1
|
Davletgildeeva AT, Kuznetsova AA, Ishchenko AA, Saparbaev M, Kuznetsov NA. An Insight into the Mechanism of DNA Cleavage by DNA Endonuclease from the Hyperthermophilic Archaeon Pyrococcus furiosus. Int J Mol Sci 2024; 25:8897. [PMID: 39201583 PMCID: PMC11354406 DOI: 10.3390/ijms25168897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hyperthermophilic archaea such as Pyrococcus furiosus survive under very aggressive environmental conditions by occupying niches inaccessible to representatives of other domains of life. The ability to survive such severe living conditions must be ensured by extraordinarily efficient mechanisms of DNA processing, including repair. Therefore, in this study, we compared kinetics of conformational changes of DNA Endonuclease Q from P. furiosus during its interaction with various DNA substrates containing an analog of an apurinic/apyrimidinic site (F-site), hypoxanthine, uracil, 5,6-dihydrouracil, the α-anomer of adenosine, or 1,N6-ethenoadenosine. Our examination of DNA cleavage activity and fluorescence time courses characterizing conformational changes of the dye-labeled DNA substrates during the interaction with EndoQ revealed that the enzyme induces multiple conformational changes of DNA in the course of binding. Moreover, the obtained data suggested that the formation of the enzyme-substrate complex can proceed through dissimilar kinetic pathways, resulting in different types of DNA conformational changes, which probably allow the enzyme to perform its biological function at an extreme temperature.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.T.D.); (A.A.K.)
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.T.D.); (A.A.K.)
| | - Alexander A. Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, F-94805 Villejuif CEDEX, France; (A.A.I.); (M.S.)
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, F-94805 Villejuif CEDEX, France; (A.A.I.); (M.S.)
| | - Nikita A. Kuznetsov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Monari A, Burger A, Dumont E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 2023; 22:2081-2092. [PMID: 37166569 DOI: 10.1007/s43630-023-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.
Collapse
Affiliation(s)
- Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France.
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
- Institut Universitaire de France, 5 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
3
|
Senchurova SI, Kuznetsova AA, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. The Kinetic Mechanism of 3′-5′ Exonucleolytic Activity of AP Endonuclease Nfo from E. coli. Cells 2022; 11:cells11192998. [PMID: 36230958 PMCID: PMC9562005 DOI: 10.3390/cells11192998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli apurinic/apyrimidinic (AP) endonuclease Nfo is one of the key participants in DNA repair. The principal biological role of this enzyme is the recognition and hydrolysis of AP sites, which arise in DNA either as a result of the spontaneous hydrolysis of an N-glycosidic bond with intact nitrogenous bases or under the action of DNA glycosylases, which eliminate various damaged bases during base excision repair. Nfo also removes 3′-terminal blocking groups resulting from AP lyase activity of DNA glycosylases. Additionally, Nfo can hydrolyze the phosphodiester linkage on the 5′ side of some damaged nucleotides on the nucleotide incision repair pathway. The function of 3′-5′-exonuclease activity of Nfo remains unclear and probably consists of participation (together with the nucleotide incision repair activity) in the repair of cluster lesions. In this work, using polyacrylamide gel electrophoresis and the stopped-flow method, we analyzed the kinetics of the interaction of Nfo with various model DNA substrates containing a 5′ single-stranded region. These data helped to describe the mechanism of nucleotide cleavage and to determine the rates of the corresponding stages. It was revealed that the rate-limiting stage of the enzymatic process is a dissociation of the reaction product from the enzyme active site. The stability of the terminal pair of nucleotides in the substrate did not affect the enzymatic-reaction rate. Finally, it was found that 2′-deoxynucleoside monophosphates can effectively inhibit the 3′-5′-exonuclease activity of Nfo.
Collapse
Affiliation(s)
- Svetlana I. Senchurova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander A. Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, CEDEX, F-94805 Villejuif, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, CEDEX, F-94805 Villejuif, France
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| |
Collapse
|
4
|
Liu C, Ren Y, Gao XQ, Du X, Yang ZZ. Development of QM/MM (ABEEM polarizable force field) method to simulate the excision reaction mechanism of damaged cytosine. J Comput Chem 2022; 43:2139-2153. [PMID: 36151878 DOI: 10.1002/jcc.27008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
DNA damages are regarded as having harmful effects on cell. The base excision repair mechanism combats these effects by removing damaged bases. The deglycosylation mechanism of excising damaged bases by DNA glycosylase and the state of the leaving base have been controversial. The enzymatic reaction of DNA glycosylase to remove the damaged bases involves not only the formation and breaking of chemical bonds, but also complex polarization effect and charge transfer, which cannot be accurately simulated by the QM/MM method combined with the fixed charge force field. This work has developed the ABEEM fluctuating polarizable force field combining with the QM method, that is (QM/MM[ABEEM]), to accurately simulate the proton transfer, charge transfer and the charge distribution. The piecewise function is used as the valence-state electronegativity in the QM/MM (ABEEM) to realize the accurate fitting of the charge distribution in reaction. And the charge transfer is accurately simulated by the local charge conservation conditions. Four deglycosylation mechanisms including the monofunctional and difunctional mechanisms of four neutral and protonated cytosine derivatives are explored. It is confirmed that the monofunctional mechanism of Asp-activated nucleophile water is a better deglycosylation mechanism and the base is protonated before the reaction occurs. Protonization of the base reduced the activation energy by 10.00-17.00 kcal/mol. Asp provides the necessary charge for the reaction, and DNA glycosylase preferentially cleaves ɛC. This work provides a theoretical basis for the research of excising damaged bases by DNA glycosylase.
