1
|
Abstract
PURPOSE OF REVIEW The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal SSPCs (pSSPCs) during bone regeneration. RECENT FINDINGS Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and transcriptomic analyses have improved our understanding of pSSPC functions during bone regeneration. Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone and cartilage. The injury response of pSSPCs is controlled by many signaling pathways including BMP, FGF, Notch, and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood vessels, and macrophages in the fracture environment. Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the fracture healing process and a prime target for clinical applications.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| |
Collapse
|
2
|
Jeyaraman M, Muthu S, Gangadaran P, Ranjan R, Jeyaraman N, Prajwal GS, Mishra PC, Rajendran RL, Ahn BC. Osteogenic and Chondrogenic Potential of Periosteum-Derived Mesenchymal Stromal Cells: Do They Hold the Key to the Future? Pharmaceuticals (Basel) 2021; 14:ph14111133. [PMID: 34832915 PMCID: PMC8618036 DOI: 10.3390/ph14111133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
The periosteum, with its outer fibrous and inner cambium layer, lies in a dynamic environment with a niche of pluripotent stem cells for their reparative needs. The inner cambium layer is rich in mesenchymal progenitors, osteogenic progenitors, osteoblasts, and fibroblasts in a scant collagen matrix environment. Their role in union and remodeling of fracture is well known. However, the periosteum as a source of mesenchymal stem cells has not been explored in detail. Moreover, with the continuous expansion of techniques, newer insights have been acquired into the roles and regulation of these periosteal cells. From a therapeutic standpoint, the periosteum as a source of tissue engineering has gained much attraction. Apart from its role in bone repair, analysis of the bone-forming potential of periosteum-derived stem cells is lacking. Hence, this article elucidates the role of the periosteum as a potential source of mesenchymal stem cells along with their capacity for osteogenic and chondrogenic differentiation for therapeutic application in the future.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
| | - Naveen Jeyaraman
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | | | - Prabhu Chandra Mishra
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| |
Collapse
|
3
|
Beheshtizadeh N, Asgari Y, Nasiri N, Farzin A, Ghorbani M, Lotfibakhshaiesh N, Azami M. A network analysis of angiogenesis/osteogenesis-related growth factors in bone tissue engineering based on in-vitro and in-vivo data: A systems biology approach. Tissue Cell 2021; 72:101553. [PMID: 33975231 DOI: 10.1016/j.tice.2021.101553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
The principal purpose of tissue engineering is to stimulate the injured or unhealthy tissues to revive their primary function through the simultaneous use of chemical agents, cells, and biocompatible materials. Still, choosing the appropriate protein as a growth factor (GF) for tissue engineering is vital to fabricate artificial tissues and accelerate the regeneration procedure. In this study, the angiogenesis and osteogenesis-related proteins' interactions are studied using their related network. Three major biological processes, including osteogenesis, angiogenesis, and angiogenesis regulation, were investigated by creating a protein-protein interaction (PPI) network (45 nodes and 237 edges) of bone regeneration efficient proteins. Furthermore, a gene ontology and a centrality analysis were performed to identify essential proteins within a network. The higher degree in this network leads to higher interactions between proteins and causes a considerable effect. The most highly connected proteins in the PPI network are the most remarkable for their employment. The results of this study showed that three significant proteins including prostaglandin endoperoxide synthase 2 (PTGS2), TEK receptor tyrosine kinase (TEK), and fibroblast growth factor 18 (FGF18) were involved simultaneously in osteogenesis, angiogenesis, and their positive regulatory. Regarding the available literature, the results of this study confirmed that PTGS2 and FGF18 could be used as a GF in bone tissue engineering (BTE) applications to promote angiogenesis and osteogenesis. Nevertheless, TEK was not used in BTE applications until now and should be considered in future works to be examined in-vitro and in-vivo.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Noushin Nasiri
