1
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
3
|
Zhu JZ, Li P, Zhang Z, Li XG, Zhong J. The CfKOB1 gene related to cell apoptosis is required for pathogenicity and involved in mycovirus-induced hypovirulence in Colletotrichum fructicola. Int J Biol Macromol 2024; 271:132437. [PMID: 38761910 DOI: 10.1016/j.ijbiomac.2024.132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Colletotrichum fructicola is a globally significant phytopathogenic fungus. Mycovirus-induced hypovirulence has great potential for biological control and study of fungal pathogenic mechanisms. We previously reported that the mycovirus Colletotrichum alienum partitivirus 1 (CaPV1) is associated with the hypovirulence of C. fructicola, and the present study aimed to further investigate a host factor and its roles in mycovirus-induced hypovirulence. A gene named CfKOB1, which encodes putative protein homologous to the β-subunit of voltage-gated potassium channels and aldo-keto reductase, is downregulated upon CaPV1 infection and significantly upregulated during the early infection phase of Nicotiana benthamiana by C. fructicola. Deleting the CfKOB1 gene resulted in diminished vegetative growth, decreased production of asexual spores, hindered appressorium formation, reduced virulence, and altered tolerance to abiotic stresses. Transcriptome analysis revealed that CfKOB1 regulates many metabolic pathways as well as the cell cycle and apoptosis. Furthermore, enhanced apoptosis was observed in the ΔCfKOB1 mutants. Viral RNA accumulation was significantly increased in the CfKOB1 deletion mutant. Additionally, our findings demonstrated that CaPV1 infection in the WT strain also induced cell apoptosis. Collectively, these results highlight the diverse biological roles of the CfKOB1 gene in the fungus C. fructicola, while it also participates in mycovirus-induced hypovirulence by regulating apoptosis.
Collapse
Affiliation(s)
- Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha City, Hunan Province 410125, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China.
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
4
|
Gyawali B, Rahimi R, Alizadeh H, Mohammadi M. Graphene Quantum Dots (GQD)-Mediated dsRNA Delivery for the Control of Fusarium Head Blight Disease in Wheat. ACS APPLIED BIO MATERIALS 2024; 7:1526-1535. [PMID: 38422985 DOI: 10.1021/acsabm.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Graphene quantum dots (GQDs), a class of fluorescent carbon materials, have displayed significant potential in various fields such as energy devices, catalysis, sensing, bioimaging, and drug delivery. Because of their extremely small size, generally less than 100 nm, they also have tremendous potential in plant science research, especially for the delivery of nucleic acids, breaking the barrier of cell walls. In this study, we synthesized GQDs with a size range of 2-5 nm, characterized them, and surface-functionalized them with branched polyethylenimine (bPEI). We then used the surface-functionalized GQDs as carriers to deliver double-stranded RNA (dsRNA) that target two growth-and-development-related genes in Fusarium graminearum─the causative organism of the Fusarium head blight disease of wheat. The successful binding of dsRNA to GQDs-bPEIs was demonstrated through gel-shifting assays, showcasing the potential for efficient dsRNA delivery. We designed dsRNAs targeting the MGV1 and RAS1 genes of F. graminearum by using the pssRNAit pipeline, ensuring high specificity and no off-target effects. The coding sequences of the designed dsRAS1 and dsMGV1 were cloned into the L4440 vector and transformed into the Escherichia coli HT115 strain for dsRNA production. Fungal culture analysis revealed that the inclusion of dsRNAs in potato dextrose agar (PDA) media effectively slowed down the growth. Exogenous spraying experiments both in plate cultures and in intact wheat spikes demonstrated that the dsRNA:GQDs-bPEIs treatment was more effective in restricting fungal mycelium growth or the number of infected spikelets compared to naked dsRNA treatment. Our study demonstrates the promising potential of graphene quantum dots as carriers for dsRNA-based fungal disease management in wheat and other crops.
Collapse
Affiliation(s)
- Binod Gyawali
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Houshang Alizadeh
- Campus of Agriculture and Natural Resources, University of Tehran, Tehran 11366, Iran
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Zou C, Cao X, Zhou Q, Yao Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses 2024; 16:253. [PMID: 38400029 PMCID: PMC10891527 DOI: 10.3390/v16020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chrysoviruses are isometric virus particles (35-50 nm in diameter) with a genome composed of double-stranded RNAs (dsRNA). These viruses belonged to the Chrysoviridae family, named after the first member isolated from Penicillium chrysogenum. Phylogenetic classification has divided the chrysoviruses into Alphachrysovirus and Betachrysovirus genera. Currently, these chrysoviruses have been found to infect many fungi, including Fusarium species, and cause changes in the phenotype and decline in the pathogenicity of the host. Thus, it is a microbial resource with great biocontrol potential against Fusarium species, causing destructive plant diseases and substantial economic losses. This review provides a comprehensive overview of three chrysovirus isolates (Fusarium graminearum virus 2 (FgV2), Fusarium graminearum virus-ch9 (FgV-ch9), and Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1)) reported to decline the pathogenicity of Fusarium hosts. It also summarizes the recent studies on host response regulation, host RNA interference, and chrysovirus transmission. The information provided in the review will be a reference for analyzing the interaction of Fusarium species with chrysovirus and proposing opportunities for research on the biocontrol of Fusarium diseases. Finally, we present reasons for conducting further studies on exploring the interaction between chrysoviruses and Fusarium and improving the accumulation and transmission efficiency of these chrysoviruses.
Collapse
Affiliation(s)
- Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Xueying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Qiujuan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Ziting Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
- Plant Protection Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007, China
| |
Collapse
|
6
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
7
|
Tang L, Zhai H, Zhang S, Lv Y, Li Y, Wei S, Ma P, Wei S, Hu Y, Cai J. Functional Characterization of Aldehyde Dehydrogenase in Fusarium graminearum. Microorganisms 2023; 11:2875. [PMID: 38138019 PMCID: PMC10745421 DOI: 10.3390/microorganisms11122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH), a common oxidoreductase in organisms, is an aldehyde scavenger involved in various metabolic processes. However, its function in different pathogenic fungi remains unknown. Fusarium graminearum causes Fusarium head blight in cereals, which reduces grain yield and quality and is an important global food security problem. To elucidate the pathogenic mechanism of F. graminearum, seven genes encoding ALDH were knocked out and then studied for their function. Single deletions of seven ALDH genes caused a decrease in spore production and weakened the pathogenicity. Furthermore, these deletions altered susceptibility to various abiotic stresses. FGSG_04194 is associated with a number of functions, including mycelial growth and development, stress sensitivity, pathogenicity, toxin production, and energy metabolism. FGSG_00139 and FGSG_11482 are involved in sporulation, pathogenicity, and SDH activity, while the other five genes are multifunctional. Notably, we found that FGSG_04194 has an inhibitory impact on ALDH activity, whereas FGSG_00979 has a positive impact. RNA sequencing and subcellular location analysis revealed that FGSG_04194 is responsible for biological process regulation, including glucose and lipid metabolism. Our results suggest that ALDH contributes to growth, stress responses, pathogenicity, deoxynivalenol synthesis, and mitochondrial energy metabolism in F. graminearum. Finally, ALDH presents a potential target and theoretical basis for fungicide development.
Collapse
Affiliation(s)
| | - Huanchen Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.T.); (S.Z.); (Y.L.); (Y.L.); (S.W.); (P.M.); (S.W.); (Y.H.); (J.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sun A, Zhao L, Sun Y, Chen Y, Li C, Dong W, Yang G. Horizontal and Vertical Transmission of a Mycovirus Closely Related to the Partitivirus RhsV717 That Confers Hypovirulence in Rhizoctonia solani. Viruses 2023; 15:2088. [PMID: 37896865 PMCID: PMC10611285 DOI: 10.3390/v15102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Rhizoctonia solani virus717 (RhsV717) was isolated from the Rhizoctonia solani (R. solani) AG-2 strain Rhs717. This study isolated a virus designated as Rhizoctonia solani partitivirus BS-5 (RsPV-BS5) from the R. solani AG-3 strain BS-5, the causal agent of tobacco target spot disease. The virus was identified as a strain of RhsV717. Transmission electron microscopy (TEM) images showed that RsPV-BS5 had virus particles with a diameter of approximately 40 nm. Importantly, it can be horizontally transmitted through hyphal anastomosis and vertically transmitted via sexual basidiospores. Furthermore, this study demonstrated that RsPV-BS5 infection significantly impedes mycelial growth and induces hypovirulence in tobacco leaves. Thus, RsPV-BS5 presents a promising avenue for biocontrolling tobacco target spot disease. Transcriptome analysis unveiled differential expression of four genes related to cell wall-degrading enzymes between two isogenic strains, 06-2-15V and 06-2-15. These findings shed light on the molecular mechanism through which RsPV-BS5 reduces host pathogenicity.
Collapse
Affiliation(s)
- Aili Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China
| | - Lianjing Zhao
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Yang Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Yingrui Chen
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Chengyun Li
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Wenhan Dong
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| |
Collapse
|
9
|
Kelliher JM, Robinson AJ, Longley R, Johnson LYD, Hanson BT, Morales DP, Cailleau G, Junier P, Bonito G, Chain PSG. The endohyphal microbiome: current progress and challenges for scaling down integrative multi-omic microbiome research. MICROBIOME 2023; 11:192. [PMID: 37626434 PMCID: PMC10463477 DOI: 10.1186/s40168-023-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how "microbiomes within microbiomes" affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales. Video Abstract.