Collapse
Affiliation(s)
- Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Yang Ren
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Xiao-Qin Gao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Xue Du
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| |
Collapse
|
5
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
6
|
Kuznetsova AA, Senchurova SI, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. Common Kinetic Mechanism of Abasic Site Recognition by Structurally Different Apurinic/Apyrimidinic Endonucleases. Int J Mol Sci 2021; 22:8874. [PMID: 34445579 PMCID: PMC8396254 DOI: 10.3390/ijms22168874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases Nfo (Escherichia coli) and APE1 (human) represent two conserved structural families of enzymes that cleave AP-site-containing DNA in base excision repair. Nfo and APE1 have completely different structures of the DNA-binding site, catalytically active amino acid residues and catalytic metal ions. Nonetheless, both enzymes induce DNA bending, AP-site backbone eversion into the active-site pocket and extrusion of the nucleotide located opposite the damage. All these stages may depend on local stability of the DNA duplex near the lesion. Here, we analysed effects of natural nucleotides located opposite a lesion on catalytic-complex formation stages and DNA cleavage efficacy. Several model DNA substrates that contain an AP-site analogue [F-site, i.e., (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran] opposite G, A, T or C were used to monitor real-time conformational changes of the tested enzymes during interaction with DNA using changes in the enzymes' intrinsic fluorescence intensity mainly caused by Trp fluorescence. The extrusion of the nucleotide located opposite F-site was recorded via fluorescence intensity changes of two base analogues. The catalytic rate constant slightly depended on the opposite-nucleotide nature. Thus, structurally different AP endonucleases Nfo and APE1 utilise a common strategy of damage recognition controlled by enzyme conformational transitions after initial DNA binding.
Collapse
Affiliation(s)
- Alexandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
| | - Svetlana I. Senchurova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander A. Ishchenko
- Group Mechanisms of DNA Repair and Carcinogenesis, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, F-94805 Villejuif, France; (A.A.I.); (M.S.)
| | - Murat Saparbaev
- Group Mechanisms of DNA Repair and Carcinogenesis, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, F-94805 Villejuif, France; (A.A.I.); (M.S.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
| |
Collapse
|
7
|
Liu C, Lv C, Yao YY, Du X, Zhao DX, Yang ZZ. Water-Mediated Oxidation of Guanine by a Repair Enzyme: Simulation Using the ABEEM Polarizable Force Field. J Chem Theory Comput 2021; 17:3525-3538. [PMID: 34018392 DOI: 10.1021/acs.jctc.1c00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recognition mechanism of oxidative damage in organisms has long been a research hotspot. Water is an important medium in the recognition process, but its specific role remains unknown. There is a need to develop a suitable force field that can adequately describe the electrostatic, hydrogen bond, and other interactions among the molecules in the complex system of the repair enzyme and oxidized base. The developing ABEEM polarizable force field (PFF) has been used to simulate the repaired enzyme hOGG1 and oxidized DNA (PDB ID: 1EBM) in a biological environment, and the corresponding results are better than those of the fixed-charge force fields OPLS/AA and AMBER OL15. 8-Oxo-G is recognized by Gln315 of hOGG1 mainly through hydrogen bonds mediated by continuous exchange of 2 water molecules. Phe319 and Cys253 are stacked on both sides of the π planes of bases to form sandwich structures. The charge polarization effect gives an important signal to drive the exchange of water molecules and maintains the recognition of oxidation bases by enzymes. The mediated main water molecule A and mediated auxiliary water molecule B together pull Gln315 to recognize 8-oxo-G by hydrogen bond interactions. Then, the charge polarization signal of solvent water molecule C with a large absolute charge causes the absolute charge of O atoms in water molecule A or B to increase by approximately 0.2 e, and water molecule A or B leaves Gln315 and 8-oxo-G. The other water molecule and water molecule C synergistically recognize 8-oxo-G with Gln315. Even though the water molecules between Gln315 and 8-oxo-G are removed, the MD simulation results show that water molecules appear between Gln315 and 8-oxo-G in a very short time (<2 ps). The dwell time of each water molecule is approximately 60 ps. The radial distribution function and dwell time support the correctness of the above mechanism. These polarization effects and hydrogen bonding interactions cannot be simulated by a fixed-charge force field.
Collapse
Affiliation(s)
- Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Change Lv
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yu-Ying Yao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xue Du
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
8
|
Bulygin AA, Kuznetsova AA, Vorobjev YN, Fedorova OS, A. Kuznetsov N. The Role of Active-Site Plasticity in Damaged-Nucleotide Recognition by Human Apurinic/Apyrimidinic Endonuclease APE1. Molecules 2020; 25:molecules25173940. [PMID: 32872297 PMCID: PMC7504742 DOI: 10.3390/molecules25173940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 hydrolyzes phosphodiester bonds on the 5′ side of an AP-site, and some damaged nucleotides such as 1,N6-ethenoadenosine (εA), α-adenosine (αA), and 5,6-dihydrouridine (DHU). To investigate the mechanism behind the broad substrate specificity of APE1, we analyzed pre-steady-state kinetics of conformational changes in DNA and the enzyme during DNA binding and damage recognition. Molecular dynamics simulations of APE1 complexes with one of damaged DNA duplexes containing εA, αA, DHU, or an F-site (a stable analog of an AP-site) revealed the involvement of residues Asn229, Thr233, and Glu236 in the mechanism of DNA lesion recognition. The results suggested that processing of an AP-site proceeds faster in comparison with nucleotide incision repair substrates because eversion of a small abasic site and its insertion into the active site do not include any unfavorable interactions, whereas the insertion of any target nucleotide containing a damaged base into the APE1 active site is sterically hindered. Destabilization of the α-helix containing Thr233 and Glu236 via a loss of the interaction between these residues increased the plasticity of the damaged-nucleotide binding pocket and the ability to accommodate structurally different damaged nucleotides. Nonetheless, the optimal location of εA or αA in the binding pocket does not correspond to the optimal conformation of catalytic amino acid residues, thereby significantly decreasing the cleavage efficacy for these substrates.
