1
|
Li W, Xing X, Shen C, Hu C. Tumor cell-derived exosomal miR-193b-3p promotes tumor-associated macrophage activation to facilitate nasopharyngeal cancer cell invasion and radioresistances. Heliyon 2024; 10:e30808. [PMID: 38818176 PMCID: PMC11137362 DOI: 10.1016/j.heliyon.2024.e30808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Background Communication between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) plays a crucial role in accelerating nasopharyngeal cancer (NPC) metastasis and radioresistance. However, the mechanisms through which NPC cells regulate the properties and activation of TAMs during NPC progression are not yet fully understood. Methods A high-metastatic NPC subclone (HMC) and a low-metastatic NPC subclone (LMC) were screened from the CNE-2 cell line and exosomes were collected from HMCs and LMCs, respectively. The effects of HMC- and LMC-derived exosomes (HMC-Exos and LMC-Exos) on the regulation of TAM activation were evaluated by assessing the levels of inflammation-related or immunosuppression-related genes. The role of miRNA-193b-3p (miR-193b) in mediating communication between NPCs and TAMs was assessed using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot analysis, Transwell assays, and clonogenic survival assays. Results HMCs and HMC-Exos exhibited a greater capacity to facilitate macrophage protumorigenic activation than LMCs and LMC-Exos. miR-193b levels derived from HMC-Exos were higher than those from LMC-Exos, and miR-193b levels were higher in metastatic NPC tissue-derived TAMs than in non-metastatic NPC tissue-derived TAMs. The upregulated miR-193b was packaged into exosomes and transferred to macrophages. Functionally, miR-193b up-regulation accelerated TAM activation by directly targeting mitogen-activated protein/ERK kinase kinase 3 (MEKK3). As a result, miR-193b-overexpressed macrophages facilitated NPC cell invasion and radioresistance. Conclusions These data revealed a critical role for exosomal miR-193b in mediating intercellular communication between NPC cells and macrophages, providing a potential target for NPC treatment.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xing Xing
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Chunying Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
2
|
Liang YY, Niu FY, Xu AA, Jiang LL, Liu CS, Liang HP, Huang YF, Shao XF, Mo ZW, Yuan YW. Increased MCL-1 synthesis promotes irradiation-induced nasopharyngeal carcinoma radioresistance via regulation of the ROS/AKT loop. Cell Death Dis 2022; 13:131. [PMID: 35136016 PMCID: PMC8827103 DOI: 10.1038/s41419-022-04551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Worldwide, nasopharyngeal carcinoma (NPC) is a rare head and neck cancer; however, it is a common malignancy in southern China. Radiotherapy is the most important treatment strategy for NPC. However, although radiotherapy is a strong tool to kill cancer cells, paradoxically it also promotes aggressive phenotypes. Therefore, we mimicked the treatment process in NPC cells in vitro. Upon exposure to radiation, a subpopulation of NPC cells gradually developed resistance to radiation and displayed cancer stem-cell characteristics. Radiation-induced stemness largely depends on the accumulation of the antiapoptotic myeloid cell leukemia 1 (MCL-1) protein. Upregulated MCL-1 levels were caused by increased stability and more importantly, enhanced protein synthesis. We showed that repeated ionizing radiation resulted in persistently enhanced reactive oxygen species (ROS) production at a higher basal level, further promoting protein kinase B (AKT) signaling activation. Intracellular ROS and AKT activation form a positive feedback loop in the process of MCL-1 protein synthesis, which in turn induces stemness and radioresistance. AKT/MCL-1 axis inhibition attenuated radiation-induced resistance, providing a potential target to reverse radiation therapy-induced radioresistance.
Collapse
Affiliation(s)
- Ying-Ying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Fei-Yu Niu
- Department of Internal Medicine, Section 3, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - An-An Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li-Li Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Chun-Shan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yu-Fan Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xun-Fan Shao
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Wen Mo
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
DNA damage triggers the nuclear accumulation of RASSF6 tumor suppressor protein via CDK9 and BAF53 to regulate p53-target gene transcription. Mol Cell Biol 2021; 42:e0031021. [PMID: 34898277 DOI: 10.1128/mcb.00310-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RASSF6, a member of the tumor suppressor Ras-association domain family (RASSF) proteins, regulates cell cycle arrest and apoptosis via p53 and plays a tumor suppressor role. We previously reported that RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. In this study, we demonstrated that RASSF6 has nuclear-localization and nuclear-export signals and that DNA damage triggers the nuclear accumulation of RASSF6. We found that RASSF6 directly binds to BAF53, the component of SWI/SNF complex. DNA damage induces CDK9-mediated phosphorylation of BAF53, which enhances the interaction with RASSF6 and increases the amount of RASSF6 in the nucleus. Subsequently, RASSF6 augments the interaction between BAF53 and BAF60a, another component of SWI/SNF complex, and further promotes the interaction of BAF53 and BAF60a with p53. BAF53 silencing or BAF60a silencing attenuates RASSF6-mediated p53-target gene transcription and apoptosis. Thus, RASSF6 is involved in the regulation of DNA damage-induced complex formation including CDK9, BAF53, BAF60a, and p53.
