1
|
Al-Shahry FS, Alquhatani M, Sudersanadas K, Iqbal RM. Preliminary Testing of Efficacy of the Invented Sensory Re-education Device (SRED) on Patients with Peripheral Neuropathy. Open Neurol J 2020. [DOI: 10.2174/1874205x02014010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Sensory rehabilitation is considered one of the challenges and a persistent functional deficit in the long term. All rehabilitation paradigms use re-education in many different ways. The main issue here is that the brain mostly recognizes, considers and reacts with structured, and consistent input. Likewise, all the sensory rehabilitation techniques try to use a systematic input (type, pattern, timing and intensity) to regain or re-establish any type of sensation but none of these are perfectly systematic.
Methods:
For this reason, we developed a Sensory Re-Education Device (SRED) which allows a systematic sensory input “type, pattern, timing and intensity input” supported by software to operate the system and manage the data. Five senses (light touch, pinprick, hot-cold, vibration, and smell) were uploaded and constructed to allow different types, intensities, frequencies, patterns, and timing. Eight cases of Breast Cancer (BC) post-chemotherapy and Diabetes Mellitus II (DM2) were recruited for eight sessions. (Only hot-cold, smell, and light touch were used in this trial.)
Result:
The outcome was very impressive, as most of the patients regained their sensibility at a rate of over 80%.
Conclusion:
The outcome and the related treatment factors were showing a positive consistency. This is very encouraging, though a large sample is required to establish significance. The team members welcome any feedback, suggestions, and critiques via the PI email below.
Collapse
|
2
|
Pan HC, Liao LD, Lo YC, Chen JW, Wang HL, Yang L, Liang YW, Huang PY, Yang MH, Chen YY. Neurovascular function recovery after focal ischemic stroke by enhancing cerebral collateral circulation via peripheral stimulation-mediated interarterial anastomosis. NEUROPHOTONICS 2017; 4:035003. [PMID: 28983488 PMCID: PMC5621356 DOI: 10.1117/1.nph.4.3.035003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/12/2017] [Indexed: 05/22/2023]
Abstract
Current treatments for ischemic stroke have focused on the administration of a tissue plasminogen activator, although the associated side effects and subsequent reperfusion injury remain challenging. Peripheral electrical stimulation has shed light on therapeutic interventions for ischemia by increasing cerebral blood flow (CBF) to the target region through collateral circulation, although the mechanism remains elusive. Here, a focal photothrombotic ischemic (PTI) stroke was induced in the right hemispheric primary somatosensory forelimb cortex (S1FL) of rat brains, and the therapeutic effects of forelimb and hindlimb stimulation were characterized at the contralesional S1FL. We observed that PTI stroke rats that received forelimb stimulation exhibited significantly restored CBF of the ischemic penumbra ([Formula: see text] for the S1FL and [Formula: see text] for the primary somatosensory hindlimb cortex, respectively), electrocorticography (ECoG) delta band coherence of the intercortical S1FL ([Formula: see text]) at the 75th min poststroke and an ischemic infarct ([Formula: see text]) via collateral circulation recruitment. Importantly, anterior cerebral artery/middle cerebral artery (ACA-MCA) interarterial anastomotic regulation occurred upon forelimb stimulation and played roles in the recovery of neurovascular functions. These results indicated that receptive field-specific stimulation further restores CBF, neuronal activities, and tissue viability through the enhancement of ACA-MCA interarterial anastomosis-mediated collateral circulation and provides a feasible therapeutic intervention for stroke recovery.
Collapse
Affiliation(s)
- Han-Chi Pan
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Lun-De Liao
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Yu-Chun Lo
- Taipei Medical University, The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei, Taiwan
| | - Jia-Wei Chen
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
| | - Han-Lin Wang
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
| | - Li Yang
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
| | - Yao-Wen Liang
- National Yang Ming University, Department of Life Sciences and Institute of Genome Sciences, Taipei, Taiwan
| | - Po-Yu Huang
- National Yang Ming University, Department of Medicine, Taipei, Taiwan
| | - Ming-Hsun Yang
- Cheng Hsin General Hospital, Division of General Surgery, Department of Surgery, Taipei, Taiwan
- Address all correspondence to: Ming-Hsun Yang, E-mail: ; You-Yin Chen, E-mail:
| | - You-Yin Chen
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
- Address all correspondence to: Ming-Hsun Yang, E-mail: ; You-Yin Chen, E-mail:
| |
Collapse
|
3
|
Ramos-Languren LE, García-Díaz G, González-Maciel A, Rosas-López LE, Bueno-Nava A, Avila-Luna A, Ramírez-Anguiano H, González-Piña R. Sensorimotor Intervention Recovers Noradrenaline Content in the Dentate Gyrus of Cortical Injured Rats. Neurochem Res 2016; 41:3261-3271. [PMID: 27639395 DOI: 10.1007/s11064-016-2054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022]
Abstract
Nowadays, a consensus has been reached that designates the functional and structural reorganization of synapses as the primary mechanisms underlying the process of recovery from brain injury. We have reported that pontine noradrenaline (NA) is increased in animals after cortical ablation (CA). The aim of the present study was to explore the noradrenergic and morphological response after sensorimotor intervention (SMI) in rats injured in the motor cortex. We used male Wistar adult rats allocated in four conditions: sham-operated, injured by cortical ablation, sham-operated with SMI and injured by cortical ablation with SMI. Motor and somatosensory performance was evaluated prior to and 20 days after surgery. During the intervening period, a 15-session, SMI program was implemented. Subsequently, total NA analysis in the pons and dentate gyrus (DG) was performed. All groups underwent histological analysis. Our results showed that NA content in the DG was reduced in the injured group versus control, and this reduction was reverted in the injured group that underwent SMI. Moreover, injured rats showed reduction in the number of granule cells in the DG and decreased dentate granule cell layer thickness. Notably, after SMI, the loss of granule cells was reverted. Locus coeruleus showed turgid cells in the injured rats. These results suggest that SMI elicits biochemical and structural modifications in the hippocampus that could reorganize the system and lead the recovery process, modulating structural and functional plasticity.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Laboratorio de Neuroplasticidad-División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289 Col. Arenal de Guadalupe, Deleg. Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Gabriela García-Díaz
