1
|
Xiao L, Luo L, Liu J, Liu L, Han H, Xiao R, Guo L, Xie J, Tang L. A Glycoprotein-Based Surface-Enhanced Raman Spectroscopy-Lateral Flow Assay Method for Abrin and Ricin Detection. Toxins (Basel) 2024; 16:312. [PMID: 39057952 PMCID: PMC11280971 DOI: 10.3390/toxins16070312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins.
Collapse
Affiliation(s)
- Lan Xiao
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Li Luo
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
- Guangdong Lifotronic Biomedical Technology Co., Ltd., Dongguan 523808, China
| | - Jia Liu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
- College of Pharmacy, Hebei Science and Technology University, Shijiazhuang 050018, China
| | - Luyao Liu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Han Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Li Tang
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
| |
Collapse
|
2
|
Wu HJ, Singla A, Weatherston JD. Nanocube-Based Fluidic Glycan Array. Methods Mol Biol 2022; 2460:45-63. [PMID: 34972930 DOI: 10.1007/978-1-0716-2148-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nature of cell membrane fluidity permits glycans, which are attached to membrane proteins and lipids, to freely diffuse on cell surfaces. Through such two-dimensional motion, some weakly binding glycans can participate in lectin binding processes, eventually changing lectin binding behaviors. This chapter discusses a plasmonic nanocube sensor that allows users to detect lectin binding kinetics in a cell membrane mimicking environment. This assay only requires standard laboratory spectrometers, including microplate readers. We describe the basics of the technology in detail, including sensor fabrication, sensor calibration, data processing, a general protocol for detecting lectin-glycan interactions, and a troubleshooting guide.
Collapse
Affiliation(s)
- Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Lee KS, Jeong YJ, Lee MS. Escherichia coli Shiga Toxins and Gut Microbiota Interactions. Toxins (Basel) 2021; 13:toxins13060416. [PMID: 34208170 PMCID: PMC8230793 DOI: 10.3390/toxins13060416] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are enterohemorrhagic bacteria that induce hemorrhagic colitis. This, in turn, may result in potentially lethal complications, such as hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, acute renal failure, and neurological abnormalities. Both species of bacteria produce Shiga toxins (Stxs), a phage-encoded exotoxin inhibiting protein synthesis in host cells that are primarily responsible for bacterial virulence. Although most studies have focused on the pathogenic roles of Stxs as harmful substances capable of inducing cell death and as proinflammatory factors that sensitize the host target organs to damage, less is known about the interface between the commensalism of bacterial communities and the pathogenicity of the toxins. The gut contains more species of bacteria than any other organ, providing pathogenic bacteria that colonize the gut with a greater number of opportunities to encounter other bacterial species. Notably, the presence in the intestines of pathogenic EHEC producing Stxs associated with severe illness may have compounding effects on the diversity of the indigenous bacteria and bacterial communities in the gut. The present review focuses on studies describing the roles of Stxs in the complex interactions between pathogenic Shiga toxin-producing E. coli, the resident microbiome, and host tissues. The determination of these interactions may provide insights into the unresolved issues regarding these pathogens.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Yu-Jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (Y.-J.J.); (M.-S.L.)
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (Y.-J.J.); (M.-S.L.)
