1
|
Martorelli I, Pooryousefi A, van Thiel H, Sicking FJ, Ramackers GJ, Merckx V, Verbeek FJ. Multiple graphical views for automatically generating SQL for the MycoDiversity DB; making fungal biodiversity studies accessible. Biodivers Data J 2024; 12:e119660. [PMID: 38933486 PMCID: PMC11199959 DOI: 10.3897/bdj.12.e119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fungi is a highly diverse group of eukaryotic organisms that live under an extremely wide range of environmental conditions. Nowadays, there is a fundamental focus on observing how biodiversity varies on different spatial scales, in addition to understanding the environmental factors which drive fungal biodiversity. Metabarcoding is a high-throughput DNA sequencing technology that has positively contributed to observing fungal communities in environments. While the DNA sequencing data generated from metabarcoding studies are available in public archives, this valuable data resource is not directly usable for fungal biodiversity investigation. Additionally, due to its fragmented storage and distributed nature, it is not immediately accessible through a single user interface. We developed the MycoDiversity DataBase User Interface (https://mycodiversity.liacs.nl) to provide direct access and retrieval of fungal data that was previously inaccessible in the public domain. The user interface provides multiple graphical views of the data components used to reveal fungal biodiversity. These components include reliable geo-location terms, the reference taxonomic scientific names associated with fungal species and the standard features describing the environment where they occur. Direct observation of the public DNA sequencing data in association with fungi is accessible through SQL search queries created by interactively manipulating topological maps and dynamic hierarchical tree views. The search results are presented in configurable data table views that can be downloaded for further use. With the MycoDiversity DataBase User Interface, we make fungal biodiversity data accessible, assisting researchers and other stakeholders in using metabarcoding studies for assessing fungal biodiversity.
Collapse
Affiliation(s)
- Irene Martorelli
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Aram Pooryousefi
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Haike van Thiel
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Floris J Sicking
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Guus J Ramackers
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Vincent Merckx
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, NetherlandsInstitute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdamNetherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| |
Collapse
|
2
|
Schlegel M, Treindl AD, Panziera J, Zengerer V, Zani D, Brännhage J, Gross A. A case study on the application of spore sampling for the monitoring of macrofungi. Mol Ecol Resour 2024; 24:e13941. [PMID: 38409666 DOI: 10.1111/1755-0998.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Fungi play a vital role in ecosystem functioning, yet significant knowledge gaps persist in understanding their diversity and distribution leading to uncertainties about their threat status and extinction risk. This is partly owed to the difficulty of monitoring fungi using traditional fruiting body surveys. The present study evaluates airborne environmental DNA (eDNA) sampling as a monitoring tool with a focus on grassland macrofungi. We applied active and passive air sampling methods, complemented by extensive field surveys of waxcap and clavarioid fungi-species groups of high relevance for conservation. Twenty-nine species were recorded during the field surveys, 19 of which were also detectable by ITS2 metabarcoding of the collected samples. An additional 12 species from the studied genera were identified exclusively in air eDNA. We found that the patterns of species detection and read abundance in air samples reflected the abundance and occurrence of fruiting bodies on the field. Dispersal kernels fitted for the three dominant species predicted rapidly decreasing spore concentrations with increasing distance from fruitbodies. Airborne assemblages were dominated by a high diversity of common species, while rare and threatened red-listed species were under-represented, which underscores the difficulty in detecting rare species, not only in conventional surveys. Considering the benefits and drawbacks of air sampling and fruitbody surveys, we conclude that air sampling serves as a cost- and time-efficient tool to characterize local macrofungal communities, providing the potential to facilitate and improve future fungal monitoring efforts.
Collapse
Affiliation(s)
- Markus Schlegel
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jenny Panziera
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Deborah Zani
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Jonas Brännhage
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrin Gross
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Blaschke M, Siemonsmeier A, Harjes J, Okach DO, Rambold G. Comparison of survey methods for fungi using metabarcoding and fruit body inventories in an altitudinal gradient. Arch Microbiol 2023; 205:269. [PMID: 37354241 DOI: 10.1007/s00203-023-03606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Metabarcoding of environmental samples is nowadays an established method in biodiversity research. When it comes to studying fungal populations in various ecotypes, fruit body inventories are the traditional method to assess the diversity of fungal communities. In this study, both methods-metabarcoding of soil samples and a traditional fruit body inventory-were conducted on 144 sample plots in an altitudinal gradient in the Bavarian Forest (Germany) and the results were compared. Metabarcoding detected significantly more species than the traditional fruit body inventory. The majority of taxa recorded in the fruit body inventory belonged to the Basidiomycota, whereas in the metabarcoding data, the distribution of species between Basidiomycota and Ascomycota was approximately balanced. Species of several orders forming inconspicuous or hypogeous fruit bodies were detected only by metabarcoding, while several wood decomposers were recorded only in the fruit body inventory. The proportion of detected wood-colonising species with melanized spores was considerably higher with metabarcoding than with the fruit body inventory, where more than 70% of recorded wood-colonisers had hyaline spores. Based on the metabarcoding data, a decline of species richness with increasing altitude was evident, but this was not visible in the fruit body inventory data. Detrended correspondence analyses yielded similar results for relative species community similarities with both survey methods.
Collapse
Affiliation(s)
- Markus Blaschke
- Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany.
| | - Angela Siemonsmeier
- Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany
- University of Applied Forest Science Rottenburg, Schadenweilerhof, 72108, Rottenburg am Neckar, Germany
| | - Janno Harjes
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Daniel O Okach
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| |
Collapse
|
4
|
In silico environmental sampling of emerging fungal pathogens via big data analysis. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Jamwal VL, Rather IA, Ahmed S, Kumar A, Gandhi SG. Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of Coleus barbatus. Microorganisms 2023; 11:microorganisms11030705. [PMID: 36985280 PMCID: PMC10056624 DOI: 10.3390/microorganisms11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei. To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus, which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere.
Collapse
Affiliation(s)
- Vijay Lakshmi Jamwal
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sajad Ahmed
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Amit Kumar
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sumit G. Gandhi
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or
| |
Collapse
|
6
|
Geml J, Leal CM, Nagy R, Sulyok J. Abiotic environmental factors drive the diversity, compositional dynamics and habitat preference of ectomycorrhizal fungi in Pannonian forest types. Front Microbiol 2022; 13:1007935. [PMID: 36312934 PMCID: PMC9597314 DOI: 10.3389/fmicb.2022.1007935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi are among the most diverse and dominant fungal groups in temperate forests and are crucial for ecosystem functioning of forests and their resilience toward disturbance. We carried out DNA metabarcoding of ECM fungi from soil samples taken at 62 sites in the Bükk Mountains in northern Hungary. The selected sampling sites represent the characteristic Pannonian forest types distributed along elevation (i.e., temperature), pH and slope aspect gradients. We compared richness and community composition of ECM fungi among forest types and explored relationships among environmental variables and ECM fungal alpha and beta diversity. The DNA sequence data generated in this study indicated strong correlations between fungal community composition and environmental variables, particularly with pH and soil moisture, with many ECM fungi showing preference for specific zonal, topographic or edaphic forest types. Several ECM fungal genera showed significant differences in richness among forest types and exhibited strong compositional differences mostly driven by differences in environmental factors. Despite the relatively high proportions of compositional variance explained by the tested environmental variables, a large proportion of the compositional variance remained unexplained, indicating that both niche (environmental filtering) and neutral (stochastic) processes shape ECM fungal community composition at landscape level. Our work provides unprecedented insights into the diversity, landscape-level distribution, and habitat preferences of ECM fungi in the Pannonian forests of Northern Hungary.
