclasts. Ubiquitin-specific proteases (USPs) are involved in regulating bone metabolism by preserving bone formation or antagonizing bone resorption. However, the specific USPs that maintain bone homeostasis by orchestrating bone formation and bone resorption simultaneously are poorly understood. Here, we identified USP26 as a previously unknown regulator of bone homeostasis that coordinates bone formation and resorption. Mechanistically, USP26 stabilizes β-catenin to promote the osteogenic activity of mesenchymal cells (MSCs) and impairs the osteoclastic differentiation of bone myelomonocytes (BMMs) by stabilizing inhibitors of NF-κBα (IκBα). Gain-of-function experiments revealed that Usp26 supplementation significantly increased bone regeneration in bone defects in aged mice and decreased bone loss resulting from ovariectomy. Taken together, these data show the osteoprotective effect of USP26 via the coordination of bone formation and resorption, suggesting that USP26 represents a potential therapeutic target for osteoporosis.
Collapse
|
10
|
A novel frameshift mutation in ubiquitin-specific protease 26 gene in a patient with severe oligozoospermia. Biosci Rep 2021; 40:222437. [PMID: 32202304 PMCID: PMC7198038 DOI: 10.1042/bsr20191902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin-specific protease 26 (USP26) encodes a predicted protein containing his- and cys- domains that are conserved among deubiquitinating enzymes. USP26 is specifically expressed in testis tissue and is a potential infertility gene. In the present study, we performed genetic testing related to spermatogenesis impairment in a patient with idiopathic severe oligozoospermia to identify the cause. The patient underwent clinical examination and reproductive hormone testing. Genes associated with male infertility, including USP26, were assessed by targeted exome sequencing. A novel frameshift mutation, c.2195delT (p.Phe732Serfs*14), was identified in USP26. This frameshift mutation was located in residue 732 of USP26 gene, leading to loss of the conserved deubiquitinating enzyme His-domain and producing a truncated protein of 744 amino acids. Bioinformatics analysis revealed this mutation to be pathogenic. A novel framshift mutation c.2195delT (p.Phe732Serfs*14) in USP26 gene was reported to be associated with male infertility in a Chinese patient with severe oligozoospermia.
Collapse
|
11
|
Tian H, Huo Y, Zhang J, Ding S, Wang Z, Li H, Wang L, Lu M, Liu S, Qiu S, Zhang Q. Disruption of ubiquitin specific protease 26 gene causes male subfertility associated with spermatogenesis defects in mice†. Biol Reprod 2020; 100:1118-1128. [PMID: 30561524 DOI: 10.1093/biolre/ioy258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 11/01/2017] [Accepted: 12/15/2018] [Indexed: 11/14/2022] Open
Abstract
Ubiquitin-specific protease 26 (USP26) is an X-linked gene exclusively expressed in the testis and codes for the USP26, a peptidase enzyme that belongs to the deubiquitinating enzyme family. Recent studies have indicated that mutations in USP26 affect spermatogenesis and are associated with male infertility in humans and mice. However, the exact role of USP26 in spermatogenesis and how it affects male reproduction remains unknown. In this study, we generated a conventional Usp26 knockout mouse model and found that deletion of Usp26 in male mice (Usp26-/Y) leads to significantly reduced pup numbers per litter and significantly increased intervals between two consecutive offspring. We also found that the serum follicle stimulating hormone and testosterone levels of adult Usp26-/Y mice were significantly decreased compared to those of Usp26+/Y mice. Histological examination results showed that Usp26-/Y mice had significantly increased percentage of abnormal seminiferous tubules at different ages. Flow cytometry results exhibited that Usp26-/Y mice had significantly reduced percentage of mature haploid cells in the testes compared to Usp26+/Y mice. Sperm counts in epididymis were also significantly declined in Usp26-/Y mice compared to those in Usp26+/Y mice. Immunohistochemistry and immunofluorescence staining and immunoprecipitation analysis results showed that USP26 and androgen receptor were co-localized in mouse testicular cells at different ages and they both had physiological interactions. All these results demonstrated that the loss of Usp26 affects spermatogenesis and hormone secretion and causes male subfertility. Our study also provides the evidence on the interactions between USP26 and androgen receptor in mouse testis, whereby pointing to a potential mechanism.