- Laboratorio de Neuroplasticidad-División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289 Col. Arenal de Guadalupe, Deleg. Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Angélica González-Maciel
- Instituto Nacional de Pediatría, SSA. Av. Imán 1 Col. Insurgentes Cuicuilco, Coyoacán, C.P. 04530, Mexico City, Mexico
| | - Laura E Rosas-López
- Instituto Nacional de Pediatría, SSA. Av. Imán 1 Col. Insurgentes Cuicuilco, Coyoacán, C.P. 04530, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Laboratorio de Neuroplasticidad-División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289 Col. Arenal de Guadalupe, Deleg. Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Alberto Avila-Luna
- Laboratorio de Neuroplasticidad-División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289 Col. Arenal de Guadalupe, Deleg. Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Hayde Ramírez-Anguiano
- Laboratorio de Neuroplasticidad-División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289 Col. Arenal de Guadalupe, Deleg. Tlalpan, C.P. 14389, Mexico City, Mexico
- Universidad de las Américas AC, Puebla 23 Col. Roma, Deleg. Cuauhtemoc, C.P. 06700, Mexico City, Mexico
| | - Rigoberto González-Piña
- Laboratorio de Neuroplasticidad-División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Calz. Mexico-Xochimilco 289 Col. Arenal de Guadalupe, Deleg. Tlalpan, C.P. 14389, Mexico City, Mexico.
- Universidad de las Américas AC, Puebla 23 Col. Roma, Deleg. Cuauhtemoc, C.P. 06700, Mexico City, Mexico.
| |
Collapse
|
4
|
Zennou-Azogui Y, Catz N, Xerri C. Hypergravity within a critical period impacts on the maturation of somatosensory cortical maps and their potential for use-dependent plasticity in the adult. J Neurophysiol 2016; 115:2740-60. [PMID: 26888103 DOI: 10.1152/jn.00900.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
We investigated experience-dependent plasticity of somatosensory maps in rat S1 cortex during early development. We analyzed both short- and long-term effects of exposure to 2G hypergravity (HG) during the first 3 postnatal weeks on forepaw representations. We also examined the potential of adult somatosensory maps for experience-dependent plasticity after early HG rearing. At postnatal day 22, HG was found to induce an enlargement of cortical zones driven by nail displacements and a contraction of skin sectors of the forepaw map. In these remaining zones serving the skin, neurons displayed expanded glabrous skin receptive fields (RFs). HG also induced a bias in the directional sensitivity of neuronal responses to nail displacement. HG-induced map changes were still found after 16 wk of housing in normogravity (NG). However, the glabrous skin RFs recorded in HG rats decreased to values similar to that of NG rats, as early as the end of the first week of housing in NG. Moreover, the expansion of the glabrous skin area and decrease in RF size normally induced in adults by an enriched environment (EE) did not occur in the HG rats, even after 16 wk of EE housing in NG. Our findings reveal that early postnatal experience critically and durably shapes S1 forepaw maps and limits their potential to be modified by novel experience in adulthood.
Collapse
Affiliation(s)
- Yoh'i Zennou-Azogui
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| | - Nicolas Catz
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| | - Christian Xerri
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| |
Collapse
|
5
|
Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: Adaptive versus maladaptive reorganization. Neuroscience 2014; 283:178-201. [DOI: 10.1016/j.neuroscience.2014.06.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022]
|
6
|
Lay CC, Frostig RD. Complete protection from impending stroke following permanent middle cerebral artery occlusion in awake, behaving rats. Eur J Neurosci 2014; 40:3413-21. [PMID: 25216240 DOI: 10.1111/ejn.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
Using a rodent model of ischemic stroke [permanent middle cerebral artery occlusion (pMCAO)], our laboratory has previously demonstrated that sensory-evoked cortical activation via mechanical single whisker stimulation treatment delivered under an anesthetized condition within 2 h of ischemic onset confers complete protection from impending infarct. There is a limited time window for this protection; rats that received the identical treatment at 3 h following ischemic onset lost neuronal function and sustained a substantial infarct. Rats in these studies, however, were anesthetized with sodium pentobarbital or isoflurane, whereas most human stroke patients are typically awake. To optimize our animal model, the present study examined, using functional imaging, histological, and behavioral analysis, whether self-induced sensorimotor stimulation is also protective in unrestrained, behaving rats that actively explore an enriched environment. Rats were revived from anesthesia either immediately or at 3 h after pMCAO, at which point they were allowed to freely explore an enriched environment. Rats that explored immediately after ischemic onset maintained normal cortical function and did not sustain infarct, even when their whiskers were clipped. Rats that were revived at 3 h post-pMCAO exhibited eliminated cortical function and sustained cortical infarct. Further, the data suggested that the level of individual active exploration could influence the outcome. Thus, early activation of the ischemic cortical area via unrestrained exploration resulted in protection from ischemic infarct, whereas late activation resulted in infarct, irrespective of the level of arousal or whisker-specific stimulation.
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA; The Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; The Center for Hearing Research, University of California, Irvine, CA, USA
| | | |
Collapse
|