Collapse
Affiliation(s)
- József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary
- *Correspondence: József Geml,
| | - Carla Mota Leal
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Nagy
- Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Sulyok
- Biodiversity Protection Group, Bükk National Park Directorate, Eger, Hungary
| |
Collapse
|
7
|
Blaalid R, Davey ML. Habitat Protection Approaches Facilitate Conservation of Overlooked Fungal Diversity - A Case Study From the Norwegian Coastal Heathland System. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:886685. [PMID: 37746238 PMCID: PMC10512255 DOI: 10.3389/ffunb.2022.886685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 09/26/2023]
Abstract
European coastal heathlands are distinct ecosystems shaped by land use tradition and they have experienced an 80% area reduction from their historical maximum. These mosaics of mires and wind exposed patches have ericaceous shrub dominated vegetation, and soils within coastal heathlands are characterized by low pH and high levels of recalcitrant debris. Using a culture-based approach with molecular identification of isolates, we characterized root-associated fungal communities of six ericaceous species in eight heathland localities along Norway's western coast. Site-level alpha diversity ranged from 21-38 OTUs, while the total estimated gamma diversity for culturable heathland root fungi was 190-231 OTUs. Most species recovered are previously reported at low abundance in Norway, suggesting the biodiversity in this community is underreported, rather than novel for science. The fungi recovered were primarily Ascomycota, specifically endophytic Phialocephala, and Pezicula, and no host specificity was observed in the communities. The fungal communities exhibited high turnover and low nestedness, both between ericaceous hosts and across heathland sites. We observed no spatial patterns in fungal betadiversity, and this heterogeneity may be a product of the unique historic land use practices at each locality creating a distinct mycofloral "fingerprint". Robust diversity estimates will be key for managing fungal biodiversity in coastal heathlands. Our results indicate that sampling schemes that maximize the number of host plants sampled per site, rather than the number of cultures per plant yield improved alpha diversity estimates. Similarly, gamma diversity estimates are improved by maximizing the total number of localities sampled, rather than increasing the number of plants sampled per locality. We argue that while the current protected status of coastal heathland habitats and restoration efforts have knock-on effects for the conservation of fungal biodiversity, fungi have a vital functional role in the ecosystem and holistic conservation plans that consider fungal biodiversity would be beneficial.
Collapse
Affiliation(s)
- Rakel Blaalid
- Department of Natural History, University Museum of Bergen, Bergen, Norway
- Norwegian Institute for Nature Research, NINA Bergen, Bergen, Norway
| | - Marie L. Davey
- Norwegian Institute for Nature Research, Terrestrial Biodiversity Department, Trondheim, Norway
| |
Collapse
|
8
|
Cazabonne J, Bartrop L, Dierickx G, Gafforov Y, Hofmann TA, Martin TE, Piepenbring M, Rivas-Ferreiro M, Haelewaters D. Molecular-Based Diversity Studies and Field Surveys Are Not Mutually Exclusive: On the Importance of Integrated Methodologies in Mycological Research. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:860777. [PMID: 37746218 PMCID: PMC10512293 DOI: 10.3389/ffunb.2022.860777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Understanding and describing the diversity of living organisms is a great challenge. Fungi have for a long time been, and unfortunately still are, underestimated when it comes to taxonomic research. The foundations were laid by the first mycologists through field observations. These important fundamental works have been and remain vital reference works. Nevertheless, a non-negligible part of the studied funga escaped their attention. Thanks to modern developments in molecular techniques, the study of fungal diversity has been revolutionized in terms of tools and knowledge. Despite a number of disadvantages inherent to these techniques, traditional field-based inventory work has been increasingly superseded and neglected. This perspective aims to demonstrate the central importance of field-based research in fungal diversity studies, and encourages researchers not to be blinded by the sole use of molecular methods.
Collapse
Affiliation(s)
- Jonathan Cazabonne
- Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue, Amos, QC, Canada
| | | | - Glen Dierickx
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Tina A. Hofmann
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
| | - Thomas E. Martin
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
| | - Meike Piepenbring
- Mycology Working Group, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Mauro Rivas-Ferreiro
- Population Genetics and Cytogenetics Group, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
- Faculty of Science, University of South Bohemia, Ceské Budějovice, Czechia
| |
Collapse
|
9
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
10
|
Gueidan C, Li L. A long-read amplicon approach to scaling up the metabarcoding of lichen herbarium specimens. MycoKeys 2022; 86:195-212. [PMID: 35153530 PMCID: PMC8828592 DOI: 10.3897/mycokeys.86.77431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Reference sequence databases are critical to the accurate detection and identification of fungi in the environment. As repositories of large numbers of well-curated specimens, herbaria and fungal culture collections have the material resources to generate sequence data for large number of taxa, and could therefore allow filling taxonomic gaps often present in reference sequence databases. Financial resources to do that are however often lacking, so that recent efforts have focused on decreasing sequencing cost by increasing the number of multiplexed samples per sequencing run while maintaining high sequence quality. Following a previous study that aimed at decreasing sequencing cost for lichen specimens by generating fungal ITS barcodes for 96 specimens using PacBio amplicon sequencing, we present a method that further decreases lichen specimen metabarcoding costs. A total of 384 mixed DNA extracts obtained from lichen herbarium specimens, mostly from the four genera Buellia, Catillaria, Endocarpon and Parmotrema, were used to generate new fungal ITS sequences using a Sequel I sequencing platform and the PacBio M13 barcoded primers. The average success rate across all taxa was high (86.5%), with particularly high rates for the crustose saxicolous taxa (Buellia, Catillaria and others; 93.3%) and the terricolous squamulose taxa (Endocarpon and others; 96.5%). On the other hand, the success rate for the foliose genus Parmotrema was lower (60.4%). With this taxon sampling, greater specimen age did not appear to impact sequencing success. In fact, the 1966–1980 collection date category showed the highest success rate (97.3%). Compared to the previous study, the abundance-based sequence denoising method showed some limitations, but the cost of generating ITS barcodes was further decreased thanks to the higher multiplexing level. In addition to contributing new ITS barcodes for specimens of four interesting lichen genera, this study further highlights the potential and challenges of using new sequencing technologies on collection specimens to generate DNA sequences for reference databases.
Collapse
|
11
|
Zhong F, Fan X, Ji W, Hai Z, Hu N, Li X, Liu G, Yu C, Chen Y, Lian B, Wei H, Zhang J. Soil Fungal Community Composition and Diversity of Culturable Endophytic Fungi from Plant Roots in the Reclaimed Area of the Eastern Coast of China. J Fungi (Basel) 2022; 8:jof8020124. [PMID: 35205878 PMCID: PMC8878519 DOI: 10.3390/jof8020124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
As an important resource for screening microbial strains capable of conferring stress tolerance in plants, the fungal community associated with the plants grown in stressful environments has received great attention. In this study, high-throughput sequencing was employed to study the rhizosphere fungal community in the reclaimed area (i.e., sites F, H, and T) of the eastern coast of China. Moreover, endophytic fungi from the root of six plant species colonizing the investigated sites were isolated and identified. The differences in soil physicochemical parameters, fungal diversity, and community structure were detected among the sampling sites and between the seasons. Ectomycorrhizal (ECM) fungi (e.g., genera Tuber and Geopora) were dominant at site F, which was characterized by high soil total carbon (SC) and total nitrogen (SN) contents and low soil electrical conductivity (EC) value. Arbuscular mycorrhizal (AM) fungi, including genera Glomus, Rhizophagus, and Entrophospora were dominant at sites H (winter), H (summer), and T (summer), respectively. The positive relationship between the EC value and the abundance of genus Glomus indicated the ability of this AM fungus to protect plants against the salt stress. Endophytic fungi at sites F (Aspergillus and Tetracladium), H (Nigrospora), and T (Nigrospora, Coniochaeta and Zopfiella) were recognized as the biomarkers or keystone taxa, among which only genus Aspergillus was isolated from the plant roots. The aforementioned AM fungi and endophytic fungi could contribute to the promotion of plant growth in the newly reclaimed land.