Collapse
|
4
|
Zhou W, Liu Y, Wu X. Down-regulation of circITCH promotes osteosarcoma development and resistance to doxorubicin via the miR-524/RASSF6 axis. J Gene Med 2021; 23:e3373. [PMID: 34151476 DOI: 10.1002/jgm.3373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone cancer, in which circular RNAs (circRNAs) act as important modulators. The present study aimed to explore the functional role of circRNA itchy E3 ubiquitin protein ligase (circITCH) in the development and doxorubicin (DXR) resistance of OS and the possible mechanistic pathway. METHODS A quantitative real-time polymerase chain reaction or western blot assays were exploited to analyze the expression of circITCH, miR-524 and Ras association domain family member 6 (RASSF6). Cell viability and half-maximal inhibitory concentration (IC50 ) value of DXR were monitored using a cell counting kit-8 assay. Cell migration, invasion and apoptosis were determined via a transwell assay and flow cytometry. The target interaction among circITCH, miR-524 and RASSF6 was validated by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft model of MG-63/DXR cells stably expressing circITCH in nude mice was established for assessing the role of circITCH in vivo. RESULTS Down-regulation of circITCH and RASSF6, as well as the up-regulation of miR-524, was revealed in OS by investigating 40 paired OS tissue and normal tissue samples. Overexpression of circITCH lowered the cell viability, IC50 value of DXR, migration and invasion, whereas it facilitated apoptosis of OS cells. circITCH sponged miR-524 to up-regulate RASSF6, causing OS progression inhibition and DXR resistance reduction. Additionally, circITCH up-regulation reduced tumor growth in vivo. CONCLUSIONS Transduction with circITCH represses OS progression and promotes DXR sensitivity by the miR-524/RASSF6 axis, providing a new perspective for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Orthopedics, Zhengzhou University First Affiliated Hospital, China
| | - Yuan Liu
- Department of Emergency, Zhengzhou University First Affiliated Hospital, China
| | - Xuejian Wu
- Department of Orthopedics, Zhengzhou University First Affiliated Hospital, China
| |
Collapse
|
5
|
Dai C, Xu P, Liu S, Xu S, Xu J, Fu Z, Cao J, Lv M, Zhou J, Liu G, Zhang H, Jia X. Long noncoding RNA ZEB1-AS1 affects paclitaxel and cisplatin resistance by regulating MMP19 in epithelial ovarian cancer cells. Arch Gynecol Obstet 2020; 303:1271-1281. [PMID: 33151424 DOI: 10.1007/s00404-020-05858-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023]
Abstract
PURPOSE The long noncoding RNA (lncRNA) ZEB1-AS1 is reported overexpressed in sensitive ovarian cancer cells A2780 compared with paclitaxel (PTX)-and cisplatin (DDP)- resistant. However, the function and mechanism of ZEB1-AS1 in EOC cells still unknown. METHODS We used quantitative real-time PCR (qPCR) to detect ZEB1-AS1 expression in A2780 and A2780/R cells. A combination of siRNA, plasmids, CCK8 and flow cytometry was used to detect the effect of ZEB1-AS1 on ovarian cancer cell A2780 PTX and DDP resistance. Transcriptome sequencing, qPCR, and western blot were used for further mechanistic studies. RESULTS ZEB1-AS1 depletion using siRNA in chemosensitive A2780 cells significantly increased PTX and DDP resistance. In contrast, ZEB1-AS1 overexpression in PTX- and DDP-resistant A2780/resistant (A2780/R) cells reversed the observed drug resistance. Thus, ZEB1-AS1 plays an important role in PTX and DDP resistance in EOC cells. However, quantitative real-time PCR (qPCR) and western blot results suggested that ZEB1-AS1 did not regulate chemoresistance through regulation of ZEB1 protein. We used sequencing to detect mRNA expression changes in A2780 cells after ZEB1-AS1 silencing. The results indicated that MMP19 was the likely downstream factor of ZEB1-AS1. We further examined whether ZEB1-AS1 played an important role in chemoresistance by silencing MMP19 in ZEB1-AS1-overexpressing cells. CCK8 assay results suggested that MMP19 knockdown promoted ZEB1-AS1-induced chemoresistance to PTX and DDP in A2780 cells. CONCLUSION This study is the first to reveal that ZEB1-AS1 plays a pivotal role in cancer chemoresistance.