| |
Collapse
|
4
|
Onyeka LO, Adesiyun AA, Keddy KH, Manqele A, Madoroba E, Thompson PN. Prevalence, risk factors and molecular characteristics of Shiga toxin-producing Escherichia coli in beef abattoirs in Gauteng, South Africa. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Warr AR, Kuehl CJ, Waldor MK. Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathog 2021; 17:e1009290. [PMID: 33529199 PMCID: PMC7880444 DOI: 10.1371/journal.ppat.1009290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit model of EHEC infection that recapitulates many aspects of human intestinal disease to comprehensively assess colonic transcriptional responses to this pathogen. Cellular compartment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differences in the transcriptional responses elicited by these strains were in genes involved in immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encoding Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels the host innate immune response to EHEC. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal foodborne pathogen. During infection, EHEC releases a potent toxin, Shiga toxin (Stx), into the intestine, but there is limited knowledge of how this toxin shapes the host response to infection. We used an infant rabbit model of infection that closely mimics human disease to profile intestinal transcriptomic responses to EHEC infection. Comparisons of the transcriptional responses to infection by strains containing or lacking Stx revealed that this toxin markedly remodels how the epithelial cell compartment responds to infection. Our findings suggest that Stx shapes the intestinal innate immune response to EHEC and provide insight into the complex host-pathogen dialogue that underlies disease.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carole J. Kuehl
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Szymczak-Kulus K, Weidler S, Bereznicka A, Mikolajczyk K, Kaczmarek R, Bednarz B, Zhang T, Urbaniak A, Olczak M, Park EY, Majorczyk E, Kapczynska K, Lukasiewicz J, Wuhrer M, Unverzagt C, Czerwinski M. Human Gb3/CD77 synthase produces P1 glycotope-capped N-glycans, which mediate Shiga toxin 1 but not Shiga toxin 2 cell entry. J Biol Chem 2021; 296:100299. [PMID: 33460651 PMCID: PMC7949097 DOI: 10.1016/j.jbc.2021.100299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galβ1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.
Collapse
Affiliation(s)
- Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Sascha Weidler
- Department of Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Anna Bereznicka
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Bartosz Bednarz
- Laboratory of Molecular Biology of Microorganisms, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Urbaniak
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Enoch Y Park
- Laboratory of Biotechnology, Shizuoka University, Shizuoka, Japan
| | - Edyta Majorczyk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Katarzyna Kapczynska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Jolanta Lukasiewicz
- Laboratory of Microbial Immunochemistry and Vaccines, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo Unverzagt
- Department of Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| |
Collapse
|
7
|
Pintara A, Jennison A, Rathnayake IU, Mellor G, Huygens F. Core and Accessory Genome Comparison of Australian and International Strains of O157 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2020; 11:566415. [PMID: 33013798 PMCID: PMC7498637 DOI: 10.3389/fmicb.2020.566415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen, and serotype O157:H7 is typically associated with severe disease. Australian STEC epidemiology differs from many other countries, as severe outbreaks and HUS cases appear to be more often associated with non-O157 serogroups. It is not known why Australian strains of O157 STEC might differ in virulence to international strains. Here we investigate the reduced virulence of Australian strains. Multiple genetic analyses were performed, including SNP-typing, to compare the core genomes of the Australian to the international isolates, and accessory genome analysis to determine any significant differences in gene presence/absence that could be associated with their phenotypic differences in virulence. The most distinct difference between the isolates was the absence of the stx2a gene in all Australian isolates, with few other notable differences observed in the core and accessory genomes of the O157 STEC isolates analyzed in this study. The presence of stx1a in most Australian isolates was another notable observation. Acquisition of stx2a seems to coincide with the emergence of highly pathogenic STEC. Due to the lack of other notable genotypic differences observed between Australian and international isolates characterized as highly pathogenic, this may be further evidence that the absence of stx2a in Australian O157 STEC could be a significant characteristic defining its mild virulence. Further work investigating the driving force(s) behind Stx prophage loss and acquisition is needed to determine if this potential exists in Australian O157 isolates.