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ali Farzin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Ghorbani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Chan YH, Lee YC, Hung CY, Yang PJ, Lai PC, Feng SW. Three-dimensional Spheroid Culture Enhances Multipotent Differentiation and Stemness Capacities of Human Dental Pulp-derived Mesenchymal Stem Cells by Modulating MAPK and NF-kB Signaling Pathways. Stem Cell Rev Rep 2021; 17:1810-1826. [PMID: 33893620 DOI: 10.1007/s12015-021-10172-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Three-dimensional (3D) culture of mesenchymal stem cells has become an important research and development topic. However, comprehensive analysis of human dental pulp-derived mesenchymal stem cells (DPSCs) in 3D-spheroid culture remains unexplored. Thus, we evaluated the cellular characteristics, multipotent differentiation, gene expression, and related-signal transduction pathways of DPSCs in 3D-spheroid culture via magnetic levitation (3DM), compared with 2D-monolayer (2D) and 3D-aggregate (3D) cultures. METHODS The gross morphology and cellular ultrastructure were observed in the 2D, 3D, and 3DM experimental groups using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface markers and trilineage differentiation were evaluated using flow cytometry and staining analysis. Quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining (IF) were performed to investigate the expression of differentiation and stemness markers. Signaling transduction pathways were evaluated using western blot analysis. RESULTS The morphology of cell aggregates and spheroids was largely influenced by the types of cell culture plates and initial cell seeding density. SEM and TEM experiments confirmed that the solid and firm structure of spheroids was quickly formed in the 3DM-medium without damaging cells. In addition, these three groups all expressed multilineage differentiation capabilities and surface marker expression. The trilineage differentiation capacities of the 3DM-group were significantly superior to the 2D and 3D-groups. The osteogenesis, angiogenesis, adipogenesis, and stemness-related genes were significantly enhanced in the 3D and 3DM-groups. The IF analysis showed that the extracellular matrix expression, osteogenesis, and angiogenesis proteins of the 3DM-group were significantly higher than those in the 2D and 3D-groups. Finally, 3DM-culture significantly activated the MAPK and NF-kB signaling transduction pathways and ameliorated the apoptosis effects of 3D-culture. CONCLUSIONS This study confirmed that 3DM-spheroids efficiently enhanced the therapeutic efficiency of DPSCs.
Collapse
Affiliation(s)
- Ya-Hui Chan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yi Hung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan
| | - Pi-Ju Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pin-Chuang Lai
- Department of Diagnosis and Oral Health, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan. .,Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Del Real A, López-Delgado L, Sañudo C, García-Ibarbia C, Laguna E, Perez-Campo FM, Menéndez G, Alfonso A, Fakkas M, García-Montesinos B, Valero C, Pérez-Núñez MI, Riancho JA. Long Noncoding RNAs as Bone Marrow Stem Cell Regulators in Osteoporosis. DNA Cell Biol 2020; 39:1691-1699. [PMID: 32700968 DOI: 10.1089/dna.2020.5672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) contribute toward regulating gene expression and cell differentiation and may be involved in the pathogenesis of several diseases. The objective of this study was to determine the expression patterns of lncRNAs in bone marrow mesenchymal stem cells (BMSCs) derived from patients with osteoporotic fractures and their relevance to osteogenic function. The BMSCs were isolated from the femoral head of patients with hip fractures (FRX) and controls with osteoarthritis (OA). We found 74 differentially expressed genes between FRX and OA, of which 33 were of the lncRNA type. Among them, 52 genes (20 lncRNAs) were replicated in another independent dataset. The differentially expressed lncRNAs were over-represented among those correlated with differentially expressed protein-coding genes. In addition, the comparison of pre- and post-differentiated paired samples revealed 163 differentially expressed genes, of which 99 were of the lncRNA type. Among them, the overexpression of LINC00341 induced an upregulation of typical osteoblastic genes. In conclusion, the analysis of lncRNA expression in BMSCs shows specific patterns in patients with osteoporotic fractures, as well as changes associated with osteogenic differentiation. The regulation of bone genes through lncRNAs might bring new opportunities for designing bone anabolic therapies in systemic and localized bone disorders.