Collapse
Affiliation(s)
- Hong Tian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yongwei Huo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jie Zhang
- Dalian Municipal Women and Children's Medical Center, Dalian, Liaoning, China
| | - Shangshu Ding
- Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhiyong Wang
- Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hecheng Li
- Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lirong Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ming Lu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sen Liu
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shudong Qiu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Center for Aging.,Tulane Cancer Center, Louisiana Cancer Research Consortium
| |
Collapse
|
12
|
Arafat M, Zeadna A, Levitas E, Har Vardi I, Samueli B, Shaco-Levy R, Dabsan S, Lunenfeld E, Huleihel M, Parvari R. Novel mutation in USP26 associated with azoospermia in a Sertoli cell-only syndrome patient. Mol Genet Genomic Med 2020; 8:e1258. [PMID: 32410375 PMCID: PMC7336752 DOI: 10.1002/mgg3.1258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Ubiquitin‐Specific Peptidase 26 (USP26), located on the X chromosome, encodes a deubiquitinating enzyme expressed mainly in testis, where it regulates protein turnover during spermatogenesis and modulates the ubiquitination levels of the Androgen Receptor (AR), and as a consequence, affects AR signaling. Methods The patient was thoroughly characterized clinically. He was genetically tested by chromosome analysis and whole exome sequencing (WES). Results The patient was diagnosed with Sertoli cell‐only syndrome pattern (SCOS). The WES analysis revealed only the variation in USP26: causing p.P469S in a highly evolutionary conserved amino acid as the possible cause for SCOS. The literature search identified 34 single variations and 14 clusters of variations in USP26 that were associated with male infertility. Only one of the 22 variations and of one cluster of three mutations tested for ubiquitination activity was found as damaging. Only one out of six variations tested for effect on AR function was found as damaging. Thus, the association of USP26 with male fertility was questioned. Conclusions The finding in our patient and the discussion on the reviewed literature support a possible role for USP26 in male fertility.
Collapse
Affiliation(s)
- Maram Arafat
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Atif Zeadna
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu Levitas
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Iris Har Vardi
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benzion Samueli
- Department of Pathology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruth Shaco-Levy
- Department of Pathology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Salam Dabsan
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eitan Lunenfeld
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch. Cells 2020; 9:cells9030676. [PMID: 32164318 PMCID: PMC7140672 DOI: 10.3390/cells9030676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Male factor infertility is a problem in today’s society but many underlying causes are still unknown. The generation of a conditional Sertoli cell (SC)-specific connexin 43 (Cx43) knockout mouse line (SCCx43KO) has provided a translational model. Expression of the gap junction protein Cx43 between adjacent SCs as well as between SCs and germ cells (GCs) is known to be essential for the initiation and maintenance of spermatogenesis in different species and men. Adult SCCx43KO males show altered spermatogenesis and are infertile. Thus, the present study aims to identify molecular mechanisms leading to testicular alterations in prepubertal SCCx43KO mice. Transcriptome analysis of 8-, 10- and 12-day-old mice was performed by next-generation sequencing (NGS). Additionally, candidate genes were examined by qRT-PCR and immunohistochemistry. NGS revealed many significantly differentially expressed genes in the SCCx43KO mice. For example, GC-specific genes were mostly downregulated and found to be involved in meiosis and spermatogonial differentiation (e.g., Dmrtb1, Sohlh1). In contrast, SC-specific genes implicated in SC maturation and proliferation were mostly upregulated (e.g., Amh, Fshr). In conclusion, Cx43 in SCs appears to be required for normal progression of the first wave of spermatogenesis, especially for the mitosis-meiosis switch, and also for the regulation of prepubertal SC maturation.