Collapse
Affiliation(s)
- Anatoly A. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - Alexandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
| | - Yuri N. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| |
Collapse
|
9
|
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A. Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels. Front Chem 2020; 8:112. [PMID: 32181238 PMCID: PMC7059644 DOI: 10.3389/fchem.2020.00112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Collapse
Affiliation(s)
- Benoît Y. Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| | - Dmytro Dziuba
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Mohamed VI Polytechnic University, UM6P, Ben Guerir, Morocco
| | - Alexander P. Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, Kyiv, Ukraine
- Institute of Physical, Technical and Computer Science, Yuriy Fedkovych National University, Chernivtsi, Ukraine
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| |
Collapse
|
10
|
Kuznetsova AA, Kladova OA, Barthes NPF, Michel BY, Burger A, Fedorova OS, Kuznetsov NA. Comparative Analysis of Nucleotide Fluorescent Analogs for Registration of DNA Conformational Changes Induced by Interaction with Formamidopyrimidine-DNA Glycosylase Fpg. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kladova OA, Kuznetsova AA, Barthes NPF, Michel BY, Burger A, Fedorova OS, Kuznetsov NA. New Fluorescent Analogs of Nucleotides Based on 3-Hydroxychromone for Recording Conformational Changes of DNA. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Sougnabé A, Lissouck D, Fontaine-Vive F, Nsangou M, Mély Y, Burger A, Kenfack CA. Electronic transitions and ESIPT kinetics of the thienyl-3-hydroxychromone nucleobase surrogate in DNA duplexes: a DFT/MD-TDDFT study. RSC Adv 2020; 10:7349-7359. [PMID: 35492175 PMCID: PMC9049942 DOI: 10.1039/c9ra10419d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
The fluorescent nucleobase surrogate M (2-thienyl-3-hydroxychromone fluorophore) when imbedded in DNA opposite an abasic site exhibits a two colour response highly sensitive to environment changes and base composition. Its two colour emission originates from an excited state intramolecular proton transfer (ESIPT), which converts the excited normal N* form into its T* tautomer. To get deeper insight on the spectroscopic properties of M in DNA duplexes, quantum chemical calculations were performed on M stacked with different base pairs in model trimers extracted from MD simulations. The photophysics of M in duplexes appeared to be governed by stacking interactions as well as charge and hole transfer. Indeed, stacking of M in DNA screens M from H-bonding with water molecules, which favours ESIPT and thus, the emission of the T* form. With A and T flanking bases, the electronic densities in the frontier MOs were localized on M, in line with its effective absorption and emission. In addition, reduction of the free rotation between the thienyl and chromone groups together with the shielding of the dye from water molecules largely explain its enhanced quantum yield in comparison to the free M in solution. By contrast, the localisation of the electron density on the flanking G residues in the ground state and the energetically favorable hole transfer from M to G in the excited state explains the reduced quantum yield of M sandwiched between CG pairs. Finally, the much higher brightness of M as compared to 2-aminopurine when flanked by A and T residues could be related to the much stronger oscillator strength of its S0 → S1 transition and the ineffective charge transfer from M to A or T residues. The fluorescent nucleobase surrogate M (2-thienyl-3-hydroxychromone fluorophore) when imbedded in DNA opposite an abasic site exhibits a two colour response highly sensitive to environment changes and base composition.![]()
Collapse
Affiliation(s)
- Alain Sougnabé
- Laboratoire d'Optique et Applications
- Centre de Physique Atomique Moléculaire et Optique Quantique
- Faculté des Sciences Université de Douala
- B. P. 8580 Douala
- Cameroon
| | - Daniel Lissouck
- Laboratoire d'Optique et Applications
- Centre de Physique Atomique Moléculaire et Optique Quantique
- Faculté des Sciences Université de Douala
- B. P. 8580 Douala
- Cameroon
| | | | - Mama Nsangou
- Département de Physique
- Faculté des Sciences Physiques
- Ecole Normale Supérieure de Maroua
- Université de Maroua
- Cameroon
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 du CNRS
- Faculté de Pharmacie Faculté de Pharmacie
- Université de Strasbourg
- Illkirch Cedex
| | - Alain Burger
- Institut de Chimie de Nice
- UMR 7272
- Université Côte d'Azur
- CNRS
- Parc Valrose
| | - Cyril A. Kenfack
- Laboratoire d'Optique et Applications
- Centre de Physique Atomique Moléculaire et Optique Quantique
- Faculté des Sciences Université de Douala
- B. P. 8580 Douala
- Cameroon
| |
Collapse
|
13
|
Kuznetsov NA, Fedorova OS. Kinetic Milestones of Damage Recognition by DNA Glycosylases of the Helix-Hairpin-Helix Structural Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:1-18. [DOI: 10.1007/978-3-030-41283-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Kuznetsova AA, Matveeva AG, Milov AD, Vorobjev YN, Dzuba SA, Fedorova OS, Kuznetsov NA. Substrate specificity of human apurinic/apyrimidinic endonuclease APE1 in the nucleotide incision repair pathway. Nucleic Acids Res 2019; 46:11454-11465. [PMID: 30329131 PMCID: PMC6265485 DOI: 10.1093/nar/gky912] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 catalyses the hydrolysis of phosphodiester bonds on the 5′ side of an AP-site (in the base excision repair pathway) and of some damaged nucleotides (in the nucleotide incision repair pathway). The range of substrate specificity includes structurally unrelated damaged nucleotides. Here, to examine the mechanism of broad substrate specificity of APE1, we performed pulsed electron–electron double resonance (PELDOR) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer (FRET) detection of DNA conformational changes during DNA binding and lesion recognition. Equilibrium PELDOR and kinetic FRET data revealed that DNA binding by APE1 leads to noticeable damage-dependent bending of a DNA duplex. Molecular dynamics simulations showed that the damaged nucleotide is everted from the DNA helix and placed into the enzyme’s binding pocket, which is formed by Asn-174, Asn-212, Asn-229, Ala-230, Phe-266 and Trp-280. Nevertheless, no damage-specific contacts were detected between these amino acid residues in the active site of the enzyme and model damaged substrates containing 1,N6-ethenoadenosine, α-adenosine, 5,6-dihydrouridine or F-site. These data suggest that the substrate specificity of APE1 is controlled by the ability of a damaged nucleotide to flip out from the DNA duplex in response to an enzyme-induced DNA distortion.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G Matveeva
