1
|
Al Reza H, Santangelo C, Al Reza A, Iwasawa K, Sachiko S, Glaser K, Bondoc A, Merola J, Takebe T. Self-Assembled Generation of Multi-zonal Liver Organoids from Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610426. [PMID: 39257824 PMCID: PMC11384014 DOI: 10.1101/2024.08.30.610426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Distinct hepatocyte subpopulations are spatially segregated along the portal-central axis and critical to understanding metabolic homeostasis and liver injury. While several bioactive molecules have been described to play a role in directing zonal fates, including ascorbate and bilirubin, in vitro replication of zonal liver architecture has not been achieved to date. In order to evaluate hepatic zonal polarity, we developed a self-assembling zone-specific liver organoid culture by co-culturing ascorbate and bilirubin enriched hepatic progenitors derived from human induced pluripotent stem cells. We found that preconditioned hepatocyte-like cells exhibited zone-specific functions associated with urea cycle, glutathione synthesis and glutamate synthesis. Single nucleus RNA sequencing analysis of these zonally patterned organoids identifies hepatoblast differentiation trajectory that mimics periportal-, interzonal-, and pericentral human hepatocytes. Epigenetic and transcriptomic analysis showed that zonal identity is orchestrated by ascorbate or bilirubin dependent binding of histone acetyltransferase p300 (EP300) to methylcytosine dioxygenase TET1 or hypoxia-inducible factor 1-alpha (HIF1α). Transplantation of the self-assembled zonally patterned human organoids improved survival of immunodeficient rats who underwent bile duct ligation by ameliorating the hyperammonemia and hyperbilirubinemia. Overall, this multi-zonal organoid system serves as an in vitro human model to better recapitulate hepatic architecture relevant to liver development and disease.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Connie Santangelo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Kentaro Iwasawa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Sachiko Sachiko
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Jonathan Merola
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
2
|
Xie D, Wang P, Chen W, Lin J, Wu M, Wang Y, Xia H, Cheng C, Ye F, Syed BM, Liu Q. Urea cycle promotion via ammonia-upregulated CPS1 is involved in arsenite-induced pulmonary fibrosis through enhancing collagen synthesis. Chem Biol Interact 2024; 396:111029. [PMID: 38703806 DOI: 10.1016/j.cbi.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.
Collapse
Affiliation(s)
- Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
4
|
Spillane AM, Haraschak JL, McMichael MA. Resolution of Severe Neurologic Signs Following Intravenous Lipid Emulsion Therapy in a Young Dog With a Portosystemic Shunt: Case Report. Front Vet Sci 2021; 8:798198. [PMID: 34957288 PMCID: PMC8694260 DOI: 10.3389/fvets.2021.798198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
A 5-month-old male intact Great Pyrenees was presented for an acute onset of severe neurologic signs (stupor, absent menace, intermittent head turn to the left). The patient's history included possible naproxen ingestion with a maximum ingested dose of 59 mg/kg, exceeding the reported dose of >50 mg/kg known to cause neurologic signs. Blood sampling for baseline bloodwork was performed, and intravenous lipid emulsion (ILE) was subsequently administered, for treatment of the suspected toxicosis. Due to severe and life-threatening neurologic signs, other methods of decontamination were contraindicated and unlikely to be effective; extracorporeal therapy was also unavailable. Complete resolution of neurologic signs occurred 30 min after completion of ILE therapy. At this time, the owners found the missing naproxen tablets after returning home and the bloodwork results returned revealing findings consistent with hepatic encephalopathy. The fasted blood ammonia concentration immediately prior to ILE administration was 702.1 μg/dL (reference interval, RI: 24–36 μg/dL) and decreased to 194.1 μg/dL 24 h later. In the first 24 h, the patient also received three doses of lactulose, N-acetylcysteine, and intravenous fluids. The patient was subsequently diagnosed with a single, large intrahepatic portosystemic shunt via computed tomography and underwent an endovascular coil embolization procedure. Given the rapid and dramatic improvement in severe neurologic signs after ILE therapy alone, it is strongly suspected that this treatment resulted in improvement of hepatic encephalopathy.