Collapse
Affiliation(s)
- Fei Zhong
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
- Correspondence: (F.Z.); (J.Z.)
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China;
| | - Wenhui Ji
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Zhixing Hai
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Naican Hu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Xintong Li
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Guoyuan Liu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Chunmei Yu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Yanhong Chen
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Bolin Lian
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Hui Wei
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Jian Zhang
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
- Correspondence: (F.Z.); (J.Z.)
| |
Collapse
|
12
|
Valdez JW, Brunbjerg AK, Fløjgaard C, Dalby L, Clausen KK, Pärtel M, Pfeifer N, Hollaus M, Wimmer MH, Ejrnæs R, Moeslund JE. Relationships between macro-fungal dark diversity and habitat parameters using LiDAR. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Caboň M, Galvánek D, Detheridge AP, Griffith GW, Maráková S, Adamčík S. Mulching has negative impact on fungal and plant diversity in Slovak oligotrophic grasslands. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Similarities and Differences among Soil Fungal Assemblages in Managed Forests and Formerly Managed Forest Reserves. FORESTS 2021. [DOI: 10.3390/f12030353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unlike the numerous works concerning the effect of management on the forest mycobiome, only a few studies have addressed how fungi from different trophic groups recover from natural and anthropogenic disturbances and develop structural features typical of unmanaged old-growth forests. Our objective is to compare the soil fungal assemblages represented by different functional/trophic groups in protected and managed stands located in European mixed forests dominated by Scots pine. Fungal communities were analyzed using high-throughput Illumina MiSeq sequencing of fungal internal transcribed spacer 1 (ITS1) amplicons. Formerly managed forest reserves (established around 50 years ago) and forests under standard forest management appeared to be similar in terms of total and mean species richness of all fungal operational taxonomic units (OTUs), as well as OTUs assigned to different functional trophic groups. Among the 599 recorded OTUs, 497 (83%) were shared between both management types, whereas 9.5% of taxa were unique to forest reserves and 7.5% were unique to managed stands. Ascomycota and Basidiomycota were the predominant phyla, comprising 88% of all identified fungi. The main functional components of soil fungal assemblages consisted of saprotrophic (42% fungal OTUs; 27% reads) and ectomycorrhizal fungi (16%; 47%). Two-way analysis of similarities (ANOSIM) revealed that both site and management strategy influenced the species composition of soil fungal communities, with site being a primary effect for saprotrophic and ectomycorrhizal fungi. Volume of coarse and very fine woody debris and soil pH significantly influenced the ectomycorrhizal fungal community, whereas saprotrophic fungi were influenced primarily by volume of coarse woody debris and soil nitrate concentration. Among the identified fungal OTUs, 18 red-listed fungal species were identified from both forest reserves and managed forests, comprising two ECM fungi and four saprotrophs from the category of endangered species. Our results suggest that the transformation of fungal diversity after cessation of forest management is rather slow, and that both forest reserves and managed forests help uphold fungal diversity.
Collapse
|
15
|
Mitchell JK, Garrido-Benavent I, Quijada L, Pfister DH. Sareomycetes: more diverse than meets the eye. IMA Fungus 2021; 12:6. [PMID: 33726866 PMCID: PMC7961326 DOI: 10.1186/s43008-021-00056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/16/2021] [Indexed: 01/16/2023] Open
Abstract
Since its resurrection, the resinicolous discomycete genus Sarea has been accepted as containing two species, one with black apothecia and pycnidia, and one with orange. We investigate this hypothesis using three ribosomal (nuITS, nuLSU, mtSSU) regions from and morphological examination of 70 specimens collected primarily in Europe and North America. The results of our analyses support separation of the traditional Sarea difformis s.lat. and Sarea resinae s.lat. into two distinct genera, Sarea and Zythia. Sarea as circumscribed is shown to conservatively comprise three phylospecies, with one corresponding to Sarea difformis s.str. and two, morphologically indistinguishable, corresponding to the newly combined Sarea coeloplata. Zythia is provisionally maintained as monotypic, containing only a genetically and morphologically variable Z. resinae. The new genus Atrozythia is erected for the new species A. klamathica. Arthrographis lignicola is placed in this genus on molecular grounds, expanding the concept of Sareomycetes by inclusion of a previously unknown type of asexual morph. Dating analyses using additional marker regions indicate the emergence of the Sareomycetes was roughly concurrent with the diversification of the genus Pinus, suggesting that this group of fungi emerged to exploit the newly-available resinous ecological niche supplied by Pinus or another, extinct group of conifers. Our phylogeographic studies also permitted us to study the introductions of these fungi to areas where they are not native, including Antarctica, Cape Verde, and New Zealand and are consistent with historical hypotheses of introduction.
Collapse
Affiliation(s)
- James K Mitchell
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA.
| | - Isaac Garrido-Benavent
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE) & Dept. Botànica i Geologia, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
| | - Luis Quijada
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Donald H Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
16
|
Diversity, community composition, and bioactivity of cultivable fungal endophytes in saline and dry soils in deserts. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Fryssouli V, Zervakis GI, Polemis E, Typas MA. A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales) including new data from selected taxa. MycoKeys 2020; 75:71-143. [PMID: 33304123 PMCID: PMC7723883 DOI: 10.3897/mycokeys.75.59872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023] Open
Abstract
Ganoderma P. Karst. is a cosmopolitan genus of white-rot fungi which comprises species with highly-prized pharmaceutical properties, valuable biotechnological applications and of significant phytopathological interest. However, the status of the taxonomy within the genus is still highly controversial and ambiguous despite the progress made through molecular approaches. A metadata analysis of 3908 nuclear ribosomal internal transcribed spacer (ITS) rDNA sequences obtained from GenBank/ENA/DDBJ and UNITE was performed by targeting sequences annotated as Ganoderma, but also sequences from environmental samples and from material examined for the first time. Ganoderma taxa segregated into five main lineages (Clades A to E). Clade A corresponds to the core of laccate species and includes G. shanxiense and three major well-supported clusters: Cluster A.1 ('G. lucidum sensu lato') consists of taxa from Eurasia and North America, Cluster A.2 of material with worldwide occurrence including G. resinaceum and Cluster A.3 is composed of species originating from all continents except Europe and comprises G. lingzhi. Clade B includes G. applanatum and allied species with a Holarctic distribution. Clade C comprises taxa from Asia and Africa only. Clade D consists of laccate taxa with tropical/subtropical occurrence, while clade E harbours the highest number of non-laccate species with a cosmopolitan distribution. The 92 Ganoderma-associated names, initially used for sequences labelling, correspond to at least 80 taxa. Amongst them, 21 constitute putatively new phylospecies after our application of criteria relevant to the robustness/support of the terminal clades, intra- and interspecific genetic divergence and available biogeographic data. Moreover, several other groups or individual sequences seem to represent distinct taxonomic entities and merit further investigation. A particularly large number of the public sequences was revealed to be insufficiently and/or incorrectly identified, for example, 87% and 78% of entries labelled as G. australe and G. lucidum, respectively. In general, ITS demonstrated high efficacy in resolving relationships amongst most of the Ganoderma taxa; however, it was not equally useful at elucidating species barriers across the entire genus and such cases are outlined. Furthermore, we draw conclusions on biogeography by evaluating species occurrence on a global scale in conjunction with phylogenetic structure/patterns. The sequence variability assessed in ITS spacers could be further exploited for diagnostic purposes.