Collapse
Affiliation(s)
- Alexander Pintara
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amy Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Irani U. Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Glen Mellor
- CSIRO Animal, Food and Health Sciences, Archerfield, QLD, Australia
| | - Flavia Huygens
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
9
|
Johansson K, Willysson A, Kristoffersson AC, Tontanahal A, Gillet D, Ståhl AL, Karpman D. Shiga Toxin-Bearing Microvesicles Exert a Cytotoxic Effect on Recipient Cells Only When the Cells Express the Toxin Receptor. Front Cell Infect Microbiol 2020; 10:212. [PMID: 32523894 PMCID: PMC7261856 DOI: 10.3389/fcimb.2020.00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin is the main virulence factor of non-invasive enterohemorrhagic Escherichia coli strains capable of causing hemolytic uremic syndrome. Our group has previously shown that the toxin can reach the kidney within microvesicles where it is taken up by renal cells and the vesicles release their cargo intracellularly, leading to toxin-mediated inhibition of protein synthesis and cell death. The aim of this study was to examine if recipient cells must express the globotriaosylceramide (Gb3) toxin receptor for this to occur, or if Gb3-negative cells are also susceptible after uptake of Gb3-positive and toxin-positive microvesicles. To this end we generated Gb3-positive A4GALT–transfected CHO cells, and a vector control lacking Gb3 (CHO-control cells), and decreased Gb3 synthesis in native HeLa cells by exposing them to the glycosylceramide synthase inhibitor PPMP. We used these cells, and human intestinal DLD-1 cells lacking Gb3, and exposed them to Shiga toxin 2-bearing Gb3-positive microvesicles derived from human blood cells. Results showed that only recipient cells that possessed endogenous Gb3 (CHO-Gb3 transfected and native HeLa cells) exhibited cellular injury, reduced cell metabolism and protein synthesis, after uptake of toxin-positive microvesicles. In Gb3-positive cells the toxin introduced via vesicles followed the retrograde pathway and was inhibited by the retrograde transport blocker Retro-2.1. CHO-control cells, HeLa cells treated with PPMP and DLD-1 cells remained unaffected by toxin-positive microvesicles. We conclude that Shiga toxin-containing microvesicles can be taken up by Gb3-negative cells but the recipient cell must express endogenous Gb3 for the cell to be susceptible to the toxin.
Collapse
Affiliation(s)
- Karl Johansson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Annie Willysson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé, (MTS), SIMoS, Gif-sur-Yvette, France
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
11
|
Li D, Mukhopadhyay S. Functional analyses of the UDP-galactose transporter SLC35A2 using the binding of bacterial Shiga toxins as a novel activity assay. Glycobiology 2020; 29:490-503. [PMID: 30834435 DOI: 10.1093/glycob/cwz016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/13/2023] Open
Abstract
SLC35A2 transports UDP-galactose from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum for glycosylation. Mutations in SLC35A2 induce a congenital disorder of glycosylation. Despite the biomedical relevance, mechanisms of transport via SLC35A2 and the impact of disease-associated mutations on activity are unclear. To address these issues, we generated a predicted structure of SLC35A2 and assayed for the effects of a set of structural and disease-associated mutations. Activity assays were performed using a rescue approach in ΔSLC35A2 cells and took advantage of the fact that SLC35A2 is required for expression of the glycosphingolipid globotriaosylceramide (Gb3), the cell surface receptor for Shiga toxin 1 (STx1) and 2 (STx2). The N- and C-terminal cytoplasmic loops of SLC35A2 were dispensable for activity, but two critical glycine (Gly-202 and Gly-214) and lysine (Lys-78 and Lys-297) residues in transmembrane segments were required. Residues corresponding to Gly-202 and Gly-214 in the related transporter SLC35A1 form a substrate-translocating channel, suggesting that a similar mechanism may be involved in SLC35A2. Among the eight disease-associated mutations tested, SLC35A2 function was completely inhibited by two (S213F and G282R) and partially inhibited by three (R55L, G266V, and S304P), providing a straight-forward mechanism of disease. Interestingly, the remaining three (V331I, V258M, and Y267C) did not impact SLC35A2 function, suggesting that complexities beyond loss of transporter activity may underlie disease due to these mutations. Overall, our results provide new insights into the mechanisms of transport of SLC35A2 and improve understanding of the relationship between SLC35A2 mutations and disease.