Collapse
Affiliation(s)
- Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Laura López-Delgado
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Carmen García-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Esther Laguna
- Department of Traumatology and Orthopedic Surgery, Hospital UM Valdecilla, University of Cantabria-IDIVAL, Santander, Spain
| | - Flor M Perez-Campo
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Guillermo Menéndez
- Department of Traumatology and Orthopedic Surgery, Hospital UM Valdecilla, University of Cantabria-IDIVAL, Santander, Spain
| | - Ana Alfonso
- Department of Traumatology and Orthopedic Surgery, Hospital UM Valdecilla, University of Cantabria-IDIVAL, Santander, Spain
| | - Michel Fakkas
- Department of Traumatology and Orthopedic Surgery, Hospital UM Valdecilla, University of Cantabria-IDIVAL, Santander, Spain
| | - Belén García-Montesinos
- Department of Maxillofacial Surgery, Faculty of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Carmen Valero
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Maria Isabel Pérez-Núñez
- Department of Traumatology and Orthopedic Surgery, Hospital UM Valdecilla, University of Cantabria-IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| |
Collapse
|
6
|
Sart S, Tomasi RFX, Barizien A, Amselem G, Cumano A, Baroud CN. Mapping the structure and biological functions within mesenchymal bodies using microfluidics. SCIENCE ADVANCES 2020; 6:eaaw7853. [PMID: 32181333 PMCID: PMC7056316 DOI: 10.1126/sciadv.aaw7853] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/12/2019] [Indexed: 05/02/2023]
Abstract
Organoids that recapitulate the functional hallmarks of anatomic structures comprise cell populations able to self-organize cohesively in 3D. However, the rules underlying organoid formation in vitro remain poorly understood because a correlative analysis of individual cell fate and spatial organization has been challenging. Here, we use a novel microfluidics platform to investigate the mechanisms determining the formation of organoids by human mesenchymal stromal cells that recapitulate the early steps of condensation initiating bone repair in vivo. We find that heterogeneous mesenchymal stromal cells self-organize in 3D in a developmentally hierarchical manner. We demonstrate a link between structural organization and local regulation of specific molecular signaling pathways such as NF-κB and actin polymerization, which modulate osteo-endocrine functions. This study emphasizes the importance of resolving spatial heterogeneities within cellular aggregates to link organization and functional properties, enabling a better understanding of the mechanisms controlling organoid formation, relevant to organogenesis and tissue repair.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS–UMR 7646, 91128 Palaiseau, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Raphaël F.-X. Tomasi
- LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS–UMR 7646, 91128 Palaiseau, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Antoine Barizien
- LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS–UMR 7646, 91128 Palaiseau, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS–UMR 7646, 91128 Palaiseau, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Department of Immunology–INSERM U1223, Institut Pasteur, 75015 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75018 Paris, France
| | - Charles N. Baroud
- LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS–UMR 7646, 91128 Palaiseau, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
- Corresponding author.
| |
Collapse
|
7
|
Medhat D, Rodríguez CI, Infante A. Immunomodulatory Effects of MSCs in Bone Healing. Int J Mol Sci 2019; 20:ijms20215467. [PMID: 31684035 PMCID: PMC6862454 DOI: 10.3390/ijms20215467] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into multilineage cells, thus making them a significant prospect as a cell source for regenerative therapy; however, the differentiation capacity of MSCs into osteoblasts seems to not be the main mechanism responsible for the benefits associated with human mesenchymal stem cells hMSCs when used in cell therapy approaches. The process of bone fracture restoration starts with an instant inflammatory reaction, as the innate immune system responds with cytokines that enhance and activate many cell types, including MSCs, at the site of the injury. In this review, we address the influence of MSCs on the immune system in fracture repair and osteogenesis. This paradigm offers a means of distinguishing target bone diseases to be treated with MSC therapy to enhance bone repair by targeting the crosstalk between MSCs and the immune system.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| |
Collapse
|
8
|
Choi H, Magyar CE, Nervina JM, Tetradis S. Different duration of parathyroid hormone exposure distinctively regulates primary response genes Nurr1 and RANKL in osteoblasts. PLoS One 2018; 13:e0208514. [PMID: 30576321 PMCID: PMC6303058 DOI: 10.1371/journal.pone.0208514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
