1
|
Zhou H, Long C, Liu P, Chen Y, Luo L, Xiao Z. Long non-coding RNA TUG1 accelerates abnormal growth of airway smooth muscle cells in asthma by targeting the miR-138-5p/E2F3 axis. Exp Ther Med 2021; 22:1229. [PMID: 34539825 DOI: 10.3892/etm.2021.10663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease. The present study aimed to explore the effect of the long non-coding RNA taurine-upregulated gene 1 (TUG1) on the viability and migration of airway smooth muscle cells (ASMCs) in asthma. Rat asthma models were constructed with ovalbumin sensitization and challenge and the level of serum immunoglobulin E (IgE) and the rates of inspiratory and expiratory resistance were measured. Reverse transcription-quantitative PCR was also performed to determine the expression levels of TUG1. Platelet-derived growth factor-BB (PDGF-BB)-treated ASMCs were then used as a cell model of asthma. The viability and migratory abilities of ASMCs were analysed with the MTT and Transwell assays. Additionally, a dual-luciferase reporter assay was used to confirm the relationship between TUG1 and microRNA (miR)-138-5p and between transcription factor E2F3 and miR-138-5p. The expression of TUG1, level of serum IgE, inspiratory resistance and expiratory resistance were clearly increased in the rat asthma model in comparison with controls. Knockdown of TUG1 the viability and migration of PDGF-BB-induced ASMCs and reduced the inspiratory and expiratory resistances. In addition, TUG1 functioned as a bait of miR-138-5p, and miR-138-5p modulated E2F3 expression. Knockdown of E2F3 hindered the abnormal growth of ASMCs. Moreover, miR-138-5p inhibition or E2F3 overexpression reversed the inhibitory effects of TUG1 knockdown on viability and migration of PDGF-BB-induced ASMCs. The TUG1/miR-138-5p/E2F3 regulatory axis appeared to play a critical role in accelerating the viability and migration of ASMCs and may therefore have a role in asthma.
Collapse
Affiliation(s)
- Haiyin Zhou
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Caixia Long
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Pingping Liu
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Yanying Chen
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Lan Luo
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Zhenghui Xiao
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
2
|
GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci 2018; 212:93-101. [PMID: 30189218 DOI: 10.1016/j.lfs.2018.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/25/2022]
Abstract
AIMS To explore the role of long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in the cell proliferation of airway smooth muscle cells (ASMCs) in asthma. MATERIALS AND METHODS An asthma rat model was established by ovalbumin sensitization and challenge. The expression of GAS5, miR-10a and BDNF mRNA and protein was determined with qRT-PCR and western blot, separately. The targeting relationship between GAS5 and miR-10a was examined with RNA immunoprecipitation and RNA pull-down assay; the interaction between miR-10a and BDNF was evaluated by luciferase reporter assay. Cell Proliferation Assay (MTS) was used for ASMC proliferation detection. Knock-down of GAS5 was performed in asthmatic rats to determine the effects of GAS5 in vivo. KEY FINDINGS Compared with control group, the inspiratory resistance and expiratory resistance were increased in asthma group; and the expression of GAS5, miR-10a and BDNF was higher, lower and higher, respectively. The expression of GAS5 and miR-10a was elevated and repressed, respectively, by platelet-derived growth factor-BB (PDGF-BB). GAS5 functioned as a bait of miR-10a. GAS5 regulates BDNF expression through miR-10a. PDGF-BB promotes the cell proliferation of ASMCs through miR-10a/BDNF. Knock-down of GAS5 significantly decreased airway hyperresponsiveness in asthmatic rats. SIGNIFICANCE The lncRNA GAS5/miR-10a/BDNF regulatory axis played an important role in promoting ASMCs proliferation, thus contributing to asthma.