Collapse
Affiliation(s)
- Danyang Li
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Bimodal Response to Shiga Toxin 2 Subtypes Results from Relatively Weak Binding to the Target Cell. Infect Immun 2019; 87:IAI.00428-19. [PMID: 31527121 DOI: 10.1128/iai.00428-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023] Open
Abstract
There are two major antigenic forms of Shiga toxin (Stx), Stx1 and Stx2, which bind the same receptor and act on the same target but nonetheless differ in potency. Stx1a is more toxic to cultured cells, but Stx2 subtypes are more potent in animal models. To understand this phenomenon in cultured cells, we used a system that combines flow cytometry with a fluorescent reporter to monitor the Stx-induced inhibition of protein synthesis in single cells. We observed that Vero cells intoxicated with Stx1a behave differently than those intoxicated with Stx2 subtypes: cells challenged with Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Cells challenged with a hybrid toxin containing the catalytic subunit of Stx1a and the cell-binding subunit of Stx2a also exhibited a bimodal response to intoxication, while cells challenged with a hybrid toxin containing the catalytic subunit of Stx2a and the cell-binding subunit of Stx1a exhibited a population-wide loss of protein synthesis. Other experiments further supported a primary role for the subtype of the B subunit in the outcome of host-Stx interactions. Our collective observations indicate that the bimodal response to Stx2 subtypes is due to relatively weak binding between Stx2 and the host cell that reduces the total functional pool of Stx2 in comparison to that of Stx1a. This explains, in part, the molecular basis for the differential cellular toxicity between Stx1a and Stx2 subtypes.
Collapse
|
13
|
Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, Ahmad NI, Young R, Mabbott NA, Morrison L, Bono JL, Gally DL, McNeilly TN. Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathog 2019; 15:e1008003. [PMID: 31581229 PMCID: PMC6776261 DOI: 10.1371/journal.ppat.1008003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are asymptomatic, while human exposure can lead to severe symptoms including bloody diarrhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symptoms in humans are associated with isolates that encode Stx subtype 2a. The advantage of these toxins in the animal reservoir is still not clear, however there is experimental evidence implicating Stx with increased bacterial adherence, immune modulation and suppression of predatory protozoa. In this study, the hypothesis that Stx2a is important for super-shedding and calf-to-calf transmission was tested by comparing excretion and transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did not alter excretion levels when calfs were orally challenge, it enabled colonisation of more in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effective transmission and have led to its expansion in the cattle E. coli O157 population.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | - Amy E. Beckett
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Sharif Shaaban
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Jason Morgan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Rachel Young
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Liam Morrison
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - James L. Bono
- United States Department of Agriculture, Agricultural Research Service, Nebraska, United States of America
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (DLG); (TNM)
| | - Tom N. McNeilly
- Moredun Research Institute, Penicuik, United Kingdom
- * E-mail: (DLG); (TNM)
| |
Collapse
|
14
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
15
|
Lang C, Fruth A, Holland G, Laue M, Mühlen S, Dersch P, Flieger A. Novel type of pilus associated with a Shiga-toxigenic E. coli hybrid pathovar conveys aggregative adherence and bacterial virulence. Emerg Microbes Infect 2018; 7:203. [PMID: 30514915 PMCID: PMC6279748 DOI: 10.1038/s41426-018-0209-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/31/2023]
Abstract
A large German outbreak in 2011 was caused by a locus of enterocyte effacement (LEE)-negative enterohemorrhagic E. coli (EHEC) strain of the serotype O104:H4. This strain harbors markers that are characteristic of both EHEC and enteroaggregative E. coli (EAEC), including aggregative adhesion fimbriae (AAF) genes. Such rare EHEC/EAEC hybrids are highly pathogenic due to their possession of a combination of genes promoting severe toxicity and aggregative adhesion. We previously identified novel EHEC/EAEC hybrids and observed that one strain exhibited aggregative adherence but had no AAF genes. In this study, a genome sequence analysis showed that this strain belongs to the genoserotype O23:H8, MLST ST26, and harbors a 5.2 Mb chromosome and three plasmids. One plasmid carries some EAEC marker genes, such as aatA and genes with limited protein homology (11–61%) to those encoding the bundle-forming pilus (BFP) of enteropathogenic E. coli. Due to significant protein homology distance to known pili, we designated these as aggregate-forming pili (AFP)-encoding genes and the respective plasmid as pAFP. The afp operon was arranged similarly to the operon of BFP genes but contained an additional gene, afpA2, which is homologous to afpA. The deletion of the afp operon, afpA, or a nearby gene (afpR) encoding an AraC-like regulator, but not afpA2, led to a loss of pilin production, piliation, bacterial autoaggregation, and importantly, a >80% reduction in adhesion and cytotoxicity toward epithelial cells. Gene sets similar to the afp operon were identified in a variety of aatA-positive but AAF-negative intestinal pathogenic E. coli. In summary, we characterized widely distributed and novel fimbriae that are essential for aggregative adherence and cytotoxicity in a LEE-negative Shiga-toxigenic hybrid.