Collapse
Affiliation(s)
- Vassiliki Fryssouli
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece
| | - Georgios I. Zervakis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece
| | - Elias Polemis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece
| | - Milton A. Typas
- National and Kapodistrian University of Athens, Department of Genetics and Biotechnology, Faculty of Biology, Panepistemiopolis, Athens 15701, Greece
| |
Collapse
|
18
|
Clasen LA, Detheridge AP, Scullion J, Griffith GW. Soil stabilisation for DNA metabarcoding of plants and fungi. Implications for sampling at remote locations or via third-parties. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.58365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Storage of soil samples prior to metagenomic analysis presents a problem. If field sites are remote or if samples are collected by third parties, transport to analytical laboratories may take several days or even weeks. The bulk of such samples and requirement for later homogenisation precludes the convenient use of a stabilisation buffer, so samples are usually cooled or frozen during transit. There has been limited testing of the most appropriate storage methods for later study of soil organisms by eDNA approaches. Here we tested a range of storage methods on two contrasting soils, comparing these methods to the control of freezing at -80 °C, followed by freeze-drying. To our knowledge, this is the first study to examine the effect of storage conditions on eukaryote DNA in soil, including both viable organisms (fungi) and DNA contained within dying/dead tissues (plants). For fungi, the best storage regimes (closest to the control) were storage at 4 °C (for up to 14 d) or active air-drying at room temperature. The worst treatments involved initial freezing, followed by thawing which led to significant later spoilage. The key spoilage organisms were identified as Metarhizium carneum and Mortierella spp., with a general increase in saprotrophic fungi and reduced abundances of mycorrhizal/biotrophic fungi. Plant data showed a similar pattern, but with greater variability in community structure, especially in the freeze-thaw treatments, probably due to stochastic variation in substrates for fungal decomposition, algal proliferation and some seed germination. In the absence of freeze drying facilities, samples should be shipped refrigerated, but not frozen if there is any risk of thawing.
Collapse
|
19
|
Noor SO, Al-Zahrani DA, Hussein RM, Baeshen MN, Moussa TAA, Abo-Aba SM, Al-Hejin AM, Baeshen NA, Huelsenbeck JP. Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Arch Microbiol 2020; 203:1211-1219. [PMID: 33231748 DOI: 10.1007/s00203-020-02119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to compare the fungal rhizosphere communities of Rhazya stricta, Enneapogon desvauxii, Citrullus colocynthis, Senna italica, and Zygophyllum simplex, and the gut mycobiota of Poekilocerus bufonius (Orthoptera, Pyrgomorphidae, "Usherhopper"). A total of 164,485 fungal reads were observed from the five plant rhizospheres and Usherhopper gut. The highest reads were in S. italica rhizosphere (29,883 reads). Species richness in the P. bufonius gut was the highest among the six samples. Ascomycota was dominant in all samples, with the highest reads in E. desvauxii (26,734 reads) rhizosphere. Sordariomycetes and Dothideomycetes were the dominant classes detected with the highest abundance in C. colocynthis and E. desvauxii rhizospheres. Aspergillus and Ceratobasidium were the most abundant genera in the R. stricta rhizosphere, Fusarium and Penicillium in the E. desvauxii rhizosphere and P. bufonius gut, Ceratobasidium and Myrothecium in the C. colocynthis rhizosphere, Aspergillus and Fusarium in the S. italica rhizosphere, and Cochliobolus in the Z. simplex rhizosphere. Aspergillus terreus was the most abundant species in the R. stricta and S. italica rhizospheres, Fusarium sp. in E. desvauxii rhizosphere, Ceratobasidium sp. in C. colocynthis rhizosphere, Cochliobolus sp. in Z. simplex rhizosphere, and Penicillium sp. in P. bufonius gut. The phylogenetic results revealed the unclassified species were related closely to Ascomycota and the species in E. desvauxii, S. italica and Z. simplex rhizospheres were closely related, where the species in the P. bufonius gut, were closely related to the species in the R. stricta, and C. colocynthis rhizospheres.
Collapse
Affiliation(s)
- Samah O Noor
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dhafer A Al-Zahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaei M Hussein
- University of Jeddah, College of Sciences and Arts, Department of Biological Sciences, Al Kamel Province, Jeddah, Saudi Arabia.,Genetics and Cytology Dept. Genetic Engineering Division, National Resesrch Centre, Dokki, Cairo, Egypt
| | - Mohammed N Baeshen
- University of Jeddah, College of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - Tarek A A Moussa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Salah M Abo-Aba
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Microbial Genetics, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M Al-Hejin
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - John P Huelsenbeck
- Department of Integrative Biology, University of California, Berkeley, USA
| |
Collapse
|
20
|
Kalsoom Khan F, Kluting K, Tångrot J, Urbina H, Ammunet T, Eshghi Sahraei S, Rydén M, Ryberg M, Rosling A. Naming the untouchable - environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus 2020; 11:23. [PMID: 33292867 PMCID: PMC7607712 DOI: 10.1186/s43008-020-00045-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Due to their submerged and cryptic lifestyle, the vast majority of fungal species are difficult to observe and describe morphologically, and many remain known to science only from sequences detected in environmental samples. The lack of practices to delimit and name most fungal species is a staggering limitation to communication and interpretation of ecology and evolution in kingdom Fungi. Here, we use environmental sequence data as taxonomical evidence and combine phylogenetic and ecological data to generate and test species hypotheses in the class Archaeorhizomycetes (Taphrinomycotina, Ascomycota). Based on environmental amplicon sequencing from a well-studied Swedish pine forest podzol soil, we generate 68 distinct species hypotheses of Archaeorhizomycetes, of which two correspond to the only described species in the class. Nine of the species hypotheses represent 78% of the sequenced Archaeorhizomycetes community, and are supported by long read data that form the backbone for delimiting species hypothesis based on phylogenetic branch lengths. Soil fungal communities are shaped by environmental filtering and competitive exclusion so that closely related species are less likely to co-occur in a niche if adaptive traits are evolutionarily conserved. In soil profiles, distinct vertical horizons represent a testable niche dimension, and we found significantly differential distribution across samples for a well-supported pair of sister species hypotheses. Based on the combination of phylogenetic and ecological evidence, we identify two novel species for which we provide molecular diagnostics and propose names. While environmental sequences cannot be automatically translated to species, they can be used to generate phylogenetically distinct species hypotheses that can be further tested using sequences as ecological evidence. We conclude that in the case of abundantly and frequently observed species, environmental sequences can support species recognition in the absences of physical specimens, while rare taxa remain uncaptured at our sampling and sequencing intensity.