Collapse
Affiliation(s)
| | | | - Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kuroki M, Yaguchi T, Urayama SI, Hagiwara D. Experimental verification of strain-dependent relationship between mycovirus and its fungal host. iScience 2023; 26:107337. [PMID: 37520716 PMCID: PMC10372822 DOI: 10.1016/j.isci.2023.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Mycoviruses are viruses that infect fungi. Unlike mammalian infectious viruses, their life cycle does not generally have an extracellular stage, and a symbiosis-like relationship is maintained between virus and host fungi. Recently, mycoviruses have been reported to show effects on host fungi, altering biological properties such as growth rate, virulence, drug resistance, and metabolite production. In this study, we systematically elucidated the effects of viruses on host cells by comparing host phenotypes and transcriptomic responses in multiple sets of virus-infected and -eliminated Aspergillus flavus strains. The comparative study showed that mycoviruses affect several cellular activities at the molecular level in a virus- and host strain-dependent manner. The virus-swapping experiment revealed that difference with only three bases in the virus genome led to different host fungal response at the transcriptional level. Our results highlighted highly specific relationship between viruses and their host fungi.
Collapse
Affiliation(s)
- Misa Kuroki
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Inohana, Chou-ku, Chiba 260-8673, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
11
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
12
|
Kwon G, Yu J, Kim KH. Identifying transcription factors associated with Fusarium graminearum virus 2 accumulation in Fusarium graminearum by phenome-based investigation. Virus Res 2023; 326:199061. [PMID: 36738934 DOI: 10.1016/j.virusres.2023.199061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Fusarium graminearum virus 2 (FgV2) infection induces phenotypic changes like reduction of growth rate and virulence with an alteration of the transcriptome, including various transcription factor (TFs) gene transcripts in Fusarium graminearum. Transcription factors are the primary regulator in many cellular processes and are significant in virus-host interactions. However, a detailed study about specific TFs to understand interactions between FgV2 and F. graminearum has yet to be conducted. We transferred FgV2 to a F. graminearum TF gene deletion mutant library to identify host TFs related to FgV2 infection. FgV2-infected TF mutants were classified into three groups depending on colony growth. The FgV2 accumulation level was generally higher in TF mutants showing more reduced growth. Among these FgV2-infected TF mutants, we found several possible TFs that might be involved in FgV2 accumulation, generation of defective interfering RNAs, and transcriptional regulation of FgDICER-2 and FgAGO-1 in response to virus infection. We also investigated the relation between FgV2 accumulation and production of reactive oxygen species (ROS) and DNA damage in fungal host cells by using DNA damage- or ROS-responsive TF deletion mutants. Our studies provide insights into the host factors related to FgV2 infection and bases for further investigation to understand interactions between FgV2 and F. graminearum.
Collapse
Affiliation(s)
- Gudam Kwon
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
13
|
Savignac JM, Atanasova V, Chereau S, Ducos C, Gallegos N, Ortega V, Ponts N, Richard-Forget F. Carotenoids Occurring in Maize Affect the Redox Homeostasis of Fusarium graminearum and Its Production of Type B Trichothecene Mycotoxins: New Insights Supporting Their Role in Maize Resistance to Giberella Ear Rot. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3285-3296. [PMID: 36780464 DOI: 10.1021/acs.jafc.2c06877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium graminearum is the causal agent of Gibberella ear rot (GER) in maize, a devastating fungal disease resulting in yield reduction and contamination of grains with type B trichothecene (TCTB) mycotoxins. Reducing GER damage requires the implementation of an integrated management strategy in which the use of resistant maize genotypes is a key factor. The present study aimed at providing new phenotyping tools to improve breeding pipelines by investigating the yet understudied contribution of carotenoids to GER resistance. Here, we demonstrated for the first time the efficiency of carotenoid extracts from various maize genotypes to inhibit the production of TCTB by F. graminearum. We further suggested that zeaxanthin could be a key actor of this inhibition efficiency, notably via a negative transcriptional control of several biosynthetic genes of the TCTB pathway. Besides, we demonstrated that zeaxanthin treatments led to profound perturbations in the fungal redox homeostasis by affecting the expression of key genes encoding ROS detoxifying enzymes, several of them being involved in F. graminearum virulence during plant infection. Altogether, our data support the contribution of carotenoids to the mechanisms employed by maize to counteract F. graminearum infection and its production of TCTB.
Collapse
Affiliation(s)
- Jean-Marie Savignac
- Syngenta France SAS, Route de Vignolles lieu dit La Grangette, 32220 Lombez, France
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Vessela Atanasova
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Sylvain Chereau
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Christine Ducos
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Nathalie Gallegos
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | - Véronique Ortega
- Syngenta France SAS, Route de Vignolles lieu dit La Grangette, 32220 Lombez, France
| | - Nadia Ponts
- INRAE, UR 1264 Mycology and Food Safety (MycSA), F-33882 Villenave d'Ornon, France
| | | |
Collapse
|
14
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
15
|
Ajmal M, Hussain A, Ali A, Chen H, Lin H. Strategies for Controlling the Sporulation in Fusarium spp. J Fungi (Basel) 2022; 9:jof9010010. [PMID: 36675831 PMCID: PMC9861637 DOI: 10.3390/jof9010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Fusarium species are the most destructive phytopathogenic and toxin-producing fungi, causing serious diseases in almost all economically important plants. Sporulation is an essential part of the life cycle of Fusarium. Fusarium most frequently produces three different types of asexual spores, i.e., macroconidia, chlamydospores, and microconidia. It also produces meiotic spores, but fewer than 20% of Fusaria have a known sexual cycle. Therefore, the asexual spores of the Fusarium species play an important role in their propagation and infection. This review places special emphasis on current developments in artificial anti-sporulation techniques as well as features of Fusarium's asexual sporulation regulation, such as temperature, light, pH, host tissue, and nutrients. This description of sporulation regulation aspects and artificial anti-sporulation strategies will help to shed light on the ways to effectively control Fusarium diseases by inhibiting the production of spores, which eventually improves the production of food plants.
Collapse
Affiliation(s)
- Maria Ajmal
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
16
|
Poimala A, Raco M, Haikonen T, Černý M, Parikka P, Hantula J, Vainio EJ. Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum. Viruses 2022; 14:v14122596. [PMID: 36560602 PMCID: PMC9788385 DOI: 10.3390/v14122596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Phytophthora cactorum is an important oomycetous plant pathogen with numerous host plant species, including garden strawberry (Fragaria × ananassa) and silver birch (Betula pendula). P. cactorum also hosts mycoviruses, but their phenotypic effects on the host oomycete have not been studied earlier. In the present study, we tested polyethylene glycol (PEG)-induced water stress for virus curing and created an isogenic virus-free isolate for testing viral effects in pair with the original isolate. Phytophthora cactorum bunya-like viruses 1 and 2 (PcBV1 & 2) significantly reduced hyphal growth of the P. cactorum host isolate, as well as sporangia production and size. Transcriptomic and proteomic analyses revealed an increase in the production of elicitins due to bunyavirus infection. However, the presence of bunyaviruses did not seem to alter the pathogenicity of P. cactorum. Virus transmission through anastomosis was unsuccessful in vitro.
Collapse
Affiliation(s)
- Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Correspondence: ; Tel.: +358-29-5322173
| | - Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Tuuli Haikonen
- Natural Resources Institute Finland, Toivonlinnantie 518, FI-21500 Piikkiö, Finland
| | - Martin Černý
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Päivi Parikka
- Natural Resources Institute Finland, Humppilantie 18, FI-31600 Jokioinen, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
17
|
A Botybirnavirus Isolated from Alternaria tenuissima Confers Hypervirulence and Decreased Sensitivity of Its Host Fungus to Difenoconazole. Viruses 2022; 14:v14102093. [DOI: 10.3390/v14102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria alternata botybirnavirus 1 (AaBRV1) was isolated from a strain of Alternaria alternata, causing watermelon leaf blight in our previous research. The effect of AaBRV1 on the phenotype of its host fungus, however, was not determined. In the present study, a novel strain of AaBRV1 was identified in A. tenuissima strain TJ-NH-51S-4, the causal agent of cotton Alternaria leaf spot, and designated as AaBRV1-AT1. A mycovirus AaBRV1-AT1-free strain TJ-NH-51S-4-VF was obtained by protoplast regeneration, which eliminated AaBRV1-AT1 from the mycovirus AaBRV1-AT1-infected strain TJ-NH-51S-4. Colony growth rate, spore production, and virulence of strain TJ-NH-51S-4 were greater than they were in TJ-NH-51S-4-VF, while the sensitivity of strain TJ-NH-51S-4 to difenoconazole, as measured by the EC50, was lower. AaBRV1-AT1 was capable of vertical transmission via asexual spores and horizontal transmission from strain TJ-NH-51S-4 to strain XJ-BZ-5-1hyg (another strain of A. tenuissima) through hyphal contact in pairing cultures. A total of 613 differentially expressed genes (DEGs) were identified in a comparative transcriptome analysis between TJ-NH-51S-4 and TJ-NH-51S-4-VF. Relative to strain TJ-NH-51S-4-VF, the number of up-regulated and down-regulated DEGs in strain TJ-NH-51S-4 was 286 and 327, respectively. Notably, the expression level of one DEG-encoding cytochrome P450 sterol 14α-demethylase and four DEGs encoding siderophore iron transporters were significantly up-regulated. To our knowledge, this is the first documentation of hypervirulence and reduced sensitivity to difenoconazole induced by AaBRV1-AT1 infection in A. tenuissima.