Collapse
Affiliation(s)
- Amanda M Spillane
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jenica L Haraschak
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Maureen A McMichael
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
5
|
Ghallab A, Myllys M, H. Holland C, Zaza A, Murad W, Hassan R, A. Ahmed Y, Abbas T, A. Abdelrahim E, Schneider KM, Matz-Soja M, Reinders J, Gebhardt R, Berres ML, Hatting M, Drasdo D, Saez-Rodriguez J, Trautwein C, G. Hengstler J. Influence of Liver Fibrosis on Lobular Zonation. Cells 2019; 8:E1556. [PMID: 31810365 PMCID: PMC6953125 DOI: 10.3390/cells8121556] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Little is known about how liver fibrosis influences lobular zonation. To address this question, we used three mouse models of liver fibrosis, repeated CCl4 administration for 2, 6 and 12 months to induce pericentral damage, as well as bile duct ligation (21 days) and mdr2-/- mice to study periportal fibrosis. Analyses were performed by RNA-sequencing, immunostaining of zonated proteins and image analysis. RNA-sequencing demonstrated a significant enrichment of pericentral genes among genes downregulated by CCl4; vice versa, periportal genes were enriched among the upregulated genes. Immunostaining showed an almost complete loss of pericentral proteins, such as cytochrome P450 enzymes and glutamine synthetase, while periportal proteins, such as arginase 1 and CPS1 became expressed also in pericentral hepatocytes. This pattern of fibrosis-associated 'periportalization' was consistently observed in all three mouse models and led to complete resistance to hepatotoxic doses of acetaminophen (200 mg/kg). Characterization of the expression response identified the inflammatory pathways TGFβ, NFκB, TNFα, and transcription factors NFKb1, Stat1, Hif1a, Trp53, and Atf1 among those activated, while estrogen-associated pathways, Hnf4a and Hnf1a, were decreased. In conclusion, liver fibrosis leads to strong alterations of lobular zonation, where the pericentral region adopts periportal features. Beside adverse consequences, periportalization supports adaptation to repeated doses of hepatotoxic compounds.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| | - Christian H. Holland
- Faculty of Medicine, Institute of Computational Biomedicine, Heidelberg University, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (C.H.H.); (J.S.-R.)
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Pauwelsstrasse 19, 52074 Aachen, Germany
| | - Ayham Zaza
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| | - Walaa Murad
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt; (W.M.); (T.A.); (E.A.A.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Yasser A. Ahmed
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt; (W.M.); (T.A.); (E.A.A.)
| | - Eman A. Abdelrahim
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt; (W.M.); (T.A.); (E.A.A.)
| | - Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Madlen Matz-Soja
- Faculty of Medicine, Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; (M.M.-S.); (R.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| | - Rolf Gebhardt
- Faculty of Medicine, Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; (M.M.-S.); (R.G.)
| | - Marie-Luise Berres
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Maximilian Hatting
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Dirk Drasdo
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
- Modelling and Analysis for Medical and Biological Applications (MAMBA), Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, 75012 Paris, France
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Institute of Computational Biomedicine, Heidelberg University, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (C.H.H.); (J.S.-R.)