Collapse
Affiliation(s)
- Faheema Kalsoom Khan
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.,Department of Organismal Biology, Systematic Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Kerri Kluting
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Jeanette Tångrot
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Umeå University, Umeå, Sweden
| | - Hector Urbina
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.,Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, Florida, 32608, USA
| | - Tea Ammunet
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Shadi Eshghi Sahraei
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Rydén
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Systematic Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Anna Rosling
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
21
|
Marí T, Castaño C, Rodríguez A, Ibáñez M, Lobo A, Sebastià MT. Fairy rings harbor distinct soil fungal communities and high fungal diversity in a montane grassland. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D'Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 2020; 7:228. [PMID: 32661237 PMCID: PMC7359306 DOI: 10.1038/s41597-020-0567-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Daniel Morais
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Camelia Algora
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Květa Bílohnědá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Federica D'Alò
- Laboratory of Systematic Botany and Mycology, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Zander Rainier Human
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Mayuko Jomura
- Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Salvador Lladó
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tijana Martinović
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Mašínová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Meszárošová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sunil Mundra
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Diana Navrátilová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Karel Švec
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michaela Urbanová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
23
|
Martorelli I, Helwerda LS, Kerkvliet J, Gomes SIF, Nuytinck J, van der Werff CRA, Ramackers GJ, Gultyaev AP, Merckx VSFT, Verbeek FJ. Fungal metabarcoding data integration framework for the MycoDiversity DataBase (MDDB). J Integr Bioinform 2020; 17:jib-2019-0046. [PMID: 32463383 PMCID: PMC7734503 DOI: 10.1515/jib-2019-0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/20/2020] [Indexed: 11/15/2022] Open
Abstract
Fungi have crucial roles in ecosystems, and are important associates for many organisms. They are adapted to a wide variety of habitats, however their global distribution and diversity remains poorly documented. The exponential growth of DNA barcode information retrieved from the environment is assisting considerably the traditional ways for unraveling fungal diversity and detection. The raw DNA data in association to environmental descriptors of metabarcoding studies are made available in public sequence read archives. While this is potentially a valuable source of information for the investigation of Fungi across diverse environmental conditions, the annotation used to describe environment is heterogenous. Moreover, a uniform processing pipeline still needs to be applied to the available raw DNA data. Hence, a comprehensive framework to analyses these data in a large context is still lacking. We introduce the MycoDiversity DataBase, a database which includes public fungal metabarcoding data of environmental samples for the study of biodiversity patterns of Fungi. The framework we propose will contribute to our understanding of fungal biodiversity and aims to become a valuable source for large-scale analyses of patterns in space and time, in addition to assisting evolutionary and ecological research on Fungi.
Collapse
Affiliation(s)
- Irene Martorelli
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Leon S. Helwerda
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
| | - Jesse Kerkvliet
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Sofia I. F. Gomes
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jorinde Nuytinck
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Guus J. Ramackers
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
| | - Alexander P. Gultyaev
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
| | - Vincent S. F. T. Merckx
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Fons J. Verbeek
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
| |
Collapse
|
24
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
25
|
Geml J. Soil fungal communities reflect aspect-driven environmental structuring and vegetation types in a Pannonian forest landscape. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald J, Cardinali G, Houbraken J, Boekhout T, Crous P, Robert V, Verkley G. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 2019; 92:135-154. [PMID: 29955203 PMCID: PMC6020082 DOI: 10.1016/j.simyco.2018.05.001] [Citation(s) in RCA: 463] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Species identification lies at the heart of biodiversity studies that has in recent years favoured DNA-based approaches. Microbial Biological Resource Centres are a rich source for diverse and high-quality reference materials in microbiology, and yet the strains preserved in these biobanks have been exploited only on a limited scale to generate DNA barcodes. As part of a project funded in the Netherlands to barcode specimens of major national biobanks, sequences of two nuclear ribosomal genetic markers, the Internal Transcribed Spaces and 5.8S gene (ITS) and the D1/D2 domain of the 26S Large Subunit (LSU), were generated as DNA barcode data for ca. 100 000 fungal strains originally assigned to ca. 17 000 species in the CBS fungal biobank maintained at the Westerdijk Fungal Biodiversity Institute, Utrecht. Using more than 24 000 DNA barcode sequences of 12 000 ex-type and manually validated filamentous fungal strains of 7 300 accepted species, the optimal identity thresholds to discriminate filamentous fungal species were predicted as 99.6 % for ITS and 99.8 % for LSU. We showed that 17 % and 18 % of the species could not be discriminated by the ITS and LSU genetic markers, respectively. Among them, ∼8 % were indistinguishable using both genetic markers. ITS has been shown to outperform LSU in filamentous fungal species discrimination with a probability of correct identification of 82 % vs. 77.6 %, and a clustering quality value of 84 % vs. 77.7 %. At higher taxonomic classifications, LSU has been shown to have a better discriminatory power than ITS. With a clustering quality value of 80 %, LSU outperformed ITS in identifying filamentous fungi at the ordinal level. At the generic level, the clustering quality values produced by both genetic markers were low, indicating the necessity for taxonomic revisions at genus level and, likely, for applying more conserved genetic markers or even whole genomes. The taxonomic thresholds predicted for filamentous fungal identification at the genus, family, order and class levels were 94.3 %, 88.5 %, 81.2 % and 80.9 % based on ITS barcodes, and 98.2 %, 96.2 %, 94.7 % and 92.7 % based on LSU barcodes. The DNA barcodes used in this study have been deposited to GenBank and will also be publicly available at the Westerdijk Institute's website as reference sequences for fungal identification, marking an unprecedented data release event in global fungal barcoding efforts to date.
Collapse
Affiliation(s)
- D. Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T. Gehrmann
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - B. Stielow
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - U. Eberhardt
- Staatliches Museum f. Naturkunde Stuttgart, Abt. Botanik, Rosenstein 1, D-70191 Stuttgart, Germany
| | - A. Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - G. Cardinali
- University of Perugia, Dept. of Pharmaceutical Sciences, Via Borgo 20 Giugno 74, I 06121 Perugia, Italy
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
27
|
Halbwachs H, Easton GL, Bol R, Hobbie EA, Garnett MH, Peršoh D, Dixon L, Ostle N, Karasch P, Griffith GW. Isotopic evidence of biotrophy and unusual nitrogen nutrition in soil-dwelling Hygrophoraceae. Environ Microbiol 2018; 20:3573-3588. [PMID: 30105856 PMCID: PMC6849620 DOI: 10.1111/1462-2920.14327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/04/2023]
Abstract
Several lines of evidence suggest that the agaricoid, non-ectomycorrhizal members of the family Hygrophoraceae (waxcaps) are biotrophic with unusual nitrogen nutrition. However, methods for the axenic culture and lab-based study of these organisms remain to be developed, so our current knowledge is limited to field-based investigations. Addition of nitrogen, lime or organophosphate pesticide at an experimental field site (Sourhope) suppressed fruiting of waxcap basidiocarps. Furthermore, stable isotope natural abundance in basidiocarps were unusually high in 15 N and low in 13 C, the latter consistent with mycorrhizal nutritional status. Similar patterns were found in waxcap basidiocarps from diverse habitats across four continents. Additional data from 14 C analysis of basidiocarps and 13 C pulse label experiments suggest that these fungi are not saprotrophs but rather biotrophic endophytes and possibly mycorrhizal. The consistently high but variable δ15 N values (10-20‰) of basidiocarps further indicate that N acquisition or processing differ from other fungi; we suggest that N may be derived from acquisition of N via soil fauna high in the food chain.