Collapse
Affiliation(s)
- Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institut, Wernigerode, Saxony-Anhalt, 38855, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institut, Wernigerode, Saxony-Anhalt, 38855, Germany
| | - Gudrun Holland
- Division of Advanced Light and Electron Microscopy, Robert Koch Institut, Berlin, 13353, Germany
| | - Michael Laue
- Division of Advanced Light and Electron Microscopy, Robert Koch Institut, Berlin, 13353, Germany
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, 38124, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, 38124, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institut, Wernigerode, Saxony-Anhalt, 38855, Germany.
| |
Collapse
|
16
|
Kanemaru K, Goto T, Badr HA, Yokoigawa K. Determination of binding affinity of poly-γ-glutamate to Shiga toxin. J Food Biochem 2018. [DOI: 10.1111/jfbc.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kaori Kanemaru
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Faculty of Bioscience and Bioindustry; Tokushima University, 2-1 Minamijosanjima-cho; Tokushima , 770-8513 Japan
| | - Tsukie Goto
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Department of Science for Human Health; Junior College, Shikoku University, 123-1 Ebisuno, Furukawa, Ojin-cho; Tokushima 771-1192 Japan
| | - Hoida Ali Badr
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
| | - Kumio Yokoigawa
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Faculty of Bioscience and Bioindustry; Tokushima University, 2-1 Minamijosanjima-cho; Tokushima , 770-8513 Japan
| |
Collapse
|
17
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
18
|
Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods 2018; 147:50-65. [DOI: 10.1016/j.ymeth.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
|
19
|
Overview of the role of Shiga toxins in porcine edema disease pathogenesis. Toxicon 2018; 148:149-154. [PMID: 29698757 DOI: 10.1016/j.toxicon.2018.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/16/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) have been implicated as the cause of enterotoxemias, such as hemolytic uremic syndrome in humans and edema disease (ED) of pigs. Stx1 and Stx2 are the most common types found in association with illness, but only Stx2e is associated with disease in the animal host. Porcine edema disease is a serious affection which can lead to dead causing great losses of weaned piglets. Stx2e is the most frequent Stx variant found in porcine feces and is considered the key virulence factor involved in the pathogenesis of porcine edema disease. Stx2e binds with higher affinity to Gb4 receptor than to Gb3 which could be due to amino acid changes in B subunit. Moreover, this subtype also binds to Forssman glycosphingolipids conferring upon Stx2e a unique promiscuous recognition feature. Manifestations of edema disease are caused by systemic effects of Stx2e with no significant morphologic changes in enterocytes. Endothelial cell necrosis in the brain is an early event in the pathogenesis of ED caused by Stx2e-producing STEC strains. Further studies are needed to generate techniques and tools which allow to understand the circulation and ecology of STEC strains in pigs even in resistant animals for diagnostic and epidemiological purposes.