Collapse
|
3
|
Hu C, Jiang J, Xun Q, Zhao B, Hu X, Deng P, Li Y. Inhibition of SERPINE2/protease nexin-1 by a monoclonal antibody attenuates airway remodeling in a murine model of asthma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11838-11848. [PMID: 31966548 PMCID: PMC6966070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 06/10/2023]
Abstract
SERPINE2, also known as protease nexin-1 (PN-1), is a serine protease inhibitor produced by many cell types and has pleiotropic biological functions. It has been reported that SERPINE2/PN-1 is involved in tissue remodeling of fibrotic diseases including idiopathic pulmonary fibrosis and cardiac fibrosis. However, the potential role of SERPINE2/PN-1 in asthmatic airway remodeling has remained barely investigated so far. In this study, BALB/c male mice were sensitized and challenged by ovalbumin to generate murine models of airway remodeling. Anti-SERPINE2 monoclonal antibody was intraperitoneally injected into these mice during the ovalbumin challenge while IgG antibody was used as a vehicle control. The results revealed that the expression of SERPINE2/PN-1 was significantly upregulated in the lung extracts of ovalbumin-challenged mice, and this upregulation was inhibited by dexamethasone. Sustained ovalbumin stimulation increased the thickness of airway wall and α-SMA positive areas in lung, which was attenuated by the treatment with SERPINE2 antibody. In addition, SERPINE2 antibody partially blocked the phosphorylation of ERK, and reduced the upregulation of MMP-9 and TIMP-1 expressions in asthmatic mice. These findings suggest that SERPINE2/PN-1 may play a role in the pathologic development of airway remodeling. Monoclonal antibody against SERPINE2 may have the potential as an effective pharmacotherapy for asthmatic airway remodeling.
Collapse
Affiliation(s)
- Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Juan Jiang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Qiufen Xun
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Pengbo Deng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Yuanyuan Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| |
Collapse
|
4
|
Najafi A, Ghanei M, Jamalkandi SA. Airway remodeling: Systems biology approach, from bench to bedside. Technol Health Care 2016; 24:811-819. [PMID: 27315153 DOI: 10.3233/thc-161228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Airway Remodeling, a patho-physiologic process, is considered as a key feature of chronic airway diseases. In recent years, our understanding of the complex diseases has increased significantly by the use of combined approaches, including systems biology, which may contribute to the development of personalized and predictive medicine approaches. Integrative analysis, along with the cooperation of clinicians, computer scientists, research scientists, and bench scientists, has become an important part of the experimental design and therapeutic strategies in the era of omics. The airway remodeling process is the result of the dysregulation of several signaling pathways that modulate the airway regeneration; therefore, high-throughput experiments and systems biology approach can help to understand this process better. The study reviews related literature and is consistent with the existing clinical evidence.
Collapse
Affiliation(s)
- Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Khazdair MR, Boskabady MH, Ghorani V. Respiratory effects of sulfur mustard exposure, similarities and differences with asthma and COPD. Inhal Toxicol 2015; 27:731-44. [PMID: 26635274 DOI: 10.3109/08958378.2015.1114056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Previous research has found relationships between sulfur mustard (SM) toxicity and its adverse effects. OBJECTIVE SM is highly toxic to the respiratory system, leading to hacking cough, rhinorrheachest tightness, acute pharyngitis and laryngitis, chronic bronchitis and lung fibrosis. In this review, based on the scientific literature, we provide an updated summary of information on SM exposures and their differences with asthma and COPD. METHOD Information of this review was obtained by searching Medline/PubMed, ScienceDirect, Scopus, Google Scholar, ISI Web of Knowledge and Chemical Abstracts. RESULTS SM exposure can decrease pulmonary function tests (PFTs) values. In addition, inflammatory cell accumulation in the respiratory tract and increased expression of some pro-inflammatory cytokines including tumor necrosis factor-α (TNFα), IL-1a, IL-1β, and reactive oxygen radicals due to SM exposure have been shown. Matrix metalloproteinase (MMP) which degrade extracellular matrix proteins, contributing to inflammatory cell recruitment, tissue injury and fibrosis are also up-regulated in the lung after SM exposure. In the lung, SM exposure also can cause serious pathological changes including airway inflammation, parenchymal tissue destruction and airway obstruction which can lead to asthma or chronic obstructive pulmonary disease (COPD). Following SM poisoning, DNA damage, apoptosis and autophagy are observed in the lung along with the increased expression of activated caspases and DNA repair enzymes. CONCLUSION In the present article, respiratory symptoms, changes in PFTs, lung pathology and lung inflammation due to SM exposure and the similarities and differences between them and those observed in asthma and COPD were reviewed.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine .,b Student Research Committee , and