Collapse
Affiliation(s)
- Hans Halbwachs
- Bavarian Forest National ParkFreyunger Str. 2, 94481, GrafenauGermany
| | - Gary L. Easton
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAdeilad Cledwyn, Penglais, Aberystwyth, Ceredigion, SY23 3DD, WalesUK
| | - Roland Bol
- Institute of Bio‐ and Geosciences, Agrosphere (IBG‐3). Forschungszentrum Jülich GmbHWilhelm‐Johnen‐Straße, 52428, JülichGermany
| | - Erik A. Hobbie
- Earth Systems Research Center, Morse HallUniversity of New Hampshire8 College Road, DurhamNH, 03824‐3525USA
| | - Mark H Garnett
- NERC Radiocarbon FacilityScottish Enterprise Technology ParkRankine Avenue, East Kilbride, G75 0QFScotland, UK
| | - Derek Peršoh
- Department of GeobotanyRuhr‐Universität BochumGebäude ND 03/170, Universitätsstraße 150, 44780, BochumGermany
| | - Liz Dixon
- Sustainable Soils and Grassland Systems, Rothamsted ResearchNorth Wyke, Okehampton, Devon, EX20 2SBEngland, UK
| | - Nick Ostle
- Lancaster Environment CentreLancaster UniversityLancaster, LA1 4YQEngland, UK
| | - Peter Karasch
- German Mycological SocietyKirchl 78. D‐94545, HohenauGermany
| | - Gareth W. Griffith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAdeilad Cledwyn, Penglais, Aberystwyth, Ceredigion, SY23 3DD, WalesUK
| |
Collapse
|
28
|
Balech B, Sandionigi A, Manzari C, Trucchi E, Tullo A, Licciulli F, Grillo G, Sbisà E, De Felici S, Saccone C, D'Erchia AM, Cesaroni D, Casiraghi M, Vicario S. Tackling critical parameters in metazoan meta-barcoding experiments: a preliminary study based on coxI DNA barcode. PeerJ 2018; 6:e4845. [PMID: 29915686 PMCID: PMC6004112 DOI: 10.7717/peerj.4845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
Nowadays DNA meta-barcoding is a powerful instrument capable of quickly discovering the biodiversity of an environmental sample by integrating the DNA barcoding approach with High Throughput Sequencing technologies. It mainly consists of the parallel reading of informative genomic fragment/s able to discriminate living entities. Although this approach has been widely studied, it still needs optimization in some necessary steps requested in its advanced accomplishment. A fundamental element concerns the standardization of bioinformatic analyses pipelines. The aim of the present study was to underline a number of critical parameters of laboratory material preparation and taxonomic assignment pipelines in DNA meta-barcoding experiments using the cytochrome oxidase subunit-I (coxI) barcode region, known as a suitable molecular marker for animal species identification. We compared nine taxonomic assignment pipelines, including a custom in-house method, based on Hidden Markov Models. Moreover, we evaluated the potential influence of universal primers amplification bias in qPCR, as well as the correlation between GC content with taxonomic assignment results. The pipelines were tested on a community of known terrestrial invertebrates collected by pitfall traps from a chestnut forest in Italy. Although the present analysis was not exhaustive and needs additional investigation, our results suggest some potential improvements in laboratory material preparation and the introduction of additional parameters in taxonomic assignment pipelines. These include the correct setup of OTU clustering threshold, the calibration of GC content affecting sequencing quality and taxonomic classification, as well as the evaluation of PCR primers amplification bias on the final biodiversity pattern. Thus, careful attention and further validation/optimization of the above-mentioned variables would be required in a DNA meta-barcoding experimental routine.
Collapse
Affiliation(s)
- Bachir Balech
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari-Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Biologia, Università degli studi di Bari 'Aldo Moro', Bari, Italy
| | - Anna Sandionigi
- Dipartimento di Biotecnologie e Bioscienze-Zooplantlab, Università degli studi di Milano Bicocca, Milan, Italy
| | - Caterina Manzari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari-Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Emiliano Trucchi
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy
| | - Apollonia Tullo
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari-Consiglio Nazionale delle Ricerche, Bari, Italy.,Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Flavio Licciulli
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Giorgio Grillo
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Elisabetta Sbisà
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Stefano De Felici
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy.,Istituto di Biologia Agroambientale e Forestale-Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Cecilia Saccone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Anna Maria D'Erchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | | | - Maurizio Casiraghi
- Dipartimento di Biotecnologie e Bioscienze-Zooplantlab, Università degli studi di Milano Bicocca, Milan, Italy
| | - Saverio Vicario
- Istituto sull'Inquinamento Atmosferico-Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
29
|
Egidi E, May TW, Franks AE. Seeking the needle in the haystack: Undetectability of mycorrhizal fungi outside of the plant rhizosphere associated with an endangered Australian orchid. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Detheridge AP, Comont D, Callaghan TM, Bussell J, Brand G, Gwynn-Jones D, Scullion J, Griffith GW. Vegetation and edaphic factors influence rapid establishment of distinct fungal communities on former coal-spoil sites. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Eckert IM, Littlefair JE, Zhang GK, Chain FJ, Crease TJ, Cristescu ME. Bioinformatics for Biomonitoring: Species Detection and Diversity Estimates Across Next-Generation Sequencing Platforms. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Moussa TAA, Al-Zahrani HS, Almaghrabi OA, Abdelmoneim TS, Fuller MP. Comparative metagenomics approaches to characterize the soil fungal communities of western coastal region, Saudi Arabia. PLoS One 2017; 12:e0185096. [PMID: 28934322 PMCID: PMC5608318 DOI: 10.1371/journal.pone.0185096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/06/2017] [Indexed: 11/26/2022] Open
Abstract
A total of 145007 reads were obtained from pyrosequencing for all the 4 samples. The total count ranged from 11,301,014 (Mecca old road) to 23,503,512 bp (Thuwal). A total of 460 fungal species belonging to 133 genera, 58 families, 33 orders, 13 classes and 4 phyla was identified across the four sites. The most abundant phylum at all four sites was Ascomycota followed by Basidiomycota. Four phyla (Ascomycota—99.31%, Basidiomycota—0.59%, Chytridiomycota—0.04%, Glomeromycota—0.03%) were detected in Khulais. Except for Glomeromycota, all phyla were detected at Mecca old road (Ascomycota—74.26%, Basidiomycota—25.71%, Chytridiomycota—0.01%) and Thuwal (Ascomycota—99.59%, Basidiomycota—0.40%, Chytridiomycota—0.002%); while only Ascomycota—90.98% and Basidiomycota—9.01% were detected in Asfan road. At the class level, Sordariomycetes was predominantly observed at Asfan road—59.88%, Khulais—68.26% and Thuwal—94.84%; while Pezizomycetes was dominant at Mecca old road—56.01%, was absent at Asfan road. Agaricomycetes was present only at Mecca old road—25.73%; while Tremellomycetes—5.77%, Malasseizomycetes—2.13% and Microbotryomycetes—1.10% were found only at Asfan road. The phylogenetic trees revealed that clear genus level differences are visible across all the four sites, with an overall predominance of Thielavia followed by Madurella, Aspergillus, and Gelasinospora. Chaetomium sp., Aspergillus caespitosus and Aspergillus sp. were found in moderate (Mecca old road and Thuwal) to abundant (Asfan road and Khulais) quantities. Thielavia sp., Thielavia hyalocarpa and Madurella sp. are found in moderate quantities at Khulais and Mecca old road, while in abundant levels at Asfan road and Thuwal. Fusarium equisati and F. oxysporum were detected at Thuwal and Khulais. Sordaria araneosa was present at Khulais, while Malasseiza globosa species was detected in moderate quantities across all sites except Khulais.