Collapse
|
18
|
Hypovirulence of Colletotrichum gloesporioides Associated with dsRNA Mycovirus Isolated from a Mango Orchard in Thailand. Viruses 2022; 14:v14091921. [PMID: 36146727 PMCID: PMC9504431 DOI: 10.3390/v14091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
The pathogenic fungus Colletotrichum gloeosporioides causes anthracnose disease, which is an important fungal disease affecting the production of numerous crops around the world. The presence of mycoviruses, however, may have an impact on the pathogenicity of the fungal host. Here, we describe a double-stranded RNA (dsRNA) mycovirus, which was isolated from a field strain of C. gloeosporioides, Ssa-44.1. The 2939 bp genome sequence comprises two open reading frames (ORFs) that encode for a putative protein and RNA-dependent RNA polymerase (RdRp). The Ssa-44.1 mycovirus is a member of the unclassified mycovirus family named Colletotrichum gloeosporioides RNA virus 1 strain Ssa-44.1 (CgRV1-Ssa-44.1), which has a phylogenetic similarity to Colletotrichum gleosporioides RNA virus 1 (CgRV1), which was isolated from citrus leaves in China. In C. gloeosporioides, CgRV1-Ssa-44.1 was shown to be linked to hypovirulence. CgRV1-Ssa-44.1 has a low spore transfer efficiency but can successfully spread horizontally to isogenic virus-free isolates. Furthermore, CgRV1-Ssa-44.1 had a strong biological control impact on C. gloeosporioides on mango plants. This study is the first to describe a hypovirulence-associated mycovirus infecting C. gloeosporioides, which has the potential to assist with anthracnose disease biological management.
Collapse
|
19
|
Paudel B, Pedersen C, Yen Y, Marzano SYL. Fusarium Graminearum Virus-1 Strain FgV1-SD4 Infection Eliminates Mycotoxin Deoxynivalenol Synthesis by Fusarium graminearum in FHB. Microorganisms 2022; 10:microorganisms10081484. [PMID: 35893542 PMCID: PMC9394287 DOI: 10.3390/microorganisms10081484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Deoxynivalenol (DON) toxin production during the infection of F. graminearum in small grain crops is one of the most harmful virulence factors associated with economic losses. Metatranscriptome sequencing and RT-qPCR traced back that the only mycovirus infecting an F. graminearum isolate, designated as Fg-4-2, was a novel strain of Fusarium graminearum virus 1 (FgV1), designated as FgV1-SD4. The isolate Fg-4-2 showed significantly reduced virulence against wheat compared to the virus-free culture, designated as isolate Fg-4-1, which was obtained by deep freezing and single conidial germination. Notably, no DON accumulation was detected in the harvested wheat seeds infected by Fg-4-2, whereas ~18 ppm DON was detected in seeds infected by Fg-4-1. Comparison of the genome sequence of FgV1-SD4 with other identified strains of FgV1, i.e., FgV1-DK21 and FgV1-ch, indicates mutations on ORF-2 and the 3′-UTR in the genome that might be associated with hypovirulence. This mycovirus strain alone and specific genetic components of FgV1-SD4 can be further optimized to be developed as a biocontrol agent to reduce Fusarium head blight and to lower the DON accumulation levels in small grain crops due to this fungal disease.
Collapse
Affiliation(s)
- Bimal Paudel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (B.P.); (C.P.)
| | - Connor Pedersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (B.P.); (C.P.)
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Toledo, OH 43606, USA
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (B.P.); (C.P.)
- Correspondence: (Y.Y.); (S.-Y.L.M.)
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (B.P.); (C.P.)
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Toledo, OH 43606, USA
- Correspondence: (Y.Y.); (S.-Y.L.M.)
| |
Collapse
|
20
|
Li K, Liu D, Pan X, Yan S, Song J, Liu D, Wang Z, Xie Y, Dai J, Liu J, Li H, Zhang X, Gao F. Deoxynivalenol Biosynthesis in Fusarium pseudograminearum Significantly Repressed by a Megabirnavirus. Toxins (Basel) 2022; 14:toxins14070503. [PMID: 35878241 PMCID: PMC9324440 DOI: 10.3390/toxins14070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin widely detected in cereal products contaminated by Fusarium. Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) is a double-stranded RNA virus infecting Fusarium pseudograminearum. In this study, it was revealed that the amount of DON in F. pseudograminearum was significantly suppressed by FpgMBV1 through a high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) assay. A total of 2564 differentially expressed genes were identified by comparative transcriptomic analysis between the FpgMBV1-containing F. pseudograminearum strain FC136-2A and the virus-free strain FC136-2A-V-. Among them, 1585 genes were up-regulated and 979 genes were down-regulated. Particularly, the expression of 12 genes (FpTRI1, FpTRI3, FpTRI4, FpTRI5, FpTRI6, FpTRI8, FpTRI10, FpTRI11, FpTRI12, FpTRI14, FpTRI15, and FpTRI101) in the trichothecene biosynthetic (TRI) gene cluster was significantly down-regulated. Specific metabolic and transport processes and pathways including amino acid and lipid metabolism, ergosterol metabolic and biosynthetic processes, carbohydrate metabolism, and biosynthesis were regulated. These results suggest an unrevealing mechanism underlying the repression of DON and TRI gene expression by the mycovirus FpgMBV1, which would provide new methods in the detoxification of DON and reducing the yield loss in wheat.
Collapse
Affiliation(s)
- Ke Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongmei Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Xin Pan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Shuwei Yan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jiaqing Song
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongwei Liu
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Zhifang Wang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Yuan Xie
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Junli Dai
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Honglian Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Xiaoting Zhang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| | - Fei Gao
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| |
Collapse
|
21
|
Wang Q, Lyu X, Cheng J, Fu Y, Lin Y, Abdoulaye AH, Jiang D, Xie J. Codon Usage Provides Insights into the Adaptive Evolution of Mycoviruses in Their Associated Fungi Host. Int J Mol Sci 2022; 23:ijms23137441. [PMID: 35806445 PMCID: PMC9267111 DOI: 10.3390/ijms23137441] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Codon usage bias (CUB) could reflect co-evolutionary changes between viruses and hosts in contrast to plant and animal viruses, and the systematic analysis of codon usage among the mycoviruses that infect plant pathogenic fungi is limited. We performed an extensive analysis of codon usage patterns among 98 characterized RNA mycoviruses from eight phytopathogenic fungi. The GC and GC3s contents of mycoviruses have a wide variation from 29.35% to 64.62% and 24.32% to 97.13%, respectively. Mycoviral CUB is weak, and natural selection plays a major role in the formation of mycoviral codon usage pattern. In this study, we demonstrated that the codon usage of mycoviruses is similar to that of some host genes, especially those involved in RNA biosynthetic process and transcription, suggesting that CUB is a potential evolutionary mechanism that mycoviruses adapt to in their hosts.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Assane Hamidou Abdoulaye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: ; Tel.: +86-185-027-36960
| |
Collapse
|
22
|
Li Y, Li S, Liang Z, Cai Q, Zhou T, Zhao C, Wu X. RNA-seq Analysis of Rhizoctonia solani AG-4HGI Strain BJ-1H Infected by a New Viral Strain of Rhizoctonia solani Partitivirus 2 Reveals a Potential Mechanism for Hypovirulence. PHYTOPATHOLOGY 2022; 112:1373-1385. [PMID: 34965159 DOI: 10.1094/phyto-08-21-0349-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rhizoctonia solani partitivirus 2 (RsPV2), in the genus Alphapartitivirus, confers hypovirulence on R. solani AG-1-IA, the causal agent of rice sheath blight. In this study, a new strain of RsPV2 obtained from R. solani AG-4HGI strain BJ-1H, the causal agent of black scurf on potato, wasidentified and designated as Rhizoctonia solani partitivirus 2 strain BJ-1H (RsPV2-BJ). An RNA sequencing analysis of strain BJ-1H and the virus RsPV2-BJ-free strain BJ-1H-VF derived from strain BJ-1H was conducted to investigate the potential molecular mechanism of hypovirulence induced by RsPV2-BJ. In total, 14,319 unigenes were obtained, and 1,341 unigenes were identified as differentially expressed genes (DEGs), with 570 DEGs being down-regulated and 771 being up-regulated. Notably, several up-regulated DEGs were annotated to cell wall degrading enzymes, including β-1,3-glucanases. Strain BJ-1H exhibited increased expression of β-1,3-glucanase after RsPV2-BJ infection, suggesting that cell wall autolysis activity in R. solani AG-4HGI strain BJ-1H might be promoted by RsPV2-BJ, inducing hypovirulence in its host fungus R. solani AG-4HGI. To the best of our knowledge, this is the first report on the potential mechanism of hypovirulence induced by a mycovirus in R. solani.