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander D Milov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yuri N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Kladova OA, Grin IR, Fedorova OS, Kuznetsov NA, Zharkov DO. Conformational Dynamics of Damage Processing by Human DNA Glycosylase NEIL1. J Mol Biol 2019; 431:1098-1112. [DOI: 10.1016/j.jmb.2019.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
16
|
Kladova OA, Kuznetsov NA, Fedorova OS. Thermodynamics of the DNA Repair Process by Endonuclease VIII. Acta Naturae 2019; 11:29-37. [PMID: 31024746 PMCID: PMC6475869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the present work, a thermodynamic analysis of the interaction between endonuclease VIII (Endo VIII) and model DNA substrates containing damaged nucleotides, such as 5,6-dihydrouridine and 2-hydroxymethyl-3-hydroxytetrahydrofuran (F-site), was performed. The changes in the fluorescence intensity of the 1,3-diaza-2-oxophenoxazine (tC°) residue located in the complementary chain opposite to the specific site were recorded in the course of the enzyme-substrate interaction. The kinetics was analyzed by the stopped-flow method at different temperatures. The changes of standard Gibbs free energy, enthalpy, and entropy of sequential steps of DNA substrate binding, as well as activation enthalpy and entropy for the transition complex formation of the catalytic stage, were calculated. The comparison of the kinetic and thermodynamic data characterizing the conformational transitions of enzyme and DNA in the course of their interaction made it possible to specify the nature of the molecular processes occurring at the stages of substrate binding, recognition of the damaged base, and its removal from DNA.
Collapse
Affiliation(s)
- O. A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - N. A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia ,Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk Russia
| | - O. S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia ,Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk Russia
| |
Collapse
|
17
|
Kuznetsova AA, Fedorova OS, Kuznetsov NA. Kinetic Features of 3'-5' Exonuclease Activity of Human AP-Endonuclease APE1. Molecules 2018; 23:molecules23092101. [PMID: 30134601 PMCID: PMC6225374 DOI: 10.3390/molecules23092101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022] Open
Abstract
Human apurinic/apyrimidinic (AP)-endonuclease APE1 is one of the key enzymes taking part in the repair of damage to DNA. The primary role of APE1 is the initiation of the repair of AP-sites by catalyzing the hydrolytic incision of the phosphodiester bond immediately 5' to the damage. In addition to the AP-endonuclease activity, APE1 possesses 3'-5' exonuclease activity, which presumably is responsible for cleaning up nonconventional 3' ends that were generated as a result of DNA damage or as transition intermediates in DNA repair pathways. In this study, the kinetic mechanism of 3'-end nucleotide removal in the 3'-5' exonuclease process catalyzed by APE1 was investigated under pre-steady-state conditions. DNA substrates were duplexes of deoxyribonucleotides with one 5' dangling end and it contained a fluorescent 2-aminopurine residue at the 1st, 2nd, 4th, or 6th position from the 3' end of the short oligonucleotide. The impact of the 3'-end nucleotide, which contained mismatched, undamaged bases or modified bases as well as an abasic site or phosphate group, on the efficiency of 3'-5' exonuclease activity was determined. Kinetic data revealed that the rate-limiting step of 3' nucleotide removal by APE1 in the 3'-5' exonuclease process is the release of the detached nucleotide from the enzyme's active site.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| |
Collapse
|
18
|
Sholokh M, Sharma R, Grytsyk N, Zaghzi L, Postupalenko VY, Dziuba D, Barthes NPF, Michel BY, Boudier C, Zaporozhets OA, Tor Y, Burger A, Mély Y. Environmentally Sensitive Fluorescent Nucleoside Analogues for Surveying Dynamic Interconversions of Nucleic Acid Structures. Chemistry 2018; 24:13850-13861. [PMID: 29989220 DOI: 10.1002/chem.201802297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/12/2022]
Abstract
Nucleic acids are characterized by a variety of dynamically interconverting structures that play a major role in transcriptional and translational regulation as well as recombination and repair. To monitor these interconversions, Förster resonance energy transfer (FRET)-based techniques can be used, but require two fluorophores that are typically large and can alter the DNA/RNA structure and protein binding. Additionally, events that do not alter the donor/acceptor distance and/or angular relationship are frequently left undetected. A more benign approach relies on fluorescent nucleobases that can substitute their native counterparts with minimal perturbation, such as the recently developed 2-thienyl-3-hydroxychromone (3HCnt) and thienoguanosine (th G). To demonstrate the potency of 3HCnt and th G in deciphering interconversion mechanisms, we used the conversion of the (-)DNA copy of the HIV-1 primer binding site (-)PBS stem-loop into (+)/(-)PBS duplex, as a model system. When incorporated into the (-)PBS loop, the two probes were found to be highly sensitive to the individual steps both in the absence and the presence of a nucleic acid chaperone, providing the first complete mechanistic description of this critical process in HIV-1 replication. The combination of the two distinct probes appears to be instrumental for characterizing structural transitions of nucleic acids under various stimuli.