Collapse
Affiliation(s)
- Tarek A A Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hassan S Al-Zahrani
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar A Almaghrabi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Tamer S Abdelmoneim
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Michael P Fuller
- School of Biological Science, Faculty of Science and Engineering, Plymouth University, Plymouth, United Kingdom
| |
Collapse
|
33
|
Ekanayaka AH, Ariyawansa HA, Hyde KD, Jones EBG, Daranagama DA, Phillips AJL, Hongsanan S, Jayasiri SC, Zhao Q. DISCOMYCETES: the apothecial representatives of the phylum Ascomycota. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0389-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Jacquemyn H, Waud M, Brys R, Lallemand F, Courty PE, Robionek A, Selosse MA. Mycorrhizal Associations and Trophic Modes in Coexisting Orchids: An Ecological Continuum between Auto- and Mixotrophy. FRONTIERS IN PLANT SCIENCE 2017; 8:1497. [PMID: 28912791 PMCID: PMC5583604 DOI: 10.3389/fpls.2017.01497] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/14/2017] [Indexed: 05/03/2023]
Abstract
Two distinct nutritional syndromes have been described in temperate green orchids. Most orchids form mycorrhizas with rhizoctonia fungi and are considered autotrophic. Some orchids, however, associate with fungi that simultaneously form ectomycorrhizas with surrounding trees and derive their carbon from these fungi. This evolutionarily derived condition has been called mixotrophy or partial mycoheterotrophy and is characterized by 13C enrichment and high N content. Although it has been suggested that the two major nutritional syndromes are clearly distinct and tightly linked to the composition of mycorrhizal communities, recent studies have challenged this assumption. Here, we investigated whether mycorrhizal communities and nutritional syndromes differed between seven green orchid species that co-occur under similar ecological conditions (coastal dune slacks). Our results showed that mycorrhizal communities differed significantly between orchid species. Rhizoctonia fungi dominated in Dactylorhiza sp., Herminium monorchis, and Epipactis palustris, which were autotrophic based on 13C and N content. Conversely, Liparis loeselii and Epipactis neerlandica associated primarily with ectomycorrhizal fungi but surprisingly, 13C and N content supported mixotrophy only in E. neerlandica. This, together with the finding of some ectomycorrhizal fungi in rhizoctonia-associated orchids, suggests that there exists an ecological continuum between the two syndromes. The presence of a large number of indicator species associating with individual orchid species further confirms previous findings that mycorrhizal fungi may be important factors driving niche-partitioning in terrestrial orchids and therefore contribute to orchid coexistence.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU LeuvenLeuven, Belgium
| | - Michael Waud
- Plant Conservation and Population Biology, Department of Biology, KU LeuvenLeuven, Belgium
| | - Rein Brys
- Research Institute for Forest and NatureGeraardsbergen, Belgium
| | - Félix Lallemand
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne UniversitésParis, France
| | | | - Alicja Robionek
- The Laboratory of Freshwater Ecology, Department of Plant Ecology, University of GdańskGdańsk, Poland
- Department of Plant Taxonomy and Nature Conservation, University of GdańskGdańsk, Poland
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne UniversitésParis, France
- Department of Plant Taxonomy and Nature Conservation, University of GdańskGdańsk, Poland
| |
Collapse
|
35
|
Wicaksono CY, Aguirre-Guiterrez J, Nouhra E, Pastor N, Raes N, Pacheco S, Geml J. Contracting montane cloud forests: a case study of the Andean alder (Alnus acuminata) and associated fungi in the Yungas. Biotropica 2016. [DOI: 10.1111/btp.12394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Jesús Aguirre-Guiterrez
- Biodiversity Dynamics Research Group; Naturalis Biodiversity Center; Vondellaan 55, P.O. Box 9517 2300 RA Leiden The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Computational Geo-Ecology; University of Amsterdam; Science Park 904 1098 HX Amsterdam The Netherlands
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV); CONICET; Universidad Nacional de Córdoba; CC 495 5000 Córdoba Argentina
| | - Nicolás Pastor
- Instituto Multidisciplinario de Biología Vegetal (IMBIV); CONICET; Universidad Nacional de Córdoba; CC 495 5000 Córdoba Argentina
| | - Niels Raes
- Biodiversity Dynamics Research Group; Naturalis Biodiversity Center; Vondellaan 55, P.O. Box 9517 2300 RA Leiden The Netherlands
| | - Silvia Pacheco
- Fundación ProYungas; Perú 1180, 4107 Yerba Buena Tucumán Argentina
| | - József Geml
- Faculty of Science; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- Biodiversity Dynamics Research Group; Naturalis Biodiversity Center; Vondellaan 55, P.O. Box 9517 2300 RA Leiden The Netherlands
| |
Collapse
|
36
|
Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists. PLoS One 2016; 11:e0165035. [PMID: 27755574 PMCID: PMC5068792 DOI: 10.1371/journal.pone.0165035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.
Collapse
|
37
|
Johansen RB, Johnston P, Mieczkowski P, Perry GL, Robeson MS, Burns BR, Vilgalys R. A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities. GLOBAL CHANGE BIOLOGY 2016; 22:3080-3096. [PMID: 27004610 DOI: 10.1111/gcb.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/16/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere.
Collapse
Affiliation(s)
- Luis N Morgado
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Tatiana A Semenova
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Jeffrey M Welker
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | | | - Erik Smets
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2437, 3001, Leuven, Belgium
| | - József Geml
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
39
|
Jacquemyn H, Waud M, Lievens B, Brys R. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. ANNALS OF BOTANY 2016; 118:105-14. [PMID: 26946528 PMCID: PMC4934391 DOI: 10.1093/aob/mcw015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/11/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats. METHODS In this study, 454 amplicon pyrosequencing was used to investigate mycorrhizal communities associating with Epipactis helleborine in its typical forest habitat and with its presumed sister species E. neerlandica that almost exclusively occurs in coastal dune habitats. Samples of the phylogenetically more distant E. palustris, which co-occurred with E. neerlandica, were also included to investigate the role of habitat-specific conditions on mycorrhizal communities. RESULTS A total of 105 operational taxonomic units (OTUs) of putative orchid mycorrhizal fungi were observed in the three studied species. The majority of these fungi were endophytic fungi of Helotiales and ectomycorrhizal fungi belonging to Thelephoraceae, Sebacinaceae and Inocybaceae. In addition, a large number of other ectomycorrhizal taxa were detected, including Cortinarius, Cenococcum, Tuber, Geopora, Wilcoxina, Meliniomyces, Hebeloma, Tricholoma, Russula and Peziza Mycorrhizal communities differed significantly between the three species, but differences were most pronounced between the forest species (E. helleborine) and the two dune slack species (E. neerlandica and E. palustris). CONCLUSION The results clearly showed that recently diverged orchid species that occupy different habitats were characterized by significantly different mycorrhizal communities and call for more detailed experiments that aim at elucidating the contribution of habitat-specific adaptations in general and mycorrhizal divergence in particular to the process of speciation in orchids.
Collapse
Affiliation(s)
- Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| | - Michael Waud
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| | - Bart Lievens
- KU Leuven, Campus De Nayer, Department of Microbial and Molecular Systems, Laboratory for Process Microbial Ecology and Bioinspirational Management, B-2860 Sint-Katelijne-Waver, Belgium
| | - Rein Brys
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| |
Collapse
|
40
|
The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci Rep 2016; 6:24965. [PMID: 27112993 PMCID: PMC4844954 DOI: 10.1038/srep24965] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/08/2016] [Indexed: 01/31/2023] Open
Abstract
Metabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China. A new primer combination and the MiSeq platform were used to amplify and sequence a wide variety of litter arthropods using simulated and real-world communities. Quality filtered reads were clustered into 3,624 MOTUs at ≥97% similarity and the taxonomy of each MOTU was predicted. We compared diversity and compositional differences between forests and plantations (rubber and tea) for all MOTUs and for eight arthropod groups. We obtained ~100% detection rate after in silico sequencing six mock communities with known arthropod composition. Ordination showed that rubber, tea and forest communities formed distinct clusters. α-diversity declined significantly between forests and adjacent plantations for more arthropod groups in rubber than tea, and diversity of order Orthoptera increased significantly in tea. Turnover was higher in forests than plantations, but patterns differed among groups. Metabarcoding is useful for quantifying diversity patterns of arthropods under different land-uses and the MiSeq platform is effective for arthropod metabarcoding in the tropics.