Collapse
Affiliation(s)
- Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Zhijian Liang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
23
|
Jiang Y, Yang B, Liu X, Tian X, Wang Q, Wang B, Zhang Q, Yu W, Qi X, Jiang Y, Hsiang T. A Satellite dsRNA Attenuates the Induction of Helper Virus-Mediated Symptoms in Aspergillus flavus. Front Microbiol 2022; 13:895844. [PMID: 35711767 PMCID: PMC9195127 DOI: 10.3389/fmicb.2022.895844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is an important fungal pathogen of animals and plants. Previously, we reported a novel partitivirus, Aspergillus flavus partitivirus 1 (AfPV1), infecting A. flavus. In this study, we obtained a small double-stranded (ds) RNA segment (734 bp), which is a satellite RNA of the helper virus, AfPV1. The presence of AfPV1 altered the colony morphology, decreased the number of conidiophores, created significantly larger vacuoles, and caused more sensitivity to osmotic, oxidative, and UV stresses in A. flavus, but the small RNA segment could attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus. Moreover, AfPV1 infection reduced the pathogenicity of A. flavus in corn (Zea mays), honeycomb moth (Galleria mellonella), mice (Mus musculus), and the adhesion of conidia to host epithelial cells, and increased conidial death by macrophages. However, the small RNA segment could also attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus, perhaps by reducing the genomic accumulation of the helper virus AfPV1 in A. flavus. We used this model to investigate transcriptional genes regulated by AfPV1 and the small RNA segment in A. flavus, and their role in generating different phenotypes. We found that the pathways of the genes regulated by AfPV1 in its host were similar to those of retroviral viruses. Therefore, some pathways may be of benefit to non-retroviral viral integration or endogenization into the genomes of its host. Moreover, some potential antiviral substances were also found in A. flavus using this system.
Collapse
Affiliation(s)
- Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
Kashif M, Jurvansuu J, Hyder R, Vainio EJ, Hantula J. Phenotypic Recovery of a Heterobasidion Isolate Infected by a Debilitation-Associated Virus Is Related to Altered Host Gene Expression and Reduced Virus Titer. Front Microbiol 2022; 12:661554. [PMID: 35310390 PMCID: PMC8930199 DOI: 10.3389/fmicb.2021.661554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The fungal genus Heterobasidion includes forest pathogenic species hosting a diverse group of partitiviruses. They include the host debilitating Heterobasidion partitivirus 13 strain an1 (HetPV13-an1), which was originally observed in a slowly growing H. annosum strain 94233. In this study, a relatively fast-growing sector strain 94233-RC3 was isolated from a highly debilitated mycelial culture of 94233, and its gene expression and virus transcript quantities as well as the genomic sequence of HetPV13-an1 were examined. The sequence of HetPV13-an1 genome in 94233-RC3 was identical to that in the original 94233, and thus not the reason for the partial phenotypic recovery. According to RNA-seq analysis, the HetPV13-an1 infected 94233-RC3 transcribed eight genes differently from the partitivirus-free 94233-32D. Three of these genes were downregulated and five upregulated. The number of differentially expressed genes was considerably lower and the changes in their expression were small compared to those of the highly debilitated original strain 94233 with the exception of the most highly upregulated ones, and therefore viral effects on the host transcriptome correlated with the degree of the virus-caused debilitation. The amounts of RdRp and CP transcripts of HetPV13-an1 were considerably lower in 94233-RC3 and also in 94233 strain infected by a closely related mildly debilitating virus HetPV13-an2, suggesting that the virus titer would have a role in determining the effect of HetPV13 viruses on their hosts.
Collapse
Affiliation(s)
| | | | - Rafiqul Hyder
- Natural Resources Institute Finland, Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
25
|
Transcriptional Responses of Sclerotinia sclerotiorum to the Infection by SsHADV-1. J Fungi (Basel) 2021; 7:jof7070493. [PMID: 34206246 PMCID: PMC8303302 DOI: 10.3390/jof7070493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
The infection by a single-stranded DNA virus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), causes hypovirulence, a reduced growth rate, and other colony morphological changes in its host Sclerotinia sclerotiorum strain DT-8. However, the mechanisms of the decline are still unclear. Using digital RNA sequencing, a transcriptome analysis was conducted to elucidate the phenotype-related genes with expression changes in response to SsHADV-1 infection. A total of 3110 S. sclerotiorum differentially expressed genes (DEGs) were detected during SsHADV-1 infection, 1741 of which were up-regulated, and 1369 were down-regulated. The identified DEGs were involved in several important pathways. DNA replication, DNA damage response, carbohydrate and lipid metabolism, ribosomal assembly, and translation were the affected categories in S. sclerotiorum upon SsHADV-1 infection. Moreover, the infection of SsHADV-1 also suppressed the expression of antiviral RNA silencing and virulence factor genes. These results provide further detailed insights into the effects of SsHADV-1 infection on the whole genome transcription in S. sclerotiorum.
Collapse
|
26
|
Yu J, Kim KH. A Phenome-Wide Association Study of the Effects of Fusarium graminearum Transcription Factors on Fusarium Graminearum Virus 1 Infection. Front Microbiol 2021; 12:622261. [PMID: 33643250 PMCID: PMC7904688 DOI: 10.3389/fmicb.2021.622261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The Fusarium graminearum virus 1 (FgV1) causes noticeable phenotypic changes such as reduced mycelial growth, increase pigmentation, and reduced pathogenicity in its host fungi, Fusarium graminearum. Previous study showed that the numerous F. graminearum genes including regulatory factors were differentially expressed upon FgV1 infection, however, we have limited knowledge on the effect(s) of specific transcription factor (TF) during FgV1 infection in host fungus. Using gene-deletion mutant library of 657 putative TFs in F. graminearum, we transferred FgV1 by hyphal anastomosis to screen transcription factors that might be associated with viral replication or symptom induction. FgV1-infected TF deletion mutants were divided into three groups according to the mycelial growth phenotype compare to the FgV1-infected wild-type strain (WT-VI). The FgV1-infected TF deletion mutants in Group 1 exhibited slow or weak mycelial growth compare to that of WT-VI on complete medium at 5 dpi. In contrast, Group 3 consists of virus-infected TF deletion mutants showing faster mycelial growth and mild symptom compared to that of WT-VI. The hyphal growth of FgV1-infected TF deletion mutants in Group 2 was not significantly different from that of WT-VI. We speculated that differences of mycelial growth among the FgV1-infected TF deletion mutant groups might be related with the level of FgV1 RNA accumulations in infected host fungi. By conducting real-time quantitative reverse transcription polymerase chain reaction, we observed close association between FgV1 RNA accumulation and phenotypic differences of FgV1-infected TF deletion mutants in each group, i.e., increased and decreased dsRNA accumulation in Group 1 and Group 3, respectively. Taken together, our analysis provides an opportunity to identify host's regulator(s) of FgV1-triggered signaling and antiviral responses and helps to understand complex regulatory networks between FgV1 and F. graminearum interaction.
Collapse
Affiliation(s)
- Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Kook-Hyung Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Residual Effects Caused by a Past Mycovirus Infection in Fusarium circinatum. FORESTS 2020. [DOI: 10.3390/f12010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mycoviruses are known to be difficult to cure in fungi but their spontaneous loss occurs commonly. The unexpected disappearance of mycoviruses can be explained by diverse reasons, from methodological procedures to biological events such as posttranscriptional silencing machinery. The long-term effects of a virus infection on the host organism have been well studied in the case of human viruses; however, the possible residual effect on a fungus after the degradation of a mycovirus is unknown. For that, this study analyses a possible residual effect on the transcriptome of the pathogenic fungus Fusarium circinatum after the loss of the mitovirus FcMV1. The mycovirus that previously infected the fungal isolate was not recovered after a 4-year storage period. Only 14 genes were determined as differentially expressed and were related to cell cycle regulation and amino acid metabolism. The results showed a slight acceleration in the metabolism of the host that had lost the mycovirus by the upregulation of the genes involved in essential functions for fungal development. The analysis also revealed a weak expression in the annotated genes of the RNA silencing machinery. To our knowledge, this is the first time that a potential residual effect on the host transcriptome caused by the past infection of a mycovirus is reported.
Collapse
|
28
|
Zhao Y, Zhang Y, Wan X, She Y, Li M, Xi H, Xie J, Wen C. A Novel Ourmia-Like Mycovirus Confers Hypovirulence-Associated Traits on Fusarium oxysporum. Front Microbiol 2020; 11:569869. [PMID: 33362731 PMCID: PMC7756082 DOI: 10.3389/fmicb.2020.569869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. momordicae (FoM) is an important fungal disease that affects the production of bitter gourd. Hypovirulence-associated mycoviruses have great potential and application prospects for controlling the fungal disease. In this study, a novel ourmia-like virus, named Fusarium oxysporum ourmia-like virus 1 (FoOuLV1), was isolated from FoM strain HuN8. The viral genomic RNA is 2,712 nucleotides (nt) in length and contains an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) using either standard or mitochondrial codes. In strain HuN8, there was also a FoOuLV1-associated RNA segment with 1,173 nt in length with no sequence homology. Phylogenetic analysis showed that FoOuLV1 is a member of the genus Magoulivirus of the family Botourmiaviridae. FoOuLV1 was found to be associated with hypovirulence in FoM. Moreover, FoOuLV1 and its hypovirulence trait can be transmitted horizontally to other FoM strains and also to other formae speciale strains of F. oxysporum. In addition, FoOuLV1 showed significant biological control effect against the bitter gourd Fusarium wilt. To our knowledge, this study reveals the first description of a hypovirulence-associated ourmia-like mycovirus, which has the potential to the biological control of Fusarium wilt.