Collapse
Affiliation(s)
- Chencheng Dai
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.,Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Siyu Liu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.,Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Sujuan Xu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Juan Xu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.,Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Jian Cao
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Mingming Lv
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Juan Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Guangquan Liu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.,Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Huilin Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
6
|
RASSF6-TRIM16 axis promotes cell proliferation, migration and invasion in esophageal squamous cell carcinoma. J Genet Genomics 2019; 46:477-488. [PMID: 31812473 DOI: 10.1016/j.jgg.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023]
Abstract
Ras-association (RA) domain family number 6 (RASSF6) is a member of the Ras-association domain protein family. It is epigenetically inactive and negatively regulates the malignant progression of some tumors. However, its precise role in esophageal squamous cell carcinoma (ESCC) has not been reported. In this study, we performed immunohistochemistry (IHC) assay. The results show that RASSF6 is upregulated in ESCC and that the elevated expression level of RASSF6 is associated with lymph node metastasis and poor survival of ESCC patients. Consistent with the clinical observations, the upregulation of RASSF6 greatly promotes ESCC cell proliferation, migration and invasion as well as the cell cycle transition to G1/S phase in vitro. According to models in vivo, the downregulation of RASSF6 considerably inhibits ESCC tumor growth and lung metastasis. Mechanistically, RASSF6 negatively regulates the tumor suppressor tripartite-motif-containing protein 16 (TRIM16) by promoting its ubiquitination-dependent degradation and eventually activates pathways associated with the cell cycle and epithelial-mesenchymal transition (EMT). Together, these results indicate that the RASSF6-TRIM16 axis is a key effector in ESCC progression and that RASSF6 serves as a potential target for the treatment of ESCC.
Collapse
|
7
|
Wang H, Yan B, Zhang P, Liu S, Li Q, Yang J, Yang F, Chen E. MiR-496 promotes migration and epithelial-mesenchymal transition by targeting RASSF6 in colorectal cancer. J Cell Physiol 2019; 235:1469-1479. [PMID: 31273789 DOI: 10.1002/jcp.29066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Aberrant loss of tumor-suppressor genes plays a crucial role in tumorigenesis and development of colorectal cancer (CRC). Extensive studies have reported tha hypermethylation of Ras association domain family member 6 (RASSF6) is common in various solid tumors. Another important mode of epigenetic regulation, microRNA (miRNA) regulation of RASSF6, is far from clear. The aim of the present work was to screen out novel miRNA regulating RASSF6, and to explore its underlying mechanism in CRC. With the use of bioinformatics, clinical sample data, and luciferase binding assay, we determined that microRNA-496 (miR-496) could be a novel oncomiR that directly binds to RASSF6. Next, a series of miR-496 mimics or inhibitor, or RASSF6 small interfering RNA (siRNA) introduced into CRC cells were applied to examine the effect of miR-496 on CRC cell viability, migration, and epithelial-mesenchymal transition (EMT). The results demonstrated that miR-496/RASSF6 could promote cell migration and EMT via Wnt signaling activation, but had no effect on cell viability. Our results confirmed that the miR-496/RASSF6 axis is involved in Wnt pathway-mediated tumor metastasis, highlighting its potential as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Hua Wang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Bianbian Yan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Pan Zhang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Shuzhen Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Qiqi Li
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jin Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Liang YY, Deng XB, Zeng LS, Lin XT, Shao XF, Wang B, Mo ZW, Yuan YW. RASSF6-mediated inhibition of Mcl-1 through JNK activation improves the anti-tumor effects of sorafenib in renal cell carcinoma. Cancer Lett 2018; 432:75-83. [PMID: 29864454 DOI: 10.1016/j.canlet.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Ras association domain family member 6 (RASSF6) has been shown to act as a tumor suppressor and predictor of poor prognosis in renal cell carcinoma (RCC). However, little is known about the effects of RASSF6 on sorafenib resistance or the underlying mechanism. Here, we show that RASSF6 expression positively correlates with sorafenib sensitivity in RCC cells and human samples. Stable ectopic overexpression of RASSF6 in RCC cell lines reduces resistance to sorafenib in vitro and in vivo. At a molecular level, RASSF6 activates the JNK signaling pathway, which further contributes to Mcl-1 inhibition. Suppression of the JNK pathway can partially restore Mcl-1 expression and sorafenib resistance. Together, these findings suggest that RASSF6 inhibits sorafenib resistance by repressing Mcl-1 through the JNK-dependent pathway. RASSF6 may serve as a novel regulator for sorafenib therapy in RCC.