Collapse
|
14
|
Islam MT, Zhou X, Chen F, Khan MA, Fu J, Chen H. Targeting the signalling pathways regulated by deubiquitinases for prostate cancer therapeutics. Cell Biochem Funct 2019; 37:304-319. [PMID: 31062387 DOI: 10.1002/cbf.3401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Md. Tariqul Islam
- Department of Biochemistry and Molecular BiologySchool of Life Sciences, Central South University Changsha China
| | - Xi Zhou
- Department of Biochemistry and Molecular BiologySchool of Life Sciences, Central South University Changsha China
| | - Fangzhi Chen
- Department of UrologyThe Second Xiangya Hospital of Central South University Changsha China
| | - Md. Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical University Luzhou China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical University Luzhou China
| | - Hanchun Chen
- Department of Biochemistry and Molecular BiologySchool of Life Sciences, Central South University Changsha China
| |
Collapse
|
15
|
Felipe-Medina N, Gómez-H L, Condezo YB, Sanchez-Martín M, Barbero JL, Ramos I, Llano E, Pendás AM. Ubiquitin-specific protease 26 (USP26) is not essential for mouse gametogenesis and fertility. Chromosoma 2019; 128:237-247. [PMID: 30887115 DOI: 10.1007/s00412-019-00697-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 26 (USP26) is a deubiquitylating enzyme belonging to the USPs family with a transcription pattern restricted to the male germline. Since protein ubiquitination is an essential regulatory mechanism during meiosis, many efforts have been focused on elucidating the function of USP26 and its relationship with fertility. During the last decade, several studies have reported the presence of different polymorphisms in USP26 in patients with non-obstructive azoospermia (NOA) or severe oligozoospermia suggesting that this gene may be associated with human infertility. However, other studies have revealed the presence of these and novel polymorphisms, including nonsense mutations, in men with normal spermatogenesis as well. Thus, the results remain controversial and its function is unknown. In the present study, we describe the in vivo functional analysis of mice lacking USP26. The phenotypic analysis of two different Usp26-null mutants showed no overt-phenotype with both males and females being fertile. Cytological analysis of spermatocytes showed no defects in synapsis, chromosome dynamics, DNA repair, or recombination. Histopathological analysis revealed a normal distribution and number of the different cell types in both male and female mice. Finally, normal counts were observed in fertility assessments. These results represent the first in vivo evidence showing that USP26 is not essential for mouse gametogenesis.
Collapse
Affiliation(s)
- Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007, Salamanca, Spain
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007, Salamanca, Spain
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007, Salamanca, Spain
| | - Manuel Sanchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, 37007, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, 37007, Spain
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Madrid, 28040, Spain
| | - Isabel Ramos
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007, Salamanca, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007, Salamanca, Spain.
| |
Collapse
|
16
|
New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet 2019; 138:125-140. [PMID: 30656449 DOI: 10.1007/s00439-019-01974-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Genetic anomalies are known to affect about 15% of infertile patients with azoospermia or severe oligozoospermia. Despite a throughout diagnostic work-up, in up to the 72% of the male partners of infertile couples, no etiological factor can be found; hence, the cause of infertility remains unclear. Recently, several novel genetic causes of spermatogenic failure (SPGF) have been described. The aim of this review was to collect all the available evidence of SPGF genetics, matching data from in-vitro and animal models with those in human beings to provide a comprehensive and updated overview of the genes capable of affecting spermatogenesis. By reviewing the literature, we provided a list of 60 candidate genes for SPGF. Their investigation by Next Generation Sequencing in large cohorts of patients with apparently idiopathic infertility would provide new interesting data about their racial- and ethnic-related prevalence in infertile patients, likely raising the diagnostic yields. We propose a phenotype-based approach to identify the genes to look for.