Parathyroid hormone (PTH) exerts dual effects, anabolic or catabolic, on bone when administrated intermittently or continuously, via mechanisms that remain largely unknown. PTH binding to cells induces PTH-responsive genes including primary response genes (PRGs). PRGs are rapidly induced without the need for de novo protein synthesis, thereby playing pivotal roles in directing subsequent molecular responses. In this study, to understand the role of PRGs in mediating osteoblastic cellular responses to PTH, we investigated whether various durations of PTH differentially induce PRGs in primary osteoblasts and MC3T3-E1. Nurr1 and RANKL, PRGs known for their anabolic and catabolic roles in bone metabolism respectively, presented distinctive transient vs. sustained induction kinetics. Corroborating their roles, maximum induction of Nurr1 was sufficiently achieved by brief PTH in as little as 30 minutes and continued beyond that, while maximum induction of RANKL was achieved only by prolonged PTH over 4 hours. Our data suggested distinctive regulatory mechanisms for Nurr1 and RANKL: PKA-mediated chromatin rearrangement for transcriptional regulation of both PRGs and ERK-mediated transcriptional regulation for RANKL but not Nurr1. Lastly, we classified PRGs into two groups based on the induction kinetics: The group that required brief PTH for maximum induction included Nur77, cox-2, and Nurr1, all of which are reported to play roles in bone formation. The other group that required prolonged PTH for maximum induction included IL-6 and RANKL, which play roles in bone resorption. Together, our data suggested the crucial role of PRG groups in mediating differential osteoblastic cellular responses to intermittent vs. continuous PTH. Continued research into the regulatory mechanisms of PKA and ERK for PRGs will help us better understand the molecular mechanisms underlying the dual effects of PTH, thereby optimizing the current therapeutic use of PTH for osteoporosis.
Collapse
Affiliation(s)
- Hyewon Choi
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Clara E. Magyar
- Center for Pathology Research Services, Department of Pathology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Jeanne M. Nervina
- College of Dentistry, New York University, New York, New York, United States of America
| | - Sotirios Tetradis
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zondervan RL, Vorce M, Servadio N, Hankenson KD. Fracture Apparatus Design and Protocol Optimization for Closed-stabilized Fractures in Rodents. J Vis Exp 2018. [PMID: 30176013 DOI: 10.3791/58186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The reliable generation of consistent stabilized fractures in animal models is essential for understanding the biology of bone regeneration and developing therapeutics and devices. However, available injury models are plagued by inconsistency resulting in wasted animals and resources and imperfect data. To address this problem of fracture heterogeneity, the purpose of the method described herein is to optimize fracture generation parameters specific to each animal and yield a consistent fracture location and pattern. This protocol accounts for variations in bone size and morphology that may exist between mouse strains and can be adapted to generate consistent fractures in other species, such as rat. Additionally, a cost-effective, adjustable fracture apparatus is described. Compared to current stabilized fracture techniques, the optimization protocol and new fracture apparatus demonstrate increased consistency in stabilized fracture patterns and locations. Using optimized parameters specific to the sample type, the described protocol increases the precision of induced traumas, minimizing the fracture heterogeneity typically observed in closed-fracture generation procedures.
Collapse
Affiliation(s)
- Robert L Zondervan
- College of Osteopathic Medicine, Michigan State University; Department of Orthopaedic Surgery, University of Michigan Medical School
| | - Mitch Vorce
- Lymann Briggs College, Michigan State University
| | | | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School;
| |
Collapse
|
10
|
Park MJ, Lee J, Byeon JS, Jeong DU, Gu NY, Cho IS, Cha SH. Effects of three-dimensional spheroid culture on equine mesenchymal stem cell plasticity. Vet Res Commun 2018; 42:171-181. [PMID: 29721754 DOI: 10.1007/s11259-018-9720-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy fields. We optimize culture conditions of equine adipose tissue-derived MSCs (eAD-MSCs) for treatment of horse fractures. To investigate enhancing properties of three-dimensional (3D) culture system in eAD-MSCs, we performed various sized spheroid formation and determined changes in gene expression levels to obtain different sized spheroid for cell therapy. eAD-MSCs were successfully isolated from horse tailhead. Using hanging drop method, spheroid formation was generated for three days. Quantitative real-time PCR was performed to analyze gene expression. As results, expression levels of pluripotent markers were increased depending on spheroid size and the production of PGE2 was increased in spheroid formation compared to that in monolayer. Ki-67 showed a remarkable increase in the spheroid formed with 2.0 × 105 cells/drop as compared to that in the monolayer. Expression levels of angiogenesis-inducing factors such as VEGF, IL-6, IL-8, and IL-18 were significantly increased in spheroid formation compared to those in the monolayer. Expression levels of bone morphogenesis-inducing factors such as Cox-2 and TGF-β1 were also significantly increased in spheroid formation compared to those in the monolayer. Expression levels of osteocyte-specific markers such as RUNX2, osteocalcin, and differentiation potential were also significantly increased in spheroid formation compared to those in the monolayer. Therefore, spheroid formation of eAD-MSCs through the hanging drop method can increases the expression of angiogenesis-inducing and bone morphogenesis-inducing factors under optimal culture conditions.