Collapse
|
20
|
Kieckens E, Rybarczyk J, Cox E, Vanrompay D. Antibacterial and immunomodulatory activities of bovine lactoferrin against Escherichia coli O157:H7 infections in cattle. Biometals 2018; 31:321-330. [PMID: 29442205 DOI: 10.1007/s10534-018-0082-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/06/2018] [Indexed: 12/27/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that causes food-borne disease in humans ranging from watery diarrhea to bloody diarrhea and severe hemorrhagic colitis, renal failure and hemolytic uremic syndrome. Cattle, the most important source of E. coli O157:H7 transmission to humans, harbor the bacteria in their gastrointestinal tract without showing clinical symptoms. Prevention of E. coli O157:H7 infections in ruminants could diminish the public health risk. However, there is no specific treatment available nor a vaccine or a therapeutic agent which completely prevents E. coli O157:H7 infections in cattle. This paper provides an overview of latest research data on eradicating enterohemorrhagic E. coli O157:H7 in ruminants by use of bovine lactoferrin administration. The article provides insights into the anti-microbial and immunomodulatory activities of bovine lactoferrin against E. coli O157:H7 infections in cattle.
Collapse
Affiliation(s)
- Evelien Kieckens
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Joanna Rybarczyk
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
21
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
22
|
Prevalence of Verocytotoxigenic Escherichia coli strains isolated from raw beef in southern Italy. Int J Food Microbiol 2017; 257:201-205. [DOI: 10.1016/j.ijfoodmicro.2017.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023]
|
23
|
Garcia-Castillo MD, Chinnapen DJF, Lencer WI. Membrane Transport across Polarized Epithelia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027912. [PMID: 28213463 DOI: 10.1101/cshperspect.a027912] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery.
Collapse
Affiliation(s)
| | - Daniel J-F Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| |
Collapse
|
24
|
|
25
|
Ferrando ML, Willemse N, Zaccaria E, Pannekoek Y, van der Ende A, Schultsz C. Streptococcal Adhesin P (SadP) contributes to Streptococcus suis adhesion to the human intestinal epithelium. PLoS One 2017; 12:e0175639. [PMID: 28407026 PMCID: PMC5391093 DOI: 10.1371/journal.pone.0175639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen, causing meningitis and septicemia. We previously demonstrated that the gastrointestinal tract (GIT) is an entry site for zoonotic S. suis infection. Here we studied the contribution of Streptococcal adhesin Protein (SadP) to host-pathogen interaction at GIT level. Methods SadP expression in presence of Intestinal Epithelial Cells (IEC) was compared with expression of other virulence factors by measuring transcript levels using quantitative Real Time PCR (qRT-PCR). SadP variants were identified by phylogenetic analysis of complete DNA sequences. The interaction of SadP knockout and complementation mutants with IEC was tested in vitro. Results Expression of sadP was significantly increased in presence of IEC. Sequence analysis of 116 invasive strains revealed five SadP sequence variants, correlating with genotype. SadP1, present in zoonotic isolates of clonal complex 1, contributed to binding to both human and porcine IEC and translocation across human IEC. Antibodies against the globotriaosylceramide Gb3/CD77 receptor significantly inhibited adhesion to human IEC. Conclusion SadP is involved in the host-pathogen interaction in the GIT. Differences between SadP variants may determine different affinities to the Gb3/CD77 host-receptor, contributing to variation in adhesion capacity to host IEC and thus to S. suis zoonotic potential.