Collapse
Affiliation(s)
- Ying-Ying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Xu-Bin Deng
- Department of Internal Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Li-Si Zeng
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Xian-Tao Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Xun-Fan Shao
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Bin Wang
- Department of Urology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Zhi-Wen Mo
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Iwasa H, Hossain S, Hata Y. Tumor suppressor C-RASSF proteins. Cell Mol Life Sci 2018; 75:1773-1787. [PMID: 29353317 PMCID: PMC11105443 DOI: 10.1007/s00018-018-2756-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Human genome has ten genes that are collectedly called Ras association domain family (RASSF). RASSF is composed of two subclasses, C-RASSF and N-RASSF. Both N-RASSF and C-RASSF encode Ras association domain-containing proteins and are frequently suppressed by DNA hypermethylation in human cancers. However, C-RASSF and N-RASSF are quite different. Six C-RASSF proteins (RASSF1-6) are characterized by a C-terminal coiled-coil motif named Salvador/RASSF/Hippo domain, while four N-RASSF proteins (RASSF7-10) lack it. C-RASSF proteins interact with mammalian Ste20-like kinases-the core kinases of the tumor suppressor Hippo pathway-and cross-talk with this pathway. Some of them share the same interacting molecules such as MDM2 and exert the tumor suppressor role in similar manners. Nevertheless, each C-RASSF protein has distinct characters. In this review, we summarize our current knowledge of how C-RASSF proteins play tumor suppressor roles and discuss the similarities and differences among C-RASSF proteins.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| |
Collapse
|
10
|
De Smedt E, Maes K, Verhulst S, Lui H, Kassambara A, Maes A, Robert N, Heirman C, Cakana A, Hose D, Breckpot K, van Grunsven LA, De Veirman K, Menu E, Vanderkerken K, Moreaux J, De Bruyne E. Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Res 2017; 78:1155-1168. [DOI: 10.1158/0008-5472.can-17-1544] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
|
11
|
Xu X, Iwasa H, Hossain S, Sarkar A, Maruyama J, Arimoto-Matsuzaki K, Hata Y. BCL-XL binds and antagonizes RASSF6 tumor suppressor to suppress p53 expression. Genes Cells 2017; 22:993-1003. [PMID: 29193479 DOI: 10.1111/gtc.12541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
RASSF6, a member of the tumor suppressor Ras-association domain family proteins, induces apoptosis in the caspase-dependent and caspase-independent manners. RASSF6 interacts with MDM2 and stabilizes p53. BCL-XL is a prosurvival member of BCL-2 family proteins. BCL-XL directly inhibits proapoptotic BAX and BAK. BCL-XL also traps tBID, a proapoptotic activator BH3-only protein, and sequesters p53. In addition, BCL-XL regulates the mitochondrial membrane permeability via voltage-dependent anion channel. In these manners, BCL-XL plays an antiapoptotic role. We report the interaction of BCL-XL with RASSF6. BCL-XL inhibits the interaction between RASSF6 and MDM2 and suppresses p53 expression. Consequently, BCL-XL antagonizes RASSF6-mediated apoptosis. Thus, the inhibition of RASSF6-mediated apoptosis also underlies the prosurvival role of BCL-XL.