Collapse
Affiliation(s)
- Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuanyan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinru Wan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuanyuan She
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Min Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Huijun Xi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
29
|
Heo JI, Yu J, Choi H, Kim KH. The Signatures of Natural Selection and Molecular Evolution in Fusarium graminearum Virus 1. Front Microbiol 2020; 11:600775. [PMID: 33281800 PMCID: PMC7688778 DOI: 10.3389/fmicb.2020.600775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Fusarium graminearum virus 1 (FgV1) is a positive-sense ssRNA virus that confers hypovirulence in its fungal host, Fusarium graminearum. Like most mycoviruses, FgV1 exists in fungal cells, lacks an extracellular life cycle, and is therefore transmitted during sporulation or hyphal anastomosis. To understand FgV1 evolution and/or adaptation, we conducted mutation accumulation (MA) experiments by serial passage of FgV1 alone or with FgV2, 3, or 4 in F. graminearum. We expected that the effects of positive selection would be highly limited because of repeated bottleneck events. To determine whether selection on the virus was positive, negative, or neutral, we assessed both the phenotypic traits of the host fungus and the RNA sequences of FgV1. We inferred that there was positive selection on beneficial mutations in FgV1 based on the ratio of non-synonymous to synonymous substitutions (dN/dS), on the ratio of radical to conservation amino acid replacements (pNR/pNC), and by changes in the predicted protein structures. In support of this inference, we found evidence of positive selection only in the open reading frame 4 (ORF4) protein of DK21/FgV1 (MA line 1); mutations at amino acids 163A and 289H in the ORF4 of MA line 1 affected the entire structure of the protein predicted to be under positive selection. We also found, however, that deleterious mutations were a major driving force in viral evolution during serial passages. Linear relationships between changes in viral fitness and the number of mutations in each MA line demonstrated that some deleterious mutations resulted in fitness decline. Several mutations in MA line 1 were not shared with any of the other four MA lines (PH-1/FgV1, PH-1/FgV1 + 2, PH-1/FgV1 + 3, and PH-1/FgV1 + 4). This suggests that evolutionary pathways of the virus could differ with respect to hosts and also with respect to co-infecting viruses. The data also suggested that the differences among MA lines might also be explained by mutational robustness and other unidentified factors. Additional research is needed to clarify the effects of virus co-infection on the adaptation or evolution of FgV1 to its environments.
Collapse
Affiliation(s)
- Jeong-In Heo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hoseong Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
30
|
Ren P, Rajkumar SS, Zhang T, Sui H, Masters PS, Martinkova N, Kubátová A, Pikula J, Chaturvedi S, Chaturvedi V. A common partitivirus infection in United States and Czech Republic isolates of bat white-nose syndrome fungal pathogen Pseudogymnoascus destructans. Sci Rep 2020; 10:13893. [PMID: 32807800 PMCID: PMC7431587 DOI: 10.1038/s41598-020-70375-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The psychrophilic (cold-loving) fungus Pseudogymnoascus destructans was discovered more than a decade ago to be the pathogen responsible for white-nose syndrome, an emerging disease of North American bats causing unprecedented population declines. The same species of fungus is found in Europe but without associated mortality in bats. We found P. destructans was infected with a mycovirus [named Pseudogymnoascus destructans partitivirus 1 (PdPV-1)]. The virus is bipartite, containing two double-stranded RNA (dsRNA) segments designated as dsRNA1 and dsRNA2. The cDNA sequences revealed that dsRNA1 dsRNA is 1,683 bp in length with an open reading frame (ORF) that encodes 539 amino acids (molecular mass of 62.7 kDa); dsRNA2 dsRNA is 1,524 bp in length with an ORF that encodes 434 amino acids (molecular mass of 46.9 kDa). The dsRNA1 ORF contains motifs representative of RNA-dependent RNA polymerase (RdRp), whereas the dsRNA2 ORF sequence showed homology with the putative capsid proteins (CPs) of mycoviruses. Phylogenetic analyses with PdPV-1 RdRp and CP sequences indicated that both segments constitute the genome of a novel virus in the family Partitiviridae. The purified virions were isometric with an estimated diameter of 33 nm. Reverse transcription PCR (RT-PCR) and sequencing revealed that all US isolates and a subset of Czech Republic isolates of P. destructans were infected with PdPV-1. However, PdPV-1 appears to be not widely dispersed in the fungal genus Pseudogymnoascus, as non-pathogenic fungi P. appendiculatus (1 isolate) and P. roseus (6 isolates) tested negative. P. destructans PdPV-1 could be a valuable tool to investigate fungal biogeography and the host-pathogen interactions in bat WNS.
Collapse
Affiliation(s)
- Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA. .,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Sunanda S Rajkumar
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,ICMR Medical Research Institute, Puducherry, India
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haixin Sui
- Cellular and Molecular Basis of Diseases Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA
| | - Paul S Masters
- Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA.,Viral Replication and Vector Biology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Natalia Martinkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA. .,Department of Biomedical Sciences, University of Albany School of Public Health, Albany, NY, USA.
| |
Collapse
|
31
|
Yu J, Park JY, Heo J, Kim K. The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences. MOLECULAR PLANT PATHOLOGY 2020; 21:230-243. [PMID: 31815356 PMCID: PMC6988435 DOI: 10.1111/mpp.12895] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double-stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence-associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1- or FgDICER2-promoter/GFP-reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1-infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2-encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter-dependent manner.
Collapse
Affiliation(s)
- Jisuk Yu
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
| | - Ju Yeon Park
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Jeong‐In Heo
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Kook‐Hyung Kim
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| |
Collapse
|
32
|
García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS. Mycoviruses in Biological Control: From Basic Research to Field Implementation. PHYTOPATHOLOGY 2019; 109:1828-1839. [PMID: 31398087 DOI: 10.1094/phyto-05-19-0166-rvw] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycoviruses from plant pathogens can induce hypovirulence (reduced virulence) in their host fungi and have gained considerable attention as potential biocontrol tools. An increasing number of mycoviruses that induce fungal hypovirulence, from a wide variety of taxonomic groups, are currently being reported. Successful application of these viruses in disease management is greatly dependent on their ability to spread in the natural populations of the pathogen. Mycoviruses generally lack extracellular routes of transmission. Hyphal anastomosis is the main route of horizontal mycovirus transmission to other isolates, and conidia of vertical transmission to the progeny. Transmission efficiencies are influenced by both the fungal host and the infecting virus. Interestingly, artificial transfection methods have shown that potential biocontrol mycoviruses often have the ability to infect a variety of fungi. This expands their possible use to the control of pathogens others than those where they were identified. Mycovirus research is also focused on gaining insights into their complex molecular biology and the molecular bases of fungus-virus interactions. This knowledge could be exploited to manipulate the mycovirus and/or the host and generate combinations with enhanced properties in biological control. Finally, when exploring the use of mycoviruses in field conditions, the pathogen life style and the characteristics of the disease and crops affected will deeply impact the specific challenges to overcome, and the development of biocontrol formulations and delivery methods.
Collapse
Affiliation(s)
- M D García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," 29750 Algarrobo-Costa, Málaga, Spain
| | - M C Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," 29750 Algarrobo-Costa, Málaga, Spain
| | - J L Sarmiento-Villamil
- Centre d'étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - A G Jacquat
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, Córdoba, X5016GCA, Argentina
| | - J S Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, Córdoba, X5016GCA, Argentina
| |
Collapse
|
33
|
Zhang T, Li N, Yuan Y, Cao Q, Chen Y, Tan B, Li G, Liu D. Blue-White Colony Selection of Virus-Infected Isogenic Recipients Based on a Chrysovirus Isolated from Penicillium italicum. Virol Sin 2019; 34:688-700. [PMID: 31376081 DOI: 10.1007/s12250-019-00150-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022] Open
Abstract
Mycoviruses have been found to infect more than 12 species of Penicillium, but have not been isolated from Penicillium italicum (P. italicum). In this study, we isolated and characterized a new double-stranded RNA (dsRNA) virus, designated Penicillium italicum chrysovirus 1 (PiCV1), from the citrus pathogen P. italicum HSPi-YN1. Viral genome sequencing and molecular characterization indicated that PiCV1 was highly homologous to the previously described Penicillium chrysogenum virus. We further constructed the mutant HSPi-YN1ΔpksP defective in the polyketide synthase gene (pksP), which is involved in pigment biosynthesis, and these mutants formed albino (white) colonies. Then we applied hyphal anastomosis method to horizontally transmit PiCV1 from the white virus-donors (i.e., HSPi-YN1 mutants) to wild-type recipients (i.e., P. italicum strains HSPi-CQ54, HSPi-HB4, and HSPi-HN1), and the desirable PiCV1-infected isogenic recipients, a certain part of blue wild-type strains, can be eventually selected and confirmed by viral genomic dsRNA profile analysis. This blue-white colony screening would be an easier method to select virus-infected P. italicum recipients, according to distinguishable color phenotypes between blue virus-recipients and white virus-donors. In summary, the current work newly isolated and characterized PiCV1, verified its horizontal transmission among dually cultured P. italicum isolates, and based on these, established an effective and simplified approach to screen PiCV1-infected isogenic recipients.