Collapse
Affiliation(s)
- Mi Jeong Park
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jeong Su Byeon
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Da-Un Jeong
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - In-Soo Cho
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Sang-Ho Cha
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea.
| |
Collapse
|
11
|
Sauerschnig M, Stolberg-Stolberg J, Schmidt C, Wienerroither V, Plecko M, Schlichting K, Perka C, Dynybil C. Effect of COX-2 inhibition on tendon-to-bone healing and PGE2 concentration after anterior cruciate ligament reconstruction. Eur J Med Res 2018; 23:1. [PMID: 29304843 PMCID: PMC5756348 DOI: 10.1186/s40001-017-0297-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs are commonly used to reduce pain and inflammation in orthopaedic patients. Selective cyclooxygenase-2 (COX-2) inhibitors have been developed to minimize drug-specific side effects. However, they are suspected to impair both bone and tendon healing. The objective of this study is to evaluate the effect of COX-2 inhibitor administration on tendon-to-bone healing and prostaglandin E (PGE2) concentration. METHODS Thirty-two New Zealand white rabbits underwent reconstructions of the anterior cruciate ligaments and were randomized into four groups: Two groups postoperatively received a selective COX-2 inhibitor (Celecoxib) on a daily basis for 3 weeks, the two other groups received no postoperative COX-2 inhibitors at all and were examined after three or 6 weeks. The PGE2 concentration of the synovial fluid, the osseous integration of the tendon graft at tunnel aperture and midtunnel section, as well as the stability of the tendon graft were examined via biomechanic testing. RESULTS After 3 weeks, the PGE2 content of the synovial fluid in the COX-2 inhibitor recipients was significantly lower than that of the control group (p = 0.018). At the same time, the COX-2 inhibitor recipients had a significantly lower bone density and lower amount of new bone formation than the control group (p = 0.020; p = 0.028) in the tunnel aperture. At the 6-week examination, there was a significant increase in the PGE2 content within synovial fluid of the COX-2 inhibitor recipients (p = 0.022), whose treatment with COX-2 inhibitors had ended 3 weeks earlier; in contrast, the transplant stability decreased and was reduced by 37% compared to the controls. CONCLUSIONS Selective COX-2 inhibitors cause impaired tendon-to-bone healing, weaken mechanical stability and decrease PGE2 content of the synovial fluid. The present study suggests a reluctant use of COX-2 inhibitors when tendon-to-bone healing is intended.
Collapse
Affiliation(s)
- Martin Sauerschnig
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Experimental Trauma Surgery, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany. .,Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany. .,Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Göstinger Straße 24, 8020, Graz, Austria.