Collapse
Affiliation(s)
- Xiaoyin Xu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Breast Oncology Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Aradhan Sarkar
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Zhou R, Qiu L, Liu X, Ling L, Li N, Zhou K, Sun J, Yan J, Tan C, Huang X, Han L, Yin L, Xiao G, Liu L. RASSF6 downregulation promotes the epithelial-mesenchymal transition and predicts poor prognosis in colorectal cancer. Oncotarget 2017; 8:55162-55175. [PMID: 28903410 PMCID: PMC5589649 DOI: 10.18632/oncotarget.19181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Distant metastasis is the primary barrier for the successful treatment of patients with colorectal cancer, and thus, searching for new therapeutic targets by further exploring the molecular mechanisms of colorectal cancer metastasis is important. In this study, we investigated the biological and clinical significance of RASSF6 in colorectal cancer as well as the underlying molecular mechanisms. We found that low RASSF6 expression corresponds to a poor prognosis in colorectal cancer patients, and low RASSF6 expression is distinctly associated with tumour progression. Our in vitro analysis revealed that RASSF6 suppresses the proliferation and metastasis of DLD1 cells, and RASSF6 knockdown in HCT116 cells confirmed these observations. Our mechanistic investigation revealed that RASSF6 inhibits the expression of the classical target genes of Wnt signalling, as demonstrated by the reduced expression of TCF1, c-Jun, and c-Myc in RASSF6-overexpressing DLD1 stable cell lines. Furthermore, we show that RASSF6 functions as a negative regulator of the epithelial-mesenchymal transition; the expression levels of the epithelial markers ZO-1 and E-cadherin were increased, while the expression level of the mesenchymal marker Snail was decreased in a RASSF6-overexpressing DLD1 cell line. Additionally, rescue assays revealed that the activation of Wnt signalling by LiCl treatment impaired the inhibitory effect of RASSF6 on the proliferation and metastasis of colorectal cancer cells, which implies that RASSF6 suppresses the tumorigenicity of colorectal cancer cells at least in part through inhibiting Wnt signalling pathway. Collectively, these findings provide new perspectives for the future study of RASSF6 as a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lin Qiu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lijuan Ling
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ninglei Li
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kun Zhou
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingbo Sun
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jian Yan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Canliang Tan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoping Huang
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luzhe Han
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liangchun Yin
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Gang Xiao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Zhao JW, Fang F, Guo Y, Zhu TL, Yu YY, Kong FF, Han LF, Chen DS, Li F. HPV16 integration probably contributes to cervical oncogenesis through interrupting tumor suppressor genes and inducing chromosome instability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:180. [PMID: 27884161 PMCID: PMC5123399 DOI: 10.1186/s13046-016-0454-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
Background The integration of human papilloma virus (HPV) into host genome is one of the critical steps that lead to the progression of precancerous lesion into cancer. However, the mechanisms and consequences of such integration events are poorly understood. This study aims to explore those questions by studying high risk HPV16 integration in women with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (SCC). Methods Specifically, HPV integration status of 13 HPV16-infected patients were investigated by ligation-mediated PCR (DIPS-PCR) followed by DNA sequencing. Results In total, 8 HPV16 integration sites were identified inside or around genes associated with cancer development. In particular, the well-studied tumor suppressor genes SCAI was found to be integrated by HPV16, which would likely disrupt its expression and therefore facilitate the migration of tumor. On top of that, we observed several cases of chromosome translocation events coincide with HPV integration, which suggests the existence of chromosome instability. Additionally, short overlapping sequences were observed between viral derived and host derived fragments in viral-cellular junctions, indicating that integration was mediated by micro homology-mediated DNA repair pathway. Conclusions Overall, our study suggests a model in which HPV16 might contribute to oncogenesis not only by disrupting tumor suppressor genes, but also by inducing chromosome instability. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0454-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Wei Zhao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Fang Fang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Yi Guo
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Tai-Lin Zhu
- Abbey College Cambridge, Homerton Gardens, Cambridge, CB2 8EB, UK
| | - Yun-Yun Yu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Fan-Fei Kong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Ling-Fei Han
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Dong-Sheng Chen
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK. .,Fitzwilliam College, University of Cambridge, Storey's Way, Cambridge, CB3 0DG, UK.
| | - Fang Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
14
|
Iwasa H, Jiang X, Hata Y. RASSF6; the Putative Tumor Suppressor of the RASSF Family. Cancers (Basel) 2015; 7:2415-26. [PMID: 26690221 PMCID: PMC4695899 DOI: 10.3390/cancers7040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
Humans have 10 genes that belong to the Ras association (RA) domain family (RASSF). Among them, RASSF7 to RASSF10 have the RA domain in the N-terminal region and are called the N-RASSF proteins. In contradistinction to them, RASSF1 to RASSF6 are referred to as the C-RASSF proteins. The C-RASSF proteins have the RA domain in the middle region and the Salvador/RASSF/Hippo domain in the C-terminal region. RASSF6 additionally harbors the PSD-95/Discs large/ZO-1 (PDZ)-binding motif. Expression of RASSF6 is epigenetically suppressed in human cancers and is generally regarded as a tumor suppressor. RASSF6 induces caspase-dependent and -independent apoptosis. RASSF6 interacts with mammalian Ste20-like kinases (homologs of Drosophila Hippo) and cross-talks with the Hippo pathway. RASSF6 binds MDM2 and regulates p53 expression. The interactions with Ras and Modulator of apoptosis 1 (MOAP1) are also suggested by heterologous protein-protein interaction experiments. RASSF6 regulates apoptosis and cell cycle through these protein-protein interactions, and is implicated in the NF-κB and JNK signaling pathways. We summarize our current knowledge about RASSF6 and discuss what common and different properties RASSF6 and the other C-RASSF proteins have.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Xinliang Jiang
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|