Collapse
Affiliation(s)
- Tingfu Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Na Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.,Yunnan Higher Education Institutions, College of Life Science and Technology, Honghe University, Mengzi, 661199, China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Qianwen Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yanfen Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Binglan Tan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Guoqi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
34
|
Li P, Bhattacharjee P, Wang S, Zhang L, Ahmed I, Guo L. Mycoviruses in Fusarium Species: An Update. Front Cell Infect Microbiol 2019; 9:257. [PMID: 31380300 PMCID: PMC6657619 DOI: 10.3389/fcimb.2019.00257] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Fusarium is an important genus of plant pathogenic fungi, and is widely distributed in soil and associated with plants worldwide. The diversity of mycoviruses in Fusarium is increasing continuously due to the development and extensive use of state-of-the-art RNA deep sequencing techniques. To date, fully-sequenced mycoviruses have been reported in 13 Fusarium species: Fusarium asiaticum, F. boothii, F. circinatum, F. coeruleum, F. globosum, F. graminearum, F. incarnatum, F. langsethiae, F. oxysporum, F. poae, F. pseudograminearum, F. solani, and F. virguliforme. Most Fusarium mycoviruses establish latent infections, but some mycoviruses such as Fusarium graminearum virus 1 (FgV1), Fusarium graminearum virus-ch9 (FgV-ch9), Fusarium graminearum hypovirus 2 (FgHV2), and Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1) cause hypovirulence. Rapid advances in various omics technologies used to elucidate genes or biological processes can facilitate an improved understanding of mycovirus-host interactions. The review aims to illuminate the recent advances in studies of mycoviruses in Fusarium, including those related to diversity, molecular mechanisms of virus-host interaction. We also discuss the induction and suppression of RNA silencing including the role of RNAi components as an antiviral defense response.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pallab Bhattacharjee
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Irfan Ahmed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Torres-Trenas A, Prieto P, Cañizares MC, García-Pedrajas MD, Pérez-Artés E. Mycovirus Fusarium oxysporum f. sp. dianthi Virus 1 Decreases the Colonizing Efficiency of Its Fungal Host. Front Cell Infect Microbiol 2019; 9:51. [PMID: 30915279 PMCID: PMC6422920 DOI: 10.3389/fcimb.2019.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Mycoviruses that induce hypovirulence in phytopathogenic fungi are interesting because their potential use as biological control agents of the plant diseases caused by their fungal hosts. The recently identified chrysovirus Fusarium oxysporum f. sp. dianthi virus 1 (FodV1) has been associated to the induction of hypovirulence in Fusarium oxysporum f. sp. dianthi, the forma specialis of F. oxysporum that causes vascular wilt in carnation (Dianthus caryophyllus). In this work, we have used confocal laser scanner microscopy and two isogenic GFP-labeled strains of F. oxysporum f. sp. dianthi infected (V+) and not infected (V-) with the Fusarium oxysporum f. sp. dianthi virus 1, respectively, to analyze the effect of mycovirus FodV1 on the plant colonization pattern of its fungal host. Results demonstrate that FodV1-viral infection affects the speed and spatial distribution of fungal colonization into the plant. Initial stages of external root colonization were similar for both strains, but the virus-free strain colonized the internal plant tissues faster than the virus-infected strain. In addition, other differences related to the specific zone colonized and the density of colonization were observed between both F. oxysporum f. sp. dianthi strains. The hyphae of both V- and V+ strains progressed up through the xylem vessels but differences in the number of vessels colonized and of hyphae inside them were found. Moreover, as colonization progressed, V- and V+ hyphae propagated horizontally reaching the central medulla but, while the virus-free strain V- densely colonized the interior of the medulla cells, the virus-infected strain V+ appeared mainly in the intercellular spaces and with a lower density of colonization. Finally, the incidence of FodV1-viral infections in a collection of 221 isolates sampled between 2008 and 2012 in the geographic area where the originally infected isolate was obtained has been also analyzed. The very low (<2%) incidence of viral infections is discussed here. To the best of our knowledge, this work provides the first microscopic evidence about the effect of a hypovirulence-inducing mycovirus on the pattern of plant colonization by its fungal host.
Collapse
Affiliation(s)
- Almudena Torres-Trenas
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Cientificas, Córdoba, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - María Dolores García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Encarnación Pérez-Artés
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Cientificas, Córdoba, Spain
| |
Collapse
|
36
|
Co-Infection with Three Mycoviruses Stimulates Growth of a Monilinia fructicola Isolate on Nutrient Medium, but Does Not Induce Hypervirulence in a Natural Host. Viruses 2019; 11:v11010089. [PMID: 30669656 PMCID: PMC6356717 DOI: 10.3390/v11010089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/02/2022] Open
Abstract
Monilinia fructicola and Monilinia laxa are the most destructive fungal species infecting stone fruit (Prunus species). High-throughput cDNA sequencing of M. laxa and M. fructicola isolates collected from stone fruit orchards revealed that 14% of isolates were infected with one or more of three mycoviruses: Sclerotinia sclerotiorum hypovirus 2 (SsHV2, genus Hypovirus), Fusarium poae virus 1 (FPV1, genus Betapartitivirus), and Botrytis virus F (BVF, genus Mycoflexivirus). Isolate M196 of M. fructicola was co-infected with all three viruses, and this isolate was studied further. Several methods were applied to cure M196 of one or more mycoviruses. Of these treatments, hyphal tip culture either alone or in combination with antibiotic treatment generated isogenic lines free of one or more mycoviruses. When isogenic fungal lines were cultured on nutrient agar medium in vitro, the triple mycovirus-infected parent isolate M196 grew 10% faster than any of the virus-cured isogenic lines. BVF had a slight inhibitory effect on growth, and FPV1 did not influence growth. Surprisingly, after inoculation to fruits of sweet cherry, there were no significance differences in disease progression between isogenic lines, suggesting that these mycoviruses did not influence the virulence of M. fructicola on a natural host.
Collapse
|
37
|
Kyrychenko AN, Tsyganenko KS, Olishevska SV. Hypovirulence of Mycoviruses as a Tool for Biotechnological Control of Phytopathogenic Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718050043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Ejmal MA, Holland DJ, MacDiarmid RM, Pearson MN. The Effect of Aspergillus Thermomutatus Chrysovirus 1 on the Biology of Three Aspergillus Species. Viruses 2018; 10:E539. [PMID: 30279352 PMCID: PMC6213286 DOI: 10.3390/v10100539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022] Open
Abstract
This study determined the effects of Aspergillus thermomutatus chrysovirus 1 (AthCV1), isolated from Aspergillus thermomutatus, on A. fumigatus, A. nidulans and A. niger. Protoplasts of virus-free isolates of A. fumigatus, A. nidulans and A. niger were transfected with purified AthCV1 particles and the phenotype, growth and sporulation of the isogenic AthCV1-free and AthCV1-infected lines assessed at 20 °C and 37 °C and gene expression data collected at 37 °C. AthCV1-free and AthCV1-infected A. fumigatus produced only conidia at both temperatures but more than ten-fold reduced compared to the AthCV1-infected line. Conidiation was also significantly reduced in infected lines of A. nidulans and A. niger at 37 °C. AthCV1-infected lines of A. thermomutatus and A. nidulans produced large numbers of ascospores at both temperatures, whereas the AthCV1-free line of the former did not produce ascospores. AthCV1-infected lines of all species developed sectoring phenotypes with sclerotia produced in aconidial sectors of A. niger at 37 °C. AthCV1 was detected in 18% of sclerotia produced by AthCV1-infected A. niger and 31% of ascospores from AthCV1-infected A. nidulans. Transcriptome analysis of the naturally AthCV1-infected A. thermomutatus and the three AthCV1-transfected Aspergillus species showed altered gene expression as a result of AthCV1-infection. The results demonstrate that AthCV1 can infect a range of Aspergillus species resulting in reduced sporulation, a potentially useful attribute for a biological control agent.