| | - Josef Stolberg-Stolberg
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carmen Schmidt
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Valerie Wienerroither
- Department of Experimental Trauma Surgery, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Michael Plecko
- Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Göstinger Straße 24, 8020, Graz, Austria
| | - Karin Schlichting
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Dynybil
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
12
|
Li N, Wang Q, Zhu T, Qiao L, Zhang F, Mi R, Wang B, Chen L, Gu J, Lu Y, Zheng Q. In vitro functional characterization of prostaglandin-endoperoxide synthase 2 during chondrocyte hypertrophic differentiation. Oncotarget 2017; 7:36280-36292. [PMID: 27121205 PMCID: PMC5095000 DOI: 10.18632/oncotarget.8889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase 2 (Cox-2) has been implicated an essential role during bone repair, but the mechanisms remain elusive. Bone repair healing is known to include processes similar to endochondral ossification. In this study, we investigated the in vitro effect of Cox-2 on Col10a1 expression and chondrocyte hypertrophy, two critical components of endochondral ossification. Using quantitative RT-PCR, we detected increased mRNA levels of Cox-2 and Col10a1 in hypertrophic MCT cells, while cells treated with Cox-2 inhibitor, NS398, showed decreased mRNA and protein levels of Cox-2 and Col10a1. Increased Cox-2 also correlated with significantly upregulated Col10a1 in hypertrophic ATDC5 cells, whereas inhibition of Cox-2 significantly decreased Col10a1 expression. We further generated a Cox-2-expressing ATDC5 stable cell line. Compared with the controls, Cox-2 over-expression significantly increased Col10a1 as early as day 7 of continuous culturing, but not at days 14 and 21. Enhanced Alp staining was also observed in day 7 stable cell line. Correspondingly, we detected significantly increased levels of Runx2, Alp, Bcl-2, Bax, Col1a1, Osterix, and Bsp in day 7 stable line. Most of these genes have been associated with chondrocyte maturation and apoptosis. Together, our results support that Cox-2 promotes Col10a1 expression and chondrocyte hypertrophy in vitro, possibly through upregulation of Runx2 and other relevant transcription factors.
Collapse
Affiliation(s)
- Na Li
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ting Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, 215002, China
| | - Fei Zhang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rui Mi
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Bo Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Junxia Gu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Liao MH, Lin PI, Ho WP, Chan WP, Chen TL, Chen RM. Participation of GATA-3 in regulation of bone healing through transcriptional upregulation of bcl-x L expression. Exp Mol Med 2017; 49:e398. [PMID: 29170477 PMCID: PMC5704189 DOI: 10.1038/emm.2017.182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/17/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
We have previously demonstrated the expression of GATA-DNA-binding protein (GATA)-3, a transcription factor, in osteoblasts and have verified its function in transducing cell survival signaling. This translational study was further designed to evaluate the roles of GATA-3 in regulating bone healing and to explore its possible mechanisms. A metaphyseal bone defect was created in the left femurs of male ICR mice. Analysis by micro-computed topography showed that the bone volume, trabecular bone number and trabecular thickness were augmented and that the trabecular pattern factor decreased. Interestingly, immunohistological analyses showed specific expression of GATA-3 in the defect area. In addition, colocalized expression of GATA-3 and alkaline phosphatase was observed at the wound site. As the fracture healed, the amounts of phosphorylated and non-phosphorylated GATA-3 concurrently increased. Separately, GATA-3 mRNA was induced during bone healing, and, levels of Runx2 mRNA and protein were also increased. The results of confocal microscopy and co-immunoprecipitation showed an association between nuclear GATA-3 and Runx2 in the area of insult. In parallel with fracture healing, Bcl-XL mRNA was significantly triggered. A bioinformatic search revealed the existence of a GATA-3-specific DNA-binding element in the promoter region of the bcl-xL gene. Analysis by chromatin immunoprecipitation assays further demonstrated transactivation activity by which GATA-3 regulated bcl-xL gene expression. Therefore, this study shows that GATA-3 participates in the healing of bone fractures via regulating bcl-xL gene expression, owing to its association with Runx2. In the clinic, GATA-3 may be used as a biomarker for diagnoses/prognoses or as a therapeutic target for bone diseases, such as bone fractures.