Collapse
|
41
|
Lu D, Jin H, Yang X, Zhang D, Yan Z, Li X, Zhao Y, Han R, Qin B. Characterization of rhizosphere and endophytic fungal communities from roots of Stipa purpurea in alpine steppe around Qinghai Lake. Can J Microbiol 2016; 62:643-56. [PMID: 27348421 DOI: 10.1139/cjm-2015-0857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stipa purpurea is among constructive endemic species in the alpine steppe on the Qinghai-Xizang Plateau. To reveal the fungal community structure and diversity in the rhizosphere and roots of this important grass and to analyze the potential influence of different habitats on the structure of fungal communities, we explored the root endophyte and the directly associated rhizosphere communities of S. purpurea by using internal transcribed spacer rRNA cloning and sequencing methods. We found that the roots of S. purpurea are associated with a diverse consortium of Basidiomycota (59.8%) and Ascomycota (38.5%). Most fungi obtained from rhizosphere soil in S. purpurea have been identified as Ascomycetes, while the high proportion detected in roots were basidiomycetous endophytes. The species richness, diversity, and evenness of fungal assemblages were higher in roots than in the rhizosphere soil. Fungi inhabiting the rhizosphere and roots of S. purpurea are significantly different, and the rhizosphere and endophyte communities are largely independent with little overlap in the dominant phyla or operational taxonomic units. Taken together, these results suggested that a wide variety of fungal communities are associated with the roots and rhizosphere soil of S. purpurea and that the fungal assemblages are strongly influenced by different habitats.
Collapse
Affiliation(s)
- Dengxue Lu
- a Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Hui Jin
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xiaoyan Yang
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Denghong Zhang
- c College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zhiqiang Yan
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xiuzhuang Li
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yuhui Zhao
- a Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Rongbing Han
- a Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Bo Qin
- b Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
42
|
Dark septate endophytic fungi of native plants along an altitudinal gradient in the Brazilian Atlantic forest. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Cox F, Newsham KK, Bol R, Dungait JAJ, Robinson CH. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol Lett 2016; 19:528-36. [DOI: 10.1111/ele.12587] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/26/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Filipa Cox
- School of Earth, Atmospheric & Environmental Sciences; The University of Manchester; Manchester M13 9PL UK
- British Antarctic Survey; Natural Environment Research Council; Cambridge CB3 0ET UK
| | - Kevin K. Newsham
- British Antarctic Survey; Natural Environment Research Council; Cambridge CB3 0ET UK
- Department of Arctic Biology; the University Centre in Svalbard; P.O. Box 156 N-9171 Longyearbyen Svalbard
| | - Roland Bol
- Institute of Bio- and Geosciences; Agrosphere (IBG-3); Forschungszentrum Jülich GmbH; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Jennifer A. J. Dungait
- Sustainable Soils and Grassland Systems Department; Rothamsted Research; North Wyke Okehampton Devon EX20 2SB UK
| | - Clare H. Robinson
- School of Earth, Atmospheric & Environmental Sciences; The University of Manchester; Manchester M13 9PL UK
| |
Collapse
|
44
|
Geml J, Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol Ecol 2015; 91:fiv095. [PMID: 26253509 DOI: 10.1093/femsec/fiv095] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 11/13/2022] Open
Abstract
Fungi, including symbionts, pathogens and decomposers, play crucial roles in community dynamics and nutrient cycling in terrestrial ecosystems. Despite their ecological importance, the response of most arctic fungi to climate warming is unknown, so are their potential roles in driving the observed and predicted changes in tundra communities. We carried out deep DNA sequencing of soil samples to study the long-term effects of experimental warming on fungal communities in dry heath and moist tussock tundra in Arctic Alaska. The data presented here indicate that fungal community composition responds strongly to warming in the moist tundra, but not in the dry tundra. While total fungal richness was not significantly affected by warming, there were clear correlations among operational taxonomic unit richness of various ecological and taxonomic groups and long-term warming. Richness of ectomycorrhizal, ericoid mycorrhizal and lichenized fungi generally decreased with warming, while richness of saprotrophic, plant and animal pathogenic, and root endophytic fungi tended to increase in the warmed plots. More importantly, various taxa within these functional guilds followed opposing trends that highlight the importance of species-specific responses to warming. We recommend that species-level ecological differences be taken into account in climate change and nutrient cycling studies that involve arctic fungi.
Collapse
Affiliation(s)
- József Geml
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands Faculty of Science, Leiden University, PO Box 9502, 2300 RA Leiden, the Netherlands
| | - Luis N Morgado
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands
| | - Tatiana A Semenova
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands Faculty of Science, Leiden University, PO Box 9502, 2300 RA Leiden, the Netherlands
| | - Jeffrey M Welker
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | | | - Erik Smets
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands Faculty of Science, Leiden University, PO Box 9502, 2300 RA Leiden, the Netherlands Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2437, 3001 Leuven, Belgium
| |
Collapse
|
45
|
Botnen S, Kauserud H, Carlsen T, Blaalid R, Høiland K. Mycorrhizal fungal communities in coastal sand dunes and heaths investigated by pyrosequencing analyses. MYCORRHIZA 2015; 25:447-56. [PMID: 25597300 DOI: 10.1007/s00572-014-0624-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/23/2014] [Indexed: 05/20/2023]
Abstract
Maritime sand dunes and coastal ericaceous heaths are unstable and dynamic habitats for mycorrhizal fungi. Creeping willow (Salix repens) is an important host plant in these habitats in parts of Europe. In this study, we wanted to assess which mycorrhizal fungi are associated with S. repens in four different coastal vegetation types in Southern Norway, three types from sand dunes and one from heaths. Moreover, we investigated which ecological factors are important for the fungal community structure in these vegetation types. Mycorrhizal fungi on S. repens root samples were identified by 454 pyrosequencing of tag-encoded internal transcribed spacer 1 (ITS1) amplicons. Significantly higher fungal richness was observed in hummock dunes and dune slacks compared to eroded dune vegetation. The compositional variation was mainly accounted for by location (plot) and vegetation type and was significantly correlated to content of carbon, nitrogen and phosphorus in soil. The investigated maritime sand dunes and coastal ericaceous heaths hosted mycorrhizal taxa mainly associated with Helotiales, Sebacinales, Thelephorales and Agaricales.
Collapse
Affiliation(s)
- Synnøve Botnen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
46
|
Jin H, Yang X, Lu D, Li C, Yan Z, Li X, Zeng L, Qin B. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Van Leeuwenhoek 2015; 108:835-50. [PMID: 26194722 DOI: 10.1007/s10482-015-0538-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.
Collapse
Affiliation(s)
- Hui Jin
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. GLOBAL CHANGE BIOLOGY 2015; 21:959-72. [PMID: 25156129 PMCID: PMC4322476 DOI: 10.1111/gcb.12716] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/19/2014] [Accepted: 07/28/2014] [Indexed: 05/22/2023]
Abstract
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.
Collapse
Affiliation(s)
- Luis N Morgado
- Naturalis Biodiversity CenterP.O. Box 9517, Leiden, RA, 2300, The Netherlands
| | - Tatiana A Semenova
- Naturalis Biodiversity CenterP.O. Box 9517, Leiden, RA, 2300, The Netherlands
- Faculty of Science, Leiden UniversityP.O. Box 9502, Leiden, RA, 2300, The Netherlands
| | - Jeffrey M Welker
- Department of Biological Sciences, University of Alaska AnchorageAnchorage, USA
| | | | - Erik Smets
- Naturalis Biodiversity CenterP.O. Box 9517, Leiden, RA, 2300, The Netherlands
- Faculty of Science, Leiden UniversityP.O. Box 9502, Leiden, RA, 2300, The Netherlands
- Plant Conservation and Population Biology, KU LeuvenKasteelpark Arenberg 31, Box 2437, Leuven, 3001, Belgium
| | - József Geml
- Naturalis Biodiversity CenterP.O. Box 9517, Leiden, RA, 2300, The Netherlands
- Faculty of Science, Leiden UniversityP.O. Box 9502, Leiden, RA, 2300, The Netherlands
| |
Collapse
|