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Pauwelsstrasse 19, 52074 Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| |
Collapse
|
6
|
van Straten G, van Dalen D, Mesu SJ, Rothuizen J, Teske E, Spee B, Favier RP, van Geijlswijk IM. Efficacy of orally administered sodium benzoate and sodium phenylbutyrate in dogs with congenital portosystemic shunts. J Vet Intern Med 2019; 33:1331-1335. [PMID: 30916412 PMCID: PMC6524074 DOI: 10.1111/jvim.15477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hyperammonemia can result in hepatic encephalopathy, which in severe cases eventually can lead to coma and death. In dogs, congenital portosystemic shunts (CPSS) are the most common cause for hyperammonemia. Conservative treatment consists of a protein modified diet, nonabsorbable disaccharides, antibiotics, or some combinations of these. Sodium benzoate (SB) and sodium phenylbutyrate (SPB) both are used in the acute and long-term treatment of humans with hyperammonemia caused by urea cycle enzyme deficiencies. Both treatments are believed to lower blood ammonia concentrations by promoting excretion of excess nitrogen via alternative pathways. OBJECTIVES To evaluate the efficacy and safety of PO treatment with SB and SPB on hyperammonemia and clinical signs in CPSS dogs. METHODS Randomized, double-blind, placebo-controlled crossover trial. Concentrations of blood ammonia and bile acids were measured in CPSS dogs before and after a 5-day treatment with SB, SPB, and placebo. A wash-out period of 3 days was used between treatments. A standard questionnaire was developed and distributed to owners to evaluate clinical signs before and after each treatment. RESULTS Blood ammonia concentrations were not influenced by any of the treatments and were comparable to those observed during placebo treatment. In addition, SB and SPB treatment did not result in improvement of clinical signs. Adverse effects during treatment included anorexia, vomiting, and lethargy. CONCLUSIONS AND CLINICAL IMPORTANCE Based on our results, we conclude that SB or SPB are not useful in the conservative treatment of hyperammonemia in dogs with CPSS.
Collapse
Affiliation(s)
- Giora van Straten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Diewke van Dalen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Sietske J. Mesu
- Pharmacy Department, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Erik Teske
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Robert P. Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
7
|
El-Sheikh RM, Mansy SS, Nessim IG, Hosni HN, El Hindawi A, Hassanein MH, AbdelFattah AS. Carbamoyl phosphate synthetase 1 (CPS1) as a prognostic marker in chronic hepatitis C infection. APMIS 2019; 127:93-105. [PMID: 30698308 DOI: 10.1111/apm.12917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
This study aims to assess the value of carbamoyl phosphate synthetase 1 (CPS1), as a non-invasive serum marker, for the evolution of chronic HCV infection and hepatic fibrosis. Seventy-two patients with HCV positive serum RNA and 15 health volunteers were enrolled in this study. Out of 72 patients, 10 patients had decompensated liver with ascites. Quantitative analysis of CPS1 was performed in the harvested sera and corresponding liver biopsies using ELISA and immunohistochemistry techniques respectively. Also, mitochondrial count using electron microscopy, urea analysis and conventional liver tests were done. Patients were grouped into (F1 + F2) and (F3 + F4) representing stages of moderate and severe fibrosis respectively. Tissue and serum CPS1 (s.CPS1) correlated significantly in moderate and severe fibrosis. Patients with severe fibrosis showed significantly higher levels of s.CPS1 (p-value ≤ 0.05) and significantly lower mitochondrial counts (p-value = 0.0065) than those with moderate fibrosis. S.urea positively correlated with s.CPS1 only in the decompensated group, at which s.urea reached maximal levels. In conclusion, s.CPS1 is a potential non-invasive marker for the assessment of severity and progression of HCV in relation to mitochondrial dysfunction. Also, increased s.urea with the progression of the disease is mainly due to a concurrent renal malfunction, which needs further investigation.