Collapse
Affiliation(s)
- Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Pin Ho
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Medical Center, Taipei, Taiwan
- Department of Orthopedic Surgery, Taipei Medical University-Wan Fang Medical Center, Taipei, Taiwan
| | - Wing P Chan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Medical Center, Taipei, Taiwan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ta-Liang Chen
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Medical Center, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Campbell MJ. Bioinformatic approaches to interrogating vitamin D receptor signaling. Mol Cell Endocrinol 2017; 453:3-13. [PMID: 28288905 DOI: 10.1016/j.mce.2017.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Bioinformatics applies unbiased approaches to develop statistically-robust insight into health and disease. At the global, or "20,000 foot" view bioinformatic analyses of vitamin D receptor (NR1I1/VDR) signaling can measure where the VDR gene or protein exerts a genome-wide significant impact on biology; VDR is significantly implicated in bone biology and immune systems, but not in cancer. With a more VDR-centric, or "2000 foot" view, bioinformatic approaches can interrogate events downstream of VDR activity. Integrative approaches can combine VDR ChIP-Seq in cell systems where significant volumes of publically available data are available. For example, VDR ChIP-Seq studies can be combined with genome-wide association studies to reveal significant associations to immune phenotypes. Similarly, VDR ChIP-Seq can be combined with data from Cancer Genome Atlas (TCGA) to infer the impact of VDR target genes in cancer progression. Therefore, bioinformatic approaches can reveal what aspects of VDR downstream networks are significantly related to disease or phenotype.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 536 Parks Hall, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Abstract
Bone healing involves complex biological pathways and interactions among various cell types and microenvironments. Among them, the monocyte–macrophage–osteoclast lineage and the mesenchymal stem cell–osteoblast lineage are critical, in addition to an initial inflammatory microenvironment. These cellular interactions induce the necessary inflammatory milieu and provide the cells for bone regeneration and immune modulation. Increasing age is accompanied with a rise in the basal state of inflammation, potentially impairing osteogenesis. The translational potential of this article: Translational research has shown multiple interactions between inflammation, ageing, and bone regeneration. This review presents recent, relevant considerations regarding the effects of inflammation and ageing on bone healing.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Corresponding author. Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Edwards Building R116, Stanford, CA 94305, USA.Department of Orthopaedic SurgeryStanford University300 Pasteur DriveEdwards Building R116StanfordCA94305USA
| | | | | | | |
Collapse
|
16
|
Wang T, Zhang X, Bikle DD. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol 2016; 232:913-921. [PMID: 27731505 DOI: 10.1002/jcp.25641] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Five to ten percent of fractures fail to heal normally leading to additional surgery, morbidity, and altered quality of life. Fracture healing involves the coordinated action of stem cells primarily coming from the periosteum which differentiate into the chondrocytes and osteoblasts, forming first the soft (cartilage) callus followed by the hard (bone) callus. These stem cells are accompanied by a vascular invasion that appears critical for the differentiation process and which may enable the entry of osteoclasts necessary for the remodeling of the callus into mature bone. However, more research is needed to clarify the signaling events that activate the osteochondroprogenitor cells of periosteum and stimulate their differentiation into chondrocytes and osteoblasts. Ultimately a thorough understanding of the mechanisms for differential regulation of these osteochondroprogenitors will aid in the treatment of bone healing and the prevention of delayed union and nonunion of fractures. In this review, evidence supporting the concept that the periosteal cells are the major cell sources of skeletal progenitors for the fracture callus will be discussed. The osteogenic differentiation of periosteal cells manipulated by Wnt/β-catenin, TGF/BMP, Ihh/PTHrP, and IGF-1/PI3K-Akt signaling in fracture repair will be examined. The effect of physical (hypoxia and hyperoxia) and chemical factors (reactive oxygen species) as well as the potential coordinated regulatory mechanisms in the periosteal progenitor cells promoting osteogenic differentiation will also be discussed. Understanding the regulation of periosteal osteochondroprogenitors during fracture healing could provide insight into possible therapeutic targets and thereby help to enhance future fracture healing and bone tissue engineering approaches. J. Cell. Physiol. 232: 913-921, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Daniel D Bikle
- Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| |
Collapse
|
17
|
Gao X, Usas A, Lu A, Kozemchak A, Tang Y, Poddar M, Sun X, Cummins JH, Huard J. Cyclooxygenase-2 deficiency impairs muscle-derived stem cell-mediated bone regeneration via cellular autonomous and non-autonomous mechanisms. Hum Mol Genet 2016; 25:3216-3231. [PMID: 27354351 DOI: 10.1093/hmg/ddw172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023] Open
Abstract
This study investigated the role of cyclooxygenase-2 (COX-2) expression by donor and host cells in muscle-derived stem cell (MDSC)-mediated bone regeneration utilizing a critical size calvarial defect model. We found that BMP4/green fluorescent protein (GFP)-transduced MDSCs formed significantly less bone in COX-2 knock-out (Cox-2KO) than in COX-2 wild-type (WT) mice. BMP4/GFP-transduced Cox-2KO MDSCs also formed significantly less bone than transduced WT MDSCs when transplanted into calvarial defects created in CD-1 nude mice. The impaired bone regeneration in the Cox-2KO MDSCBMP4/GFP group is associated with downregulation of BMP4-pSMAD1/5 signaling, decreased osteogenic differentiation and lowered proliferation capacity after transplantation, compared with WT MDSCBMP4/GFP cells. The Cox-2KO MDSCBMP4/GFP group demonstrated a reduction in cell survival and direct osteogenic differentiation in vitro These effects were mediated in part by the downregulation of Igf1 and Igf2. In addition, the Cox-2KO MDSCBMP4/GFP cells recruited fewer macrophages than the WT MDSC/BMP4/GFP cells in the early phase after injury. We concluded that the bone regeneration capacity of Cox-2KO MDSCs was impaired because of a reduction in cell proliferation and survival capacities, reduction in osteogenic differentiation and a decrease in the ability of the cells to recruit host cells to the injury site.