| | - Mohammad Hossein Boskabady
- c Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Vahideh Ghorani
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine
| |
Collapse
|
6
|
Alvanegh AG, Edalat H, Fallah P, Tavallaei M. Decreased expression of miR-20a and miR-92a in the serum from sulfur mustard-exposed patients during the chronic phase of resulting illness. Inhal Toxicol 2015; 27:682-8. [PMID: 26525353 DOI: 10.3109/08958378.2015.1096982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT Sulfur mustard (SM), with extensive nucleophilic and alkylating properties, was employed during the Iran-Iraq war by Iraqi forces. The most critical complications attributed to SM are related to dangerous pulmonary disorders collectively known as "mustard lung". The symptoms gradually emerge over a long period, becoming chronic, and are dependent on time and the amount of exposed SM. Because of the unknown and complex nature of the disease, no differential diagnostic method or absolute treatment strategy has been formally developed. OBJECTIVE The aim of our study was to determine the expression pattern of the microRNAs (miRNAs) miR-92a and miR-20a in the serum of patients with mustard lung along with that of normal individuals. miRNAs have been shown to possess stable persistence in biofluids like plasma and serum and are considered non-aggressive biomarkers helpful for diagnosis and treatment of many diseases. MATERIALS AND METHODS A highly sensitive approach called stem-loop real-time quantitative polymerase chain reaction was employed to study the expression of miRNAs. RESULTS The expression of miR-92a and miR-20a was significantly down-regulated in the serum of patients with mustard lung compared to the control group. DISCUSSION Down-regulation of miR-92a and miR-20a may be due to chronic epigenetic alterations after SM exposure, which finally leads to changes in vital cellular processes such as differentiation, proliferation and so forth. CONCLUSION Our findings may provide a differential diagnostic method that is effective for diagnosing lung diseases caused by SM exposure. Additionally, these miRNAs may be regarded as probable targets for treatment of lung injuries.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- a Human Genetics Research Center, Baqiyatallah Medical Sciences University , Tehran , Iran and
| | - Houri Edalat
- a Human Genetics Research Center, Baqiyatallah Medical Sciences University , Tehran , Iran and
| | - Parviz Fallah
- b Laboratory Sciences Department , Alborz University of Medical Sciences , Karaj , Iran
| | - Mahmood Tavallaei
- a Human Genetics Research Center, Baqiyatallah Medical Sciences University , Tehran , Iran and
| |
Collapse
|
7
|
Wang RS, Maron BA, Loscalzo J. Systems medicine: evolution of systems biology from bench to bedside. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:141-61. [PMID: 25891169 DOI: 10.1002/wsbm.1297] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
High-throughput experimental techniques for generating genomes, transcriptomes, proteomes, metabolomes, and interactomes have provided unprecedented opportunities to interrogate biological systems and human diseases on a global level. Systems biology integrates the mass of heterogeneous high-throughput data and predictive computational modeling to understand biological functions as system-level properties. Most human diseases are biological states caused by multiple components of perturbed pathways and regulatory networks rather than individual failing components. Systems biology not only facilitates basic biological research but also provides new avenues through which to understand human diseases, identify diagnostic biomarkers, and develop disease treatments. At the same time, systems biology seeks to assist in drug discovery, drug optimization, drug combinations, and drug repositioning by investigating the molecular mechanisms of action of drugs at a system's level. Indeed, systems biology is evolving to systems medicine as a new discipline that aims to offer new approaches for addressing the diagnosis and treatment of major human diseases uniquely, effectively, and with personalized precision.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Cardiology, Veterans Affairs Boston Healthcare System, West Roxbury, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|