Collapse
Affiliation(s)
- Ranya M El-Sheikh
- Electron Microscopy Research Department (Pathology), Theodor Bilharz Research Institute, Giza, Egypt
| | - Soheir S Mansy
- Electron Microscopy Research Department (Pathology), Theodor Bilharz Research Institute, Giza, Egypt
| | - Iris G Nessim
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hala N Hosni
- Faculty of Medicine, Pathology Department, Cairo University, Cairo, Egypt
| | - Ali El Hindawi
- Faculty of Medicine, Pathology Department, Cairo University, Cairo, Egypt
| | - Moataz H Hassanein
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed S AbdelFattah
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
8
|
Van den Bossche L, Schoonenberg VAC, Burgener IA, Penning LC, Schrall IM, Kruitwagen HS, van Wolferen ME, Grinwis GCM, Kummeling A, Rothuizen J, van Velzen JF, Stathonikos N, Molenaar MR, Helms BJ, Brouwers JFHM, Spee B, van Steenbeek FG. Aberrant hepatic lipid storage and metabolism in canine portosystemic shunts. PLoS One 2017; 12:e0186491. [PMID: 29049355 PMCID: PMC5648188 DOI: 10.1371/journal.pone.0186491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a poorly understood multifactorial pandemic disorder. One of the hallmarks of NAFLD, hepatic steatosis, is a common feature in canine congenital portosystemic shunts. The aim of this study was to gain detailed insight into the pathogenesis of steatosis in this large animal model. Hepatic lipid accumulation, gene-expression analysis and HPLC-MS of neutral lipids and phospholipids in extrahepatic (EHPSS) and intrahepatic portosystemic shunts (IHPSS) was compared to healthy control dogs. Liver organoids of diseased dogs and healthy control dogs were incubated with palmitic- and oleic-acid, and lipid accumulation was quantified using LD540. In histological slides of shunt livers, a 12-fold increase of lipid content was detected compared to the control dogs (EHPSS P<0.01; IHPSS P = 0.042). Involvement of lipid-related genes to steatosis in portosystemic shunting was corroborated using gene-expression profiling. Lipid analysis demonstrated different triglyceride composition and a shift towards short chain and omega-3 fatty acids in shunt versus healthy dogs, with no difference in lipid species composition between shunt types. All organoids showed a similar increase in triacylglycerols after free fatty acids enrichment. This study demonstrates that steatosis is probably secondary to canine portosystemic shunts. Unravelling the pathogenesis of this hepatic steatosis might contribute to a better understanding of steatosis in NAFLD.
Collapse
Affiliation(s)
- Lindsay Van den Bossche
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vivien A. C. Schoonenberg
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Iwan A. Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ingrid M. Schrall
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hedwig S. Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C. M. Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anne Kummeling
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen F. van Velzen
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nikolas Stathonikos
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Martijn R. Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht, The Netherlands
| | - Bernd J. Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht, The Netherlands
| | - Jos F. H. M. Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Saline is as effective as nitrogen scavengers for treatment of hyperammonemia. Sci Rep 2017; 7:13112. [PMID: 29030642 PMCID: PMC5640627 DOI: 10.1038/s41598-017-12686-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Urea cycle enzyme deficiency (UCED) patients with hyperammonemia are treated with sodium benzoate (SB) and sodium phenylacetate (SPA) to induce alternative pathways of nitrogen excretion. The suggested guidelines supporting their use in the management of hyperammonemia are primarily based on non-analytic studies such as case reports and case series. Canine congenital portosystemic shunting (CPSS) is a naturally occurring model for hyperammonemia. Here, we performed cross-over, randomized, placebo-controlled studies in healthy dogs to assess safety and pharmacokinetics of SB and SPA (phase I). As follow-up safety and efficacy of SB was evaluated in CPSS-dogs with hyperammonemia (phase II). Pharmacokinetics of SB and SPA were comparable to those reported in humans. Treatment with SB and SPA was safe and both nitrogen scavengers were converted into their respective metabolites hippuric acid and phenylacetylglutamine or phenylacetylglycine, with a preference for phenylacetylglycine. In CPSS-dogs, treatment with SB resulted in the same effect on plasma ammonia as the control treatment (i.e. saline infusion) suggesting that the decrease is a result of volume expansion and/or forced diuresis rather than increased production of nitrogenous waste. Consequentially, treatment of hyperammonemia justifies additional/placebo-controlled trials in human medicine.