Collapse
|
17
|
Skare Ø, Lie RT, Haaland ØA, Gjerdevik M, Romanowska J, Gjessing HK, Jugessur A. Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2. Front Genet 2018. [PMID: 29520293 PMCID: PMC5827165 DOI: 10.3389/fgene.2018.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant. Materials and Methods: We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring. Results: Associations were identified in "Dystrophin" (DMD, Xp21.2-p21.1), "Fibroblast growth factor 13" (FGF13, Xq26.3-q27.1) and "EGF-like domain multiple 6" (EGFL6, Xp22.2), with biologically plausible links to OFCs. Unlike EGFL6, the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" (OFD1) and "Midline 1" (MID1)]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except for DMD in which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only. Discussion/Conclusion: The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust for additional multiple testing. Further investigations are needed to confirm the associations with DMD, EGF16, and FGF13. Furthermore, chromosomal region Xp22.2 appears to be a hotspot for genes implicated in clefting syndromes and thus constitutes an exciting direction to pursue in future OFCs research. More generally, the new methods presented here are readily adaptable to the study of X-linked PoO effects in other outcomes that use a family-based design.
Collapse
Affiliation(s)
- Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
18
|
Kit Leng Lui S, Iyengar PV, Jaynes P, Isa ZFBA, Pang B, Tan TZ, Eichhorn PJA. USP26 regulates TGF-β signaling by deubiquitinating and stabilizing SMAD7. EMBO Rep 2017; 18:797-808. [PMID: 28381482 PMCID: PMC5412796 DOI: 10.15252/embr.201643270] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
The amplitude of transforming growth factor-β (TGF-β) signal is tightly regulated to ensure appropriate physiological responses. As part of negative feedback loop SMAD7, a direct transcriptional target of downstream TGF-β signaling acts as a scaffold to recruit the E3 ligase SMURF2 to target the TGF-β receptor complex for ubiquitin-mediated degradation. Here, we identify the deubiquitinating enzyme USP26 as a novel integral component of this negative feedback loop. We demonstrate that TGF-β rapidly enhances the expression of USP26 and reinforces SMAD7 stability by limiting the ubiquitin-mediated turnover of SMAD7. Conversely, knockdown of USP26 rapidly degrades SMAD7 resulting in TGF-β receptor stabilization and enhanced levels of p-SMAD2. Clinically, loss of USP26 correlates with high TGF-β activity and confers poor prognosis in glioblastoma. Our data identify USP26 as a novel negative regulator of the TGF-β pathway and suggest that loss of USP26 expression may be an important factor in glioblastoma pathogenesis.
Collapse
Affiliation(s)
- Sarah Kit Leng Lui
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Brendan Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Chen J, Jiang D, Tan D, Fan Z, Wei Y, Li M, Wang D. Heterozygous mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in male tilapia, Oreochromis niloticus. Sci Rep 2017; 7:43733. [PMID: 28266557 PMCID: PMC5339811 DOI: 10.1038/srep43733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/27/2017] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic elongation factor 1 alpha (eEF1A) is an essential component of the translational apparatus. In the present study, eEF1A1b was isolated from the Nile tilapia. Real-time PCR and Western blot revealed that eEF1A1b was expressed highly in the testis from 90 dah (days after hatching) onwards. In situ hybridization and immunohistochemistry analyses showed that eEF1A1b was highly expressed in the spermatogonia of the testis. CRISPR/Cas9 mediated mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in the F0 XY fish. Consistently, heterozygous mutation of eEF1A1b (eEF1A1b+/-) resulted in an absence of spermatocytes at 90 dah, very few spermatocytes, spermatids and spermatozoa at 180 dah, and decreased Cyp11b2 and serum 11-ketotestosterone level at both stages. Further examination of the fertilization capacity of the sperm indicated that the eEF1A1b+/- XY fish were infertile due to abnormal spermiogenesis. Transcriptomic analyses of the eEF1A1b+/- testis from 180 dah XY fish revealed that key elements involved in spermatogenesis, steroidogenesis and sperm motility were significantly down-regulated compared with the control XY. Transgenic overexpression of eEF1A1b rescued the spermatogenesis arrest phenotype of the eEF1A1b+/- testis. Taken together, our data suggested that eEF1A1b is crucial for spermatogenesis and male fertility in the Nile tilapia.