Collapse
Affiliation(s)
- Xueqin Gao
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| | - Adam Kozemchak
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Tang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuying Sun
- Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - James H Cummins
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA .,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| |
Collapse
|
18
|
Cazzaniga A, Maier JAM, Castiglioni S. Impact of simulated microgravity on human bone stem cells: New hints for space medicine. Biochem Biophys Res Commun 2016; 473:181-186. [PMID: 27005819 DOI: 10.1016/j.bbrc.2016.03.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 01/30/2023]
Abstract
Bone loss is a well known early event in astronauts and represents one of the major obstacle to space exploration. While an imbalance between osteoblast and osteoclast activity has been described, less is known about the behavior of bone mesenchymal stem cells in microgravity. We simulated microgravity using the Random Positioning Machine and found that mesenchymal stem cells respond to gravitational unloading by upregulating HSP60, HSP70, cyclooxygenase 2 and superoxyde dismutase 2. Such an adaptive response might be involved in inducing the overexpression of some osteogenic transcripts, even though the threshold to induce the formation of bone crystal is not achieved. Indeed, only the addition of an osteogenic cocktail activates the full differentiation process both in simulated microgravity and under static 1G-conditions. We conclude that simulated microgravity alone reprograms bone mesenchymal stem cells towards an osteogenic phenotype which results in complete differentiation only after exposure to a specific stimulus.
Collapse
Affiliation(s)
- Alessandra Cazzaniga
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| | - Jeanette A M Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| | - Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy.
| |
Collapse
|
19
|
The Effect of Cyclooxygenase Inhibition on Tendon-Bone Healing in an In Vitro Coculture Model. Mediators Inflamm 2015; 2015:926369. [PMID: 26063979 PMCID: PMC4438175 DOI: 10.1155/2015/926369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
The effects of cyclooxygenase (COX) inhibition following the reconstruction of the anterior cruciate ligament remain unclear. We examined the effects of selective COX-2 and nonselective COX inhibition on bone-tendon integration in an in vitro model. We measured the dose-dependent effects of ibuprofen and parecoxib on the viability of lipopolysaccharide- (LPS-) stimulated and unstimulated mouse MC3T3-E1 and 3T3 cells, the influence on gene expression at the osteoblast, interface, and fibroblast regions measured by quantitative PCR, and cellular outgrowth assessed on histological sections. Ibuprofen led to a dose-dependent suppression of MC3T3 cell viability, while parecoxib reduced the viability of 3T3 cultures. Exposure to ibuprofen significantly suppressed expression of Alpl (P < 0.01), Bglap (P < 0.001), and Runx2 (P < 0.01), and although parecoxib reduced expression of Alpl (P < 0.001), Fmod (P < 0.001), and Runx2 (P < 0.01), the expression of Bglap was increased (P < 0.01). Microscopic analysis showed a reduction in cellular outgrowth in LPS-stimulated cultures following exposure to ibuprofen and parecoxib. Nonselective COX inhibition and the specific inhibition of COX-2 led to region-specific reductions in markers of calcification and cell viability. We suggest further in vitro and in vivo studies examining the biologic and biomechanical effects of selective and nonselective COX inhibition.
Collapse
|