Collapse
|
10
|
Ahn JO, Li Q, Lee YH, Han SM, Hwang CY, Youn HY, Chung JY. Hyperammonemic hepatic encephalopathy management through L-ornithin-L-aspartate administration in dogs. J Vet Sci 2017; 17:431-3. [PMID: 26726023 PMCID: PMC5037314 DOI: 10.4142/jvs.2016.17.3.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/09/2015] [Accepted: 12/30/2015] [Indexed: 12/02/2022] Open
Abstract
Seventeen dogs were treated with L-ornithin-L-aspartate (LOLA; experimental group). Three dogs were treated with lactulose recognized therapy (control group). Following LOLA administration, 15 dogs experienced a significant decrease in ammonia level (p < 0.05) and showed clinical signs of improvement. However, there were no clinical signs of improvement in two dogs, even though the ammonia level decreased. Conversely, the clinical signs of the control group also improved and the ammonia level decreased, although these changes were not significant (p > 0.05). These results suggest that LOLA is an effective drug to treat hyperammonemia in veterinary medicine.
Collapse
Affiliation(s)
- Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Qiang Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Young-Heun Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sei-Myoung Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin-Young Chung
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
11
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Beard L, Wymore E, Fenton L, Coughlin CR, Weisfeld-Adams JD. Lethal neonatal hyperammonemia in severe ornithine transcarbamylase (OTC) deficiency compounded by large hepatic portosystemic shunt. J Inherit Metab Dis 2017; 40:159-160. [PMID: 27832417 DOI: 10.1007/s10545-016-9985-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Lauren Beard
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Erica Wymore
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura Fenton
- Division of Pediatric Radiology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Curtis R Coughlin
- Division of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - James D Weisfeld-Adams
- Division of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
13
|
Palenzuela L, Oria M, Romero-Giménez J, Garcia-Lezana T, Chavarria L, Cordoba J. Gene expression profiling of brain cortex microvessels may support brain vasodilation in acute liver failure rat models. Metab Brain Dis 2016; 31:1405-1417. [PMID: 27406245 DOI: 10.1007/s11011-016-9863-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/19/2016] [Indexed: 12/13/2022]
Abstract
Development of brain edema in acute liver failure can increase intracranial pressure, which is a severe complication of the disease. However, brain edema is neither entirely cytotoxic nor vasogenic and the specific action of the brain microvasculature is still unknown. We aimed to analyze gene expression of brain cortex microvessels in two rat models of acute liver failure. In order to identify global gene expression changes we performed a broad transcriptomic approach in isolated brain cortex microvessels from portacaval shunted rats after hepatic artery ligation (HAL), hepatectomy (HEP), or sham by array hybridization and confirmed changes in selected genes by RT-PCR. We found 157 and 270 up-regulated genes and 143 and 149 down-regulated genes in HAL and HEP rats respectively. Western blot and immunohistochemical assays were performed in cortex and ELISA assays to quantify prostaglandin E metabolites were performed in blood of the sagittal superior sinus. We Identified clusters of differentially expressed genes involving inflammatory response, transporters-channels, and homeostasis. Up-regulated genes at the transcriptional level were associated with vasodilation (prostaglandin-E synthetase, prostaglandin-E receptor, adrenomedullin, bradykinin receptor, adenosine transporter), oxidative stress (hemoxygenase, superoxide dismutase), energy metabolism (lactate transporter) and inflammation (haptoglobin). The only down-regulated tight junction protein was occludin but slightly. Prostaglandins levels were increased in cerebral blood with progression of liver failure. In conclusion, in acute liver failure, up-regulation of several genes at the level of microvessels might suggest an involvement of energy metabolism accompanied by cerebral vasodilation in the cerebral edema at early stages.
Collapse
Affiliation(s)
- Lluis Palenzuela
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Oria
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Fetal, Cellular and Mollecular Therapy, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.
| | - Jordi Romero-Giménez
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Garcia-Lezana
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Chavarria
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Cordoba
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|