Collapse
Affiliation(s)
- Jinlin Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dongneng Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zheng Fan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yingying Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
20
|
The testis-specific USP26 is a deubiquitinating enzyme of the ubiquitin ligase Mdm2. Biochem Biophys Res Commun 2017; 482:106-111. [DOI: 10.1016/j.bbrc.2016.10.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/28/2016] [Indexed: 11/15/2022]
|
21
|
Ma Q, Li Y, Guo H, Li C, Chen J, Luo M, Jiang Z, Li H, Gui Y. A Novel Missense Mutation in USP26 Gene Is Associated With Nonobstructive Azoospermia. Reprod Sci 2016; 23:1434-41. [PMID: 27089915 DOI: 10.1177/1933719116641758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate whether ubiquitin-specific peptidase 26 (USP26) gene variations were associated with nonobstructive azoospermia (NOA). METHODS Seven hundred and seventy-six patients diagnosed with NOA and 709 proven fertile men were included in this study. Genetic variations of infertility-related genes, including USP26, were identified by selected exonic sequencing. The effects of USP26 mutations on androgen receptor (AR) binding, ubiquitination, and transcriptional activity were detected by immunoprecipitation and luciferase assay in Hela and TM4 cells. RESULTS Six novel missense mutations and 1 novel synonymous mutation of USP26 unique to the patients with NOA were identified. Of these missense mutations, USP26 R344W remarkably reduced the binding affinity and deubiquitinating activity of USP26 to AR, thus eliminated the inhibitory effect of USP26 on transcriptional activity of AR in Hela and TM4 cells. CONCLUSION A novel USP26 variant p.R344W is associated with NOA probably through affecting AR function.
Collapse
Affiliation(s)
- Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | - Yuchi Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | - Huan Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | - Cailing Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | - Jianbo Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | - Manling Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | - Zhimao Jiang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | - Honggang Li
- The Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| |
Collapse
|
22
|
Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo. Front Med 2016; 10:41-51. [PMID: 26791755 DOI: 10.1007/s11684-016-0429-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
Midline2 (MID2) is an ubiquitin-conjugating E2 enzyme linked to tumor progression and a novel interacting partner of breast cancer 1, early-onset (BRCA1). However, the role of MID2 in breast cancer remains unknown. This study investigated the expression, prognostic value, and role of MID2 in breast cancer. The expression of MID2 mRNA and protein was significantly upregulated in breast cancer tissue and established cell lines compared with that in normal breast epithelial cells and paired adjacent non-tumor tissue (P < 0.001). Immunohistochemical analysis demonstrated that MID2 was overexpressed in 272 of 284 (95.8%) paraffinembedded, archived breast cancer tissue. Moreover, MID2 expression increased with advanced clinical stage (P < 0.001). High MID2 expression was significantly associated with advanced clinical stages and T, N, and M staging (all P < 0.05). Univariate and multivariate analyses indicated that high MID2 expression was an independent prognostic factor for poor overall survival in the entire cohort (93.73 vs. 172.1 months; P < 0.001, logrank test) and in subgroups with stages Tis + I + II and III + IV. Furthermore, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide colony formation, and anchorage-independent growth ability assays were conducted. Results showed that siRNA silencing of MID2 expression significantly reduced MCF-7 and MDA-MB-231 cell proliferation in vitro and blocked the growth of MDA-MB-231 cell xenograft tumors in vivo (P < 0.05). This study indicated that MID2 may be a novel prognostic marker and interventional target in breast cancer.
Collapse
|
23
|
Abstract
Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure-function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Ira Kay Lacdao
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Vivian Saridakis
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| |
Collapse
|