Collapse
Affiliation(s)
- Marianna Sholokh
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France.,Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Natalia Grytsyk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Lyes Zaghzi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Viktoriia Y Postupalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Dmytro Dziuba
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Nicolas P F Barthes
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Benoît Y Michel
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Olga A Zaporozhets
- Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| |
Collapse
|
19
|
Kuznetsova AA, Iakovlev DA, Misovets IV, Ishchenko AA, Saparbaev MK, Kuznetsov NA, Fedorova OS. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1. MOLECULAR BIOSYSTEMS 2018; 13:2638-2649. [PMID: 29051947 DOI: 10.1039/c7mb00457e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (kcat and KM; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Apurinic/apyrimidinic endonuclease Apn1 from Saccharomyces cerevisiae is recruited to the nucleotide incision repair pathway: Kinetic and structural features. Biochimie 2018; 152:53-62. [PMID: 29959063 DOI: 10.1016/j.biochi.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
Apurinic/apyrimidinic endonuclease Apn1 of Saccharomyces cerevisiae is known as a key player of the base excision DNA repair (BER) pathway in yeast. BER is initiated by DNA glycosylases, whereas Apn1 can start DNA repair individually in the nucleotide incision repair (NIR) pathway. The aim of this research was to elucidate kinetic and structural dynamic aspects of Apn1 involvement in the NIR process. One of the key characteristics of AP endonuclease's interactions is known to be divalent metal ions playing a part of a cofactor. Well-studied human APE1 employs Mg2+ ions, with metal ion concentration's affecting enzymatic activity exerted by APE1. In our study, we aimed to test the effect of the Mg2+ ion on Apn1's NIR catalysis by examining structural dynamics of DNA during the interaction in real time using the stopped-flow technique. To test NIR activity of Apn1, deoxyribooligonucleotide duplexes containing a 5,6-dihydro-2'-deoxyuridine (DHU) residue were employed as substrates. A 2-aminopurine (2-aPu) residue was a reporter group fluorescence intensity of which was detected during Apn1-DNA interactions. NIR activity of both WT and H83A Apn1 was found to be arrested during the interaction with a DNA duplex containing the 2-aPu residue upstream of DHU. We conducted molecular dynamics simulations to elucidate the structural features of complexes of the enzyme with DHU-containing DNAs. The NIR recruiting S. cerevisiae Apn1 proceeds via multistep rearrangements of the complex of Apn1 with a DHU-containing DNA substrate and results in the incised product of the reaction. For wild-type Apn1, the catalytic rate constants do not depend on the Mg2+ concentration, i.e., they are equal in NIR and BER buffers, with equilibrium association constant Ka being 10-fold higher in NIR buffer. Our data reveal more delicate regulation of Apn1's NIR activity due to the more complicated kinetic mechanism, as compared to BER.
Collapse
|
21
|
Shaya J, Collot M, Bénailly F, Mahmoud N, Mély Y, Michel BY, Klymchenko AS, Burger A. Turn-on Fluorene Push-Pull Probes with High Brightness and Photostability for Visualizing Lipid Order in Biomembranes. ACS Chem Biol 2017; 12:3022-3030. [PMID: 29053920 DOI: 10.1021/acschembio.7b00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rational design of environmentally sensitive dyes with superior properties is critical for elucidating the fundamental biological processes and understanding the biophysical behavior of cell membranes. In this study, a novel group of fluorene-based push-pull probes was developed for imaging membrane lipids. The design of these fluorogenic conjugates is based on a propioloyl linker to preserve the required spectroscopic features of the core dye. This versatile linker allowed the introduction of a polar deoxyribosyl head, a lipophilic chain, and an amphiphilic/anchoring group to tune the cell membrane binding and internalization. It was found that the deoxyribosyl head favored cell internalization and staining of intracellular membranes, whereas an amphiphilic anchor group ensured specific plasma membrane staining. The optimized fluorene probes presented a set of improvements as compared to commonly used environmentally sensitive membrane probe Laurdan such as red-shifted absorption matching the 405 nm diode laser excitation, a blue-green emission range complementary to the red fluorescent proteins, enhanced brightness and photostability, as well as preserved sensitivity to lipid order, as shown in model membranes and living cells.