Collapse
Affiliation(s)
- Mahjoub A Ejmal
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
| | - David J Holland
- Infectious Diseases Unit, Division of Medicine, Middlemore Hospital, Auckland 1640, New Zealand.
| | - Robin M MacDiarmid
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
- Plant and Food Research, Auckland 1142, New Zealand.
| | - Michael N Pearson
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
| |
Collapse
|
39
|
Shimizu T, Kanematsu S, Yaegashi H. Draft Genome Sequence and Transcriptional Analysis of Rosellinia necatrix Infected with a Virulent Mycovirus. PHYTOPATHOLOGY 2018; 108:1206-1211. [PMID: 29688132 DOI: 10.1094/phyto-11-17-0365-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the molecular mechanisms of pathogenesis is useful in developing effective control methods for fungal diseases. The white root rot fungus Rosellinia necatrix is a soilborne pathogen that causes serious economic losses in various crops, including fruit trees, worldwide. Here, using next-generation sequencing techniques, we first produced a 44-Mb draft genome sequence of R. necatrix strain W97, an isolate from Japan, in which 12,444 protein-coding genes were predicted. To survey differentially expressed genes (DEGs) associated with the pathogenesis of the fungus, the hypovirulent W97 strain infected with Rosellinia necatrix megabirnavirus 1 (RnMBV1) was used for a comprehensive transcriptome analysis. In total, 545 and 615 genes are up- and down-regulated, respectively, in R. necatrix infected with RnMBV1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs suggested that primary and secondary metabolism would be greatly disturbed in R. necatrix infected with RnMBV1. The genes encoding transcriptional regulators, plant cell wall-degrading enzymes, and toxin production, such as cytochalasin E, were also found in the DEGs. The genetic resources provided in this study will accelerate the discovery of genes associated with pathogenesis and other biological characteristics of R. necatrix, thus contributing to disease control.
Collapse
Affiliation(s)
- Takeo Shimizu
- First, second, and third authors: Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Satoko Kanematsu
- First, second, and third authors: Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Hajime Yaegashi
- First, second, and third authors: Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| |
Collapse
|
40
|
Li W, Xia Y, Zhang H, Zhang X, Chen H. A Victorivirus from Fusarium asiaticum, the pathogen of Fusarium head blight in China. Arch Virol 2018; 164:313-316. [PMID: 30232613 DOI: 10.1007/s00705-018-4038-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Abstract
A Victorivirus was detected in isolate F16176 of the fungus Fusarium asiaticum, the causal agent of Fusarium head blight in China. The full genome sequence of the virus was sequenced and characterized. The complete cDNA sequence is 5,281 nucleotides long with 64.2% G + C content and contains two open reading frames (ORFs) that overlap at the pentanucleotide UAAUG. The two ORFs are predicted to encode coat protein (CP) and RNA-dependent RNA polymerase (RdRp), which are conserved among the dsRNA mycoviruses of the genus Victorivirus. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of RdRp indicated that this dsRNA mycovirus is a new virus belonging to the species Rosellinia necatrix victorivirus 1 in the family Totiviridae. This study is the first to report a full-length genomic sequence of a putative member of the genus Victorivirus in F. asiaticum.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yunlei Xia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Agricultural College, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xing Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Agricultural College, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
41
|
Expression of a Structural Protein of the Mycovirus FgV-ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum. J Virol 2018; 92:JVI.00326-18. [PMID: 29899100 DOI: 10.1128/jvi.00326-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Infections of fungi by mycoviruses are often symptomless but sometimes also fatal, as they perturb sporulation, growth, and, if applicable, virulence of the fungal host. Hypovirulence-inducing mycoviruses, therefore, represent a powerful means to defeat fungal epidemics on crop plants. Infection with Fusarium graminearum virus China 9 (FgV-ch9), a double-stranded RNA (dsRNA) chrysovirus-like mycovirus, debilitates Fusarium graminearum, the causal agent of fusarium head blight. In search for potential symptom alleviation or aggravation factors in F. graminearum, we consecutively infected a custom-made F. graminearum mutant collection with FgV-ch9 and found a mutant with constantly elevated expression of a gene coding for a putative mRNA-binding protein that did not show any disease symptoms despite harboring large amounts of virus. Deletion of this gene, named virus response 1 (vr1), resulted in phenotypes identical to those observed in the virus-infected wild type with respect to growth, reproduction, and virulence. Similarly, the viral structural protein coded on segment 3 (P3) caused virus infection-like symptoms when expressed in the wild type but not in the vr1 overexpression mutant. Gene expression analysis revealed a drastic downregulation of vr1 in the presence of virus and in mutants expressing P3. We conclude that symptom development and severity correlate with gene expression levels of vr1 This was confirmed by comparative transcriptome analysis, showing a large transcriptional overlap between the virus-infected wild type, the vr1 deletion mutant, and the P3-expressing mutant. Hence, vr1 represents a fundamental host factor for the expression of virus-related symptoms and helps us understand the underlying mechanism of hypovirulence.IMPORTANCE Virus infections of phytopathogenic fungi occasionally impair growth, reproduction, and virulence, a phenomenon referred to as hypovirulence. Hypovirulence-inducing mycoviruses, therefore, represent a powerful means to defeat fungal epidemics on crop plants. However, the poor understanding of the molecular basis of hypovirulence induction limits their application. Using the devastating fungal pathogen on cereal crops, Fusarium graminearum, we identified an mRNA binding protein (named virus response 1, vr1) which is involved in symptom expression. Downregulation of vr1 in the virus-infected fungus and vr1 deletion evoke virus infection-like symptoms, while constitutive expression overrules the cytopathic effects of the virus infection. Intriguingly, the presence of a specific viral structural protein is sufficient to trigger the fungal response, i.e., vr1 downregulation, and symptom development similar to virus infection. The advancements in understanding fungal infection and response may aid biological pest control approaches using mycoviruses or viral proteins to prevent future Fusarium epidemics.
Collapse
|
42
|
Wang L, Luo H, Hu W, Yang Y, Hong N, Wang G, Wang A, Wang L. De novo transcriptomic assembly and mRNA expression patterns of Botryosphaeria dothidea infection with mycoviruses chrysovirus 1 (BdCV1) and partitivirus 1 (BdPV1). Virol J 2018; 15:126. [PMID: 30103770 PMCID: PMC6088430 DOI: 10.1186/s12985-018-1033-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/27/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pear ring rot, caused by Botryosphaeria species, is responsible for substantial economic losses by causing severe recession of pear tree growth in China. Mycovirus-mediated hypovirulence in plant pathogenic fungi is a crucial biological method to control fungal diseases. METHODS We conducted a large-scale and comprehensive transcriptome analysis to identify mRNA in B. dothidea in response to mycovirus. De novo sequencing technology from four constructed libraries of LW-C (Botryosphaeria dothidea chrysovirus 1, BdCV1), LW-P (Botryosphaeria dothidea partitivirus 1, BdPV1), LW-CP (LW-1 strain infection with BdCV1 and BdPV1), and Mock (free virus) was used to investigate and compare gene expression changes in B.dothidea strains infected with mycovirus. RESULTS In total, 30,058 Unigenes with an average length of 2128 bp were obtained from 4 libraries of B. dothidea strains. These were annotated to specify their classified function. We demonstrate that mRNAs of B. dothidea strains in response to mycovirus are differentially expressed. In total, 5598 genes were up-regulated and 3298 were down-regulated in the LW-CP group, 4468 were up-regulated and 4291 down-regulated in the LW-C group, and 2590 were up-regulated and 2325 down-regulated in the LW-P group. RT-qPCR was used to validate the expression of 9 selected genes. The B. dothidea transcriptome was more affected by BdCV1 infection than BdPV1. We conducted GO enrichment analysis to characterize gene functions regulated by B. dothidea with mycovirus infection. These involved metabolic process, cellular process, catalytic activity, transporter activity, signaling, and other biological pathways. KEGG function analysis demonstrated that the enriched differentially expressed genes are involved in metabolism, transcription, signal transduction, and ABC transport. mRNA is therefore involved in the interaction between fungi and mycovirus. In addition, changes in differential accumulation levels of cp and RdRp of BdCV1 and BdPV1 in B. dothidea strains were evaluated, revealing that the accumulation of BdCV1 and BdPV1 is related to the phenotype and virulence of B. dothidea strain LW-1. CONCLUSIONS The identification and analysis of mRNAs from B. dothidea was first reported at the transcriptome level. Our analysis provides further insight into the interaction of B. dothidea strains infection with chrysovirus 1 (BdCV1) and partitivirus 1 (BdPV1) at the transcriptome level.
Collapse
Affiliation(s)
- Lihua Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People’s Republic of China
| | - Hui Luo
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People’s Republic of China
| | - Wangcheng Hu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People’s Republic of China
| | - Yuekun Yang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People’s Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People’s Republic of China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People’s Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3 Canada
| | - Liping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People’s Republic of China
| |
Collapse
|
43
|
Yu J, Lee KM, Cho WK, Park JY, Kim KH. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections. J Virol 2018; 92:e01756-17. [PMID: 29437977 PMCID: PMC5899199 DOI: 10.1128/jvi.01756-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/02/2018] [Indexed: 01/14/2023] Open
Abstract
The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum (FgDICER-2 and FgAGO-1) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1, FgDICER-2, and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum, that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearumIMPORTANCE To increase our understanding of how RNAi components in Fusarium graminearum react to mycovirus infections, we characterized the role(s) of RNAi components involved in the antiviral defense response against Fusarium graminearum viruses (FgVs). We observed differences in the levels of induction of RNA silencing-related genes, including FgDICER-2 and FgAGO-1, in response to infection by three different FgVs. FgAGO-1 can efficiently induce a robust RNAi response against FgV1 infection, but FgDICER genes might be relatively redundant to FgAGO-1 with respect to antiviral defense. However, the contribution of this gene in the response to the other FgV infections might be small. Compared to previous studies of Cryphonectria parasitica, which showed dicer-like protein 2 and Argonaute-like protein 2 to be important in antiviral RNA silencing, our results showed that F. graminearum developed a more complex and robust RNA silencing system against mycoviruses and that FgDICER-1 and FgDICER-2 and FgAGO-1 and FgAGO-2 had redundant roles in antiviral RNA silencing.
Collapse
Affiliation(s)
- Jisuk Yu
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Mi Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Ju Yeon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Nuskern L, Ježić M, Liber Z, Mlinarec J, Ćurković-Perica M. Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica. MICROBIAL ECOLOGY 2018; 75:790-798. [PMID: 28865007 DOI: 10.1007/s00248-017-1064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Biotic stress caused by virus infections induces epigenetic changes in infected plants and animals, but this is the first report on methylation pattern changes in a fungus after mycovirus infection. As a model pathosystem for mycovirus-host interactions, we used Cryphonectria hypovirus 1 (CHV1) and its host fungus Cryphonectria parasitica, in which deregulation of methylation cycle enzymes upon virus infection was observed previously. Six CHV1 strains of different subtypes were transferred into three different C. parasitica isolates in order to assess the effect of different CHV1 strains and/or subtypes on global cytosine methylation level in infected fungus, using methylation-sensitive amplification polymorphism (MSAP). Infection with CHV1 affected the methylation pattern of the C. parasitica genome; it increased the number and diversity of methylated, hemi-methylated, and total MSAP markers found in infected fungal isolates compared to virus-free controls. The increase in methylation levels correlated well with the CHV1-induced reduction of fungal growth in vitro, indicating that C. parasitica genome methylation upon CHV1 infection, rather than being the defensive mechanism of the fungus, is more likely to be the virulence determinant of the virus. Furthermore, the severity of CHV1 effect on methylation levels of infected C. parasitica isolates depended mostly on individual CHV1 strains and on the combination of host and virus genomes, rather than on the virus subtype. These novel findings broaden our knowledge about CHV1 strains which could potentially be used in human-aided biocontrol of chestnut blight, a disease caused by C. parasitica in chestnut forest ecosystems and orchards.
Collapse
Affiliation(s)
- Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Zlatko Liber
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Jelena Mlinarec
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
45
|
Heterobasidion Partitivirus 13 Mediates Severe Growth Debilitation and Major Alterations in the Gene Expression of a Fungal Forest Pathogen. J Virol 2018; 92:JVI.01744-17. [PMID: 29237832 DOI: 10.1128/jvi.01744-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The fungal genus Heterobasidion includes some of the most devastating conifer pathogens in the boreal forest region. In this study, we showed that the alphapartitivirus Heterobasidion partitivirus 13 from Heterobasidion annosum (HetPV13-an1) is the main causal agent of severe phenotypic debilitation in the host fungus. Based on RNA sequencing using isogenic virus-infected and cured fungal strains, HetPV13-an1 affected the transcription of 683 genes, of which 60% were downregulated and 40% upregulated. Alterations observed in carbohydrate and amino acid metabolism suggest that the virus causes a state of starvation, which is compensated for by alternative synthesis routes. We used dual cultures to transmit HetPV13-an1 into new strains of H. annosum and Heterobasidion parviporum The three strains of H. parviporum that acquired the virus showed noticeable growth reduction on rich culturing medium, while only two of six H. annosum isolates tested showed significant debilitation. Based on reverse transcription-quantitative PCR (RT-qPCR) analysis, the response toward HetPV13-an1 infection was somewhat different in H. annosum and H. parviporum We assessed the effects of HetPV13-an1 on the wood colonization efficacy of H. parviporum in a field experiment where 46 Norway spruce trees were inoculated with isogenic strains with or without the virus. The virus-infected H. parviporum strain showed considerably less growth within living trees than the isolate without HetPV13-an1, indicating that the virus also causes growth debilitation in natural substrates.IMPORTANCE A biocontrol method restricting the spread of Heterobasidion species would be highly beneficial to forestry, as these fungi are difficult to eradicate from diseased forest stands and cause approximate annual losses of €800 million in Europe. We used virus curing and reintroduction experiments and RNA sequencing to show that the alphapartitivirus HetPV13-an1 affects many basic cellular functions of the white rot wood decay fungus Heterobasidion annosum, which results in aberrant hyphal morphology and a low growth rate. Dual fungal cultures were used to introduce HetPV13-an1 into a new host species, Heterobasidion parviporum, and field experiments confirmed the capability of the virus to reduce the growth of H. parviporum in living spruce wood. Taken together, our results suggest that HetPV13-an1 shows potential for the development of a future biocontrol agent against Heterobasidion fungi.
Collapse
|
46
|
Identification of double-stranded RNA viruses in Brazilian strains of Metarhizium anisopliae and their effects on fungal biology and virulence. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Wang S, Zhang J, Li P, Qiu D, Guo L. Transcriptome-Based Discovery of Fusarium graminearum Stress Responses to FgHV1 Infection. Int J Mol Sci 2016; 17:ijms17111922. [PMID: 27869679 PMCID: PMC5133918 DOI: 10.3390/ijms17111922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023] Open
Abstract
Fusarium graminearum hypovirus 1 (FgHV1), which is phylogenetically related to Cryphonectria hypovirus 1 (CHV1), is a virus in the family Hypoviridae that infects the plant pathogenic fungus F. graminearum. Although hypovirus FgHV1 infection does not attenuate the virulence of the host (hypovirulence), it results in defects in mycelial growth and spore production. We now report that the vertical transmission rate of FgHV1 through asexual spores reached 100%. Using RNA deep sequencing, we performed genome-wide expression analysis to reveal phenotype-related genes with expression changes in response to FgHV1 infection. A total of 378 genes were differentially expressed, suggesting that hypovirus infection causes a significant alteration of fungal gene expression. Nearly two times as many genes were up-regulated as were down-regulated. A differentially expressed gene enrichment analysis identified a number of important pathways. Metabolic processes, the ubiquitination system, and especially cellular redox regulation were the most affected categories in F. graminearum challenged with FgHV1. The p20, encoded by FgHV1 could induce H2O2 accumulation and hypersensitive response in Nicotiana benthamiana leaves. Moreover, hypovirus FgHV1 may regulate transcription factors and trigger the RNA silencing pathway in F. graminearum.
Collapse
Affiliation(s)
- Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux 5030, Belgium.
| | - Jingze Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
48
|
Son M, Lee Y, Kim KH. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations. THE PLANT PATHOLOGY JOURNAL 2016; 32:281-289. [PMID: 27493603 PMCID: PMC4968638 DOI: 10.5423/ppj.oa.12.2015.0267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 06/06/2023]
Abstract
The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1) strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence) of its fungal host. To characterize function(s) of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI) FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s) in FgV1 induced phenotype alteration such as delayed vegetative growth.
Collapse
Affiliation(s)
- Moonil Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yoonseung Lee
- Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
49
|
Affiliation(s)
- Moonil Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jisuk Yu
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
50
|
Yu J, Lee KM, Son M, Kim KH. Effects of the deletion and over-expression of Fusarium graminearum gene FgHal2 on host response to mycovirus Fusarium graminearum virus 1. MOLECULAR PLANT PATHOLOGY 2015; 16:641-652. [PMID: 25431083 PMCID: PMC6638490 DOI: 10.1111/mpp.12221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The mycovirus Fusarium graminearum virus 1 (FgV1) is associated with reduced virulence (hypovirulence) of Fusarium graminearum. Transcriptomic and proteomic expression profiling have shown that many F. graminearum genes are differentially expressed as a consequence of FgV1 infection. Several of these genes may be related to the maintenance of the virus life cycle. The host gene, FgHal2, which has a highly conserved 3'-phosphoadenosine 5'-phosphatase (PAP phosphatase-like) domain or inositol monophosphatase (IMPase) superfamily domain, shows reduced expression in response to FgV1 infection. We generated targeted gene deletion and over-expression mutants to clarify the possible function(s) of FgHal2 and its relationship to FgV1. The gene deletion mutant showed retarded growth, reduced aerial mycelia formation and reduced pigmentation, whereas over-expression mutants were morphologically similar to the wild-type (WT). Furthermore, compared with the WT, the gene deletion mutant produced fewer conidia and these showed abnormal morphology. The FgHal2 expression level was decreased by FgV1 infection at 120 h post-inoculation (hpi), whereas the levels were nine-fold greater for both the virus-free and virus-infected over-expression mutant than for the WT. FgV1 RNA accumulation was decreased in the deletion mutant at 48, 72 and 120 hpi. FgV1 RNA accumulation in the over-expression mutant was reduced relative to that of the WT at 48 and 120 hpi, but was similar to that of the WT at 72 hpi. The vertical transmission rate of FgV1 in the gene deletion mutant was low, suggesting that FgHal2 may be required for the maintenance of FgV1 in the host cell. Together, these results indicate that the putative 3'(2'),5'-bisphosphate nucleotidase gene, FgHal2, has diverse biological functions in the host fungus and may affect the viral RNA accumulation and transmission of FgV1.
Collapse
Affiliation(s)
- Jisuk Yu
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Kyung-Mi Lee
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Moonil Son
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| |
Collapse
|