Collapse
Affiliation(s)
- Janah Shaya
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Mayeul Collot
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Frédéric Bénailly
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Najiba Mahmoud
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Yves Mély
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Benoît Y. Michel
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Andrey S. Klymchenko
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Alain Burger
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| |
Collapse
|
22
|
Zargarian L, Ben Imeddourene A, Gavvala K, Barthes NPF, Michel BY, Kenfack CA, Morellet N, René B, Fossé P, Burger A, Mély Y, Mauffret O. Structural and Dynamical Impact of a Universal Fluorescent Nucleoside Analogue Inserted Into a DNA Duplex. J Phys Chem B 2017; 121:11249-11261. [PMID: 29172512 DOI: 10.1021/acs.jpcb.7b08825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, a 3-hydroxychromone based nucleoside 3HCnt has been developed as a highly environment-sensitive nucleoside surrogate to investigate protein-DNA interactions. When it is incorporated in DNA, the probe is up to 50-fold brighter than 2-aminopurine, the reference fluorescent nucleoside. Although the insertion of 3HCnt in DNA was previously shown to not alter the overall DNA structure, the possibility of the probe inducing local effects cannot be ruled out. Hence, a systematic structural and dynamic study is required to unveil the 3HCnt's limitations and to properly interpret the data obtained with this universal probe. Here, we investigated by NMR a 12-mer duplex, in which a central adenine was replaced by 3HCnt. The chemical shifts variations and nOe contacts revealed that the 3HCnt is well inserted in the DNA double helix with extensive stacking interactions with the neighbor base pairs. These observations are in excellent agreement with the steady-state and time-resolved fluorescence properties indicating that the 3HCnt fluorophore is protected from the solvent and does not exhibit rotational motion. The 3HCnt insertion in DNA is accompanied by the extrusion of the opposite nucleobase from the double helix. Molecular dynamics simulations using NMR-restraints demonstrated that 3HCnt fluorophore exhibits only translational dynamics. Taken together, our data showed an excellent intercalation of 3HCnt in the DNA double helix, which is accompanied by localized perturbations. This confirms 3HCnt as a highly promising tool for nucleic acid labeling and sensing.
Collapse
Affiliation(s)
- Loussiné Zargarian
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Akli Ben Imeddourene
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Krishna Gavvala
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg , 74 route du Rhin, 67401 Illkirch, France
| | - Nicolas P F Barthes
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS , Parc Valrose, 06108 Nice Cedex 2, France
| | - Benoit Y Michel
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS , Parc Valrose, 06108 Nice Cedex 2, France
| | - Cyril A Kenfack
- Laboratoire d'Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Université de Douala , BP 85580, Douala, Cameroon
| | - Nelly Morellet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris Saclay , 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Brigitte René
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Philippe Fossé
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS , Parc Valrose, 06108 Nice Cedex 2, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg , 74 route du Rhin, 67401 Illkirch, France
| | - Olivier Mauffret
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| |
Collapse
|
23
|
Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis. Biochimie 2017; 142:125-134. [PMID: 28843613 DOI: 10.1016/j.biochi.2017.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022]
Abstract
Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site.
Collapse
|
24
|
Vasilyeva SV, Kuznetsov NA, Kuznetsova AS, Khalyavina JG, Tropina DA, Lavrikova TI, Kargina OI, Gornostaev LM. DNA fluorescent labeling with naphtho[1,2,3-cd]indol-6(2H)-one for investigation of protein-DNA interactions. Bioorg Chem 2017; 72:268-272. [DOI: 10.1016/j.bioorg.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 11/26/2022]
|
25
|
Füchtbauer AF, Preus S, Börjesson K, McPhee SA, Lilley DMJ, Wilhelmsson LM. Fluorescent RNA cytosine analogue - an internal probe for detailed structure and dynamics investigations. Sci Rep 2017; 7:2393. [PMID: 28539582 PMCID: PMC5443824 DOI: 10.1038/s41598-017-02453-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (<ΦF> = 0.22) that is virtually unaffected by the neighbouring bases (ΦF = 0.20-0.25), resulting in an average brightness of 1900 M-1 cm-1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (<ΦF > = 0.24) compared to dsRNA, with a broader distribution (ΦF = 0.17-0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (<ΔT m> = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics.
Collapse
Affiliation(s)
- Anders Foller Füchtbauer
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Søren Preus
- Department of Chemistry, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| | - Scott A McPhee
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - L Marcus Wilhelmsson
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden.
| |
Collapse
|
26
|
Mutational and Kinetic Analysis of Lesion Recognition by Escherichia coli Endonuclease VIII. Genes (Basel) 2017; 8:genes8050140. [PMID: 28505099 PMCID: PMC5448014 DOI: 10.3390/genes8050140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
Escherichia coli endonuclease VIII (Endo VIII) is a DNA glycosylase with substrate specificity for a wide range of oxidatively damaged pyrimidine bases. Endo VIII catalyzes hydrolysis of the N-glycosidic bond and β, δ-elimination of 3′- and 5′-phosphate groups of an apurinic/apyrimidinic site. Single mutants of Endo VIII L70S, L70W, Y71W, F121W, F230W, and P253W were analyzed here with the aim to elucidate the kinetic mechanism of protein conformational adjustment during damaged-nucleotide recognition and catalytic-complex formation. F121W substitution leads to a slight reduction of DNA binding and catalytic activity. F230W substitution slows the rate of the δ-elimination reaction indicating that interaction of Phe230 with a 5′-phosphate group proceeds in the latest catalytic step. P253W Endo VIII has the same activity as the wild type (WT) enzyme. Y71W substitution slightly reduces the catalytic activity due to the effect on the later steps of catalytic-complex formation. Both L70S and L70W substitutions significantly decrease the catalytic activity, indicating that Leu70 plays an important role in the course of enzyme-DNA catalytic complex formation. Our data suggest that Leu70 forms contacts with DNA earlier than Tyr71 does. Therefore, most likely, Leu70 plays the role of a DNA lesion “sensor”, which is used by Endo VIII for recognition of a DNA damage site.
Collapse
|
27
|
Kilin V, Gavvala K, Barthes NPF, Michel BY, Shin D, Boudier C, Mauffret O, Yashchuk V, Mousli M, Ruff M, Granger F, Eiler S, Bronner C, Tor Y, Burger A, Mély Y. Dynamics of Methylated Cytosine Flipping by UHRF1. J Am Chem Soc 2017; 139:2520-2528. [PMID: 28112929 PMCID: PMC5335914 DOI: 10.1021/jacs.7b00154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine (thG), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.
Collapse
Affiliation(s)
- Vasyl Kilin
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Krishna Gavvala
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Nicolas P. F. Barthes
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Benoît Y. Michel
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Dongwon Shin
- TriLink BioTechnologies, LLC., San Diego, California 92121, United States
| | - Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Olivier Mauffret
- LBPA, UMR 8113 CNRS, ENS Paris-Saclay, Université Paris Saclay, 94235 Cachan Cedex, France
| | - Valeriy Yashchuk
- Department of Physics, Kiev National Taras Shevchenko University, Kiev 01601, Ukraine
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Florence Granger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
28
|
Tyugashev TE, Kuznetsova AA, Kuznetsov NA, Fedorova OS. Interaction features of adenine DNA glycosylase MutY from E. coli with DNA substrates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Arkova O, Kuznetsov N, Fedorova O, Savinkova L. A real-time study of the interaction of TBP with a TATA box-containing duplex identical to an ancestral or minor allele of human gene LEP or TPI. J Biomol Struct Dyn 2016; 35:3070-3081. [PMID: 27667393 DOI: 10.1080/07391102.2016.1241190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It is known that only a single-nucleotide substitution (SNP: a single nucleotide polymorphism) in the sequence of a TATA box can influence the affinity of the interaction of TBP with the TATA box and contribute to the pathogenesis of complex hereditary human diseases and sometimes may be a cause of monogenic diseases (for instance, β-thalassemia). In the present work, we studied the interaction of human TBP with a double-stranded oligodeoxyribonucleotide (ODN) 15 or 26 bp long identical to a TATA box of promoters of a real-life human gene, TPI or LEP, and labeled with fluorophores TAMRA and FAM. To analyze the interaction of TBP with a TATA box of an ancestral or minor allele (SNP in the TATA box) in real time, we used the stopped-flow method with detection of a Förster resonance energy transfer (FRET) signal. The nature of the resulting kinetic curves reflecting changes in the FRET signal (and therefore of DNA conformation during the interaction with TBP) pointed to a multistage mechanism of the formation of the TBP complex with the TATA-containing ODN. The results showed that with the increasing concentration and length of the ODN, heterogeneity of conformational changes (taking place during the first second of the interaction with TBP) in DNA also increases. In contrast to the initial nonspecific interaction, the subsequent phases strictly depend on TBP concentration: at the TBP:ODN ratio of 10:1, the velocity of change of the FRET signal increases approximately 100-fold.
Collapse
Affiliation(s)
- Olga Arkova
- a Institute of Cytology and Genetics (ICG) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 10, Novosibirsk 630090 , Russia
| | - Nikita Kuznetsov
- b Institute of Chemical Biology and Fundamental Medicine (ICBFM) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| | - Olga Fedorova
- b Institute of Chemical Biology and Fundamental Medicine (ICBFM) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| | - Ludmila Savinkova
- a Institute of Cytology and Genetics (ICG) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 10, Novosibirsk 630090 , Russia
| |
Collapse
|
30
|
Kuznetsov NA, Fedorova OS. Thermodynamic analysis of fast stages of specific lesion recognition by DNA repair enzymes. BIOCHEMISTRY (MOSCOW) 2016; 81:1136-1152. [DOI: 10.1134/s0006297916100114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Dziuba D, Pospíšil P, Matyašovský J, Brynda J, Nachtigallová D, Rulíšek L, Pohl R, Hof M, Hocek M. Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions. Chem Sci 2016; 7:5775-5785. [PMID: 30034716 PMCID: PMC6021979 DOI: 10.1039/c6sc02548j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
A nucleoside bearing a solvatochromic push-pull fluorene fluorophore (dCFL ) was designed and synthesized by the Sonogashira coupling of alkyne-linked fluorene 8 with 5-iodo-2'-deoxycytidine. The fluorene building block 8 and labeled nucleoside dCFL exerted bright fluorescence with significant solvatochromic effect providing emission maxima ranging from 421 to 544 nm and high quantum yields even in highly polar solvents, including water. The solvatochromism of 8 was studied by DFT and ADC(2) calculations to show that, depending on the polarity of the solvent, emission either from the planar or the twisted conformation of the excited state can occur. The nucleoside was converted to its triphosphate variant dCFLTP which was found to be a good substrate for DNA polymerases suitable for the enzymatic synthesis of oligonucleotide or DNA probes by primer extension or PCR. The fluorene-linked DNA can be used as fluorescent probes for DNA-protein (p53) or DNA-lipid interactions, exerting significant color changes visible even to the naked eye. They also appear to be suitable for time-dependent fluorescence shift studies on DNA, yielding information on DNA hydration and dynamics.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Petr Pospíšil
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Martin Hof
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
- Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
32
|
Kuznetsov NA, Lebedeva NA, Kuznetsova AA, Rechkunova NI, Dyrkheeva NS, Kupryushkin MS, Stetsenko DA, Pyshnyi DV, Fedorova OS, Lavrik OI. Pre-steady state kinetics of DNA binding and abasic site hydrolysis by tyrosyl-DNA phosphodiesterase 1. J Biomol Struct Dyn 2016; 35:2314-2327. [PMID: 27687298 DOI: 10.1080/07391102.2016.1220331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) processes DNA 3'-end-blocking modifications, possesses DNA and RNA 3'-nucleosidase activity and is also able to hydrolyze an internal apurinic/apyrimidinic (AP) site and its synthetic analogs. The mechanism of Tdp1 interaction with DNA was analyzed using pre-steady state stopped-flow kinetics with tryptophan, 2-aminopurine and Förster resonance energy transfer fluorescence detection. Phosphorothioate or tetramethyl phosphoryl guanidine groups at the 3'-end of DNA have been used to prevent 3'-nucleosidase digestion by Tdp1. DNA binding and catalytic properties of Tdp1 and its mutants H493R (Tdp1 mutant SCAN1) and H263A have been compared. The data indicate that the initial step of Tdp1 interaction with DNA includes binding of Tdp1 to the DNA ends followed by the 3'-nucleosidase reaction. In the case of DNA containing AP site, three steps of fluorescence variation were detected that characterize (i) initial binding the enzyme to the termini of DNA, (ii) the conformational transitions of Tdp1 and (iii) search for and recognition of the AP-site in DNA, which leads to the formation of the catalytically active complex and to the AP-site cleavage reaction. Analysis of Tdp1 interaction with single- and double-stranded DNA substrates shows that the rates of the 3'-nucleosidase and AP-site cleavage reactions have similar values in the case of single-stranded DNA, whereas in double-stranded DNA, the cleavage of the AP-site proceeds two times faster than 3'-nucleosidase digestion. Therefore, the data show that the AP-site cleavage reaction is an essential function of Tdp1 which may comprise an independent of AP endonuclease 1 AP-site repair pathway.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Natalia A Lebedeva
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Alexandra A Kuznetsova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Nadejda I Rechkunova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Nadezhda S Dyrkheeva
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Maxim S Kupryushkin
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Dmitry A Stetsenko
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Dmitrii V Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olga S Fedorova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olga I Lavrik
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
33
|
Kuznetsov NA, Kiryutin AS, Kuznetsova AA, Panov MS, Barsukova MO, Yurkovskaya AV, Fedorova OS. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase. J Biomol Struct Dyn 2016; 35:950-967. [PMID: 27025273 DOI: 10.1080/07391102.2016.1171800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, Tm, and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (Tm(F/T) < Tm(εA/T) < Tm(Hx/T) < Tm(A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.
Collapse
Affiliation(s)
- N A Kuznetsov
- a Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - A S Kiryutin
- b International Tomography Center SB RAS, Institutskaya 3a , Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - A A Kuznetsova
- a Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| | - M S Panov
- b International Tomography Center SB RAS, Institutskaya 3a , Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - M O Barsukova
- c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - A V Yurkovskaya
- b International Tomography Center SB RAS, Institutskaya 3a , Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - O S Fedorova
- a Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| |
Collapse
|
34
|
Gavvala K, Barthes NPF, Bonhomme D, Dabert-Gay AS, Debayle D, Michel BY, Burger A, Mély Y. A turn-on dual emissive nucleobase sensitive to mismatches and duplex conformational changes. RSC Adv 2016. [DOI: 10.1039/c6ra19061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we demonstrate the on–off dual emissive behaviour of a fluorescent nucleoside sensitive towards DNA hybridization and conformational changes as well as detection of single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Krishna Gavvala
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213
- Faculté de Pharmacie
- Université de Strasbourg
- CNRS
| | - Nicolas P. F. Barthes
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Dominique Bonhomme
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Anne Sophie Dabert-Gay
- Institut de Pharmacologie Moléculaire et Cellulaire
- UMR 6097
- Université de Nice Sophia Antipolis
- 660 Route des Lucioles
- 06560 Valbonne
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire
- UMR 6097
- Université de Nice Sophia Antipolis
- 660 Route des Lucioles
- 06560 Valbonne
| | - Benoît Y. Michel
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Alain Burger
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- Parc Valrose
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213
- Faculté de Pharmacie
- Université de Strasbourg
- CNRS
| |
Collapse
|
35
|
Fedorova OS, Kuznetsov NA. 118 Energetics of damaged bases recognition by DNA glycosylases. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1032751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Kuznetsov N, Kladova O, Kuznetsova A, Fedorova O. 110 The mechanism of the specific protein-DNA interactions during DNA lesion search and damaged base recognition by Endonuclease VIII. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1032742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Kuznetsov NA, Kladova OA, Kuznetsova AA, Ishchenko AA, Saparbaev MK, Zharkov DO, Fedorova OS. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III. J Biol Chem 2015; 290:14338-49. [PMID: 25869130 DOI: 10.1074/jbc.m114.621128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3'-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln(41) and Leu(81) as DNA lesion sensors.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Olga A Kladova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Alexandra A Kuznetsova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Alexander A Ishchenko
- the Groupe "Réparation de l'ADN," Université Paris-Sud XI, UMR8200 CNRS, Institute Gustave Roussy, Villejuif Cedex F-94805, France
| | - Murat K Saparbaev
- the Groupe "Réparation de l'ADN," Université Paris-Sud XI, UMR8200 CNRS, Institute Gustave Roussy, Villejuif Cedex F-94805, France
| | - Dmitry O Zharkov
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Olga S Fedorova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| |
Collapse
|
38
|
Barthes NPF, Karpenko IA, Dziuba D, Spadafora M, Auffret J, Demchenko AP, Mély Y, Benhida R, Michel BY, Burger A. Development of environmentally sensitive fluorescent and dual emissive deoxyuridine analogues. RSC Adv 2015. [DOI: 10.1039/c5ra02709h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We designed and developed fluorescent deoxyuridine analogues with strong sensitivity to hydration for the major groove labelling of DNA.
Collapse
Affiliation(s)
- N. P. F. Barthes
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - I. A. Karpenko
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - D. Dziuba
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - M. Spadafora
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - J. Auffret
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | | | - Y. Mély
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213
- Faculté de Pharmacie
- Université de Strasbourg
- CNRS
| | - R. Benhida
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - B. Y. Michel
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - A. Burger
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| |
Collapse
|