Collapse
Affiliation(s)
- Maria Laura Ferrando
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Niels Willemse
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Edoardo Zaccaria
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Shridhar PB, Siepker C, Noll LW, Shi X, Nagaraja TG, Bai J. Shiga Toxin Subtypes of Non-O157 Escherichia coli Serogroups Isolated from Cattle Feces. Front Cell Infect Microbiol 2017; 7:121. [PMID: 28443248 PMCID: PMC5386980 DOI: 10.3389/fcimb.2017.00121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) are important foodborne pathogens responsible for human illnesses. Cattle are a major reservoir that harbor the organism in the hindgut and shed in the feces. Shiga toxins (Stx) are the primary virulence factors associated with STEC illnesses. The two antigenically distinct Stx types, Stx1 and Stx2, encoded by stx1 and stx2 genes, share approximately 56% amino acid sequence identity. Genetic variants exist within Stx1 and Stx2 based on differences in amino acid composition and in cytotoxicity. The objective of our study was to identify the stx subtypes in strains of STEC serogroups, other than O157, isolated from cattle feces. Shiga toxin gene carrying E. coli strains (n = 192), spanning 27 serogroups originating from cattle (n = 170) and human (n = 22) sources, were utilized in the study. Shiga toxin genes were amplified by PCR, sequenced, and nucleotide sequences were translated into amino acid sequences using CLC main workbench software. Shiga toxin subtypes were identified based on the amino acid motifs that define each subtype. Shiga toxin genotypes were also identified at the nucleotide level by in silico restriction fragment length polymorphism (RFLP). Of the total 192 STEC strains, 93 (48.4%) were positive for stx1 only, 43 (22.4%) for stx2 only, and 56 (29.2%) for both stx1 and stx2. Among the 149 strains positive for stx1, 132 (88.6%) were stx1a and 17 (11.4%) were stx1c. Shiga toxin 1a was the most common subtype of stx1 among cattle (87.9%; 123/140) and human strains (100%; 9/9) of non-O157 serogroups. Of the total 99 strains positive for stx2, 79 were stx2a (79.8%), 11 (11.1%) were stx2c, 12 (12.1%) were stx2d. Of the 170 strains originating from cattle feces, 58 (34.1%) were stx2a subtype, 11 (6.5%) were stx2c subtype, and 11 were of subtype stx2d (6.5%). All but one of the human strains were positive for stx2a. Three strains of cattle origin were positive for both stx2a and stx2d. In conclusion, a number of non-O157 STEC serogroups harbored by cattle possess a wide variety of Shiga toxin subtypes, with stx1a and stx2a being the most predominant stx subtypes occurring individually or in combination. Cattle are a reservoir of a number of non-O157 STEC serogroups and information on the Shiga toxin subtypes is useful in assessing the potential risk as human pathogens.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Chris Siepker
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Lance W Noll
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA.,Veterinary Diagnostic Laboratory, Kansas State UniversityManhattan, KS, USA
| |
Collapse
|
27
|
Ercoli L, Farneti S, Zicavo A, Mencaroni G, Blasi G, Striano G, Scuota S. Prevalence and characteristics of verotoxigenic Escherichia coli strains isolated from pigs and pork products in Umbria and Marche regions of Italy. Int J Food Microbiol 2016; 232:7-14. [DOI: 10.1016/j.ijfoodmicro.2016.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
28
|
Affinity-Based Screening of Tetravalent Peptides Identifies Subtype-Selective Neutralizers of Shiga Toxin 2d, a Highly Virulent Subtype, by Targeting a Unique Amino Acid Involved in Its Receptor Recognition. Infect Immun 2016; 84:2653-61. [PMID: 27382021 DOI: 10.1128/iai.00149-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can be classified into two subgroups, Stx1 and Stx2, each consisting of various closely related subtypes. Stx2 subtypes Stx2a and Stx2d are highly virulent and linked with serious human disorders, such as acute encephalopathy and hemolytic-uremic syndrome. Through affinity-based screening of a tetravalent peptide library, we previously developed peptide neutralizers of Stx2a in which the structure was optimized to bind to the B-subunit pentamer. In this study, we identified Stx2d-selective neutralizers by targeting Asn16 of the B subunit, an amino acid unique to Stx2d that plays an essential role in receptor binding. We synthesized a series of tetravalent peptides on a cellulose membrane in which the core structure was exactly the same as that of peptides in the tetravalent library. A total of nine candidate motifs were selected to synthesize tetravalent forms of the peptides by screening two series of the tetravalent peptides. Five of the tetravalent peptides effectively inhibited the cytotoxicity of Stx2a and Stx2d, and notably, two of the peptides selectively inhibited Stx2d. These two tetravalent peptides bound to the Stx2d B subunit with high affinity dependent on Asn16. The mechanism of binding to the Stx2d B subunit differed from that of binding to Stx2a in that the peptides covered a relatively wide region of the receptor-binding surface. Thus, this highly optimized screening technique enables the development of subtype-selective neutralizers, which may lead to more sophisticated treatments of infections by Stx-producing EHEC.
Collapse
|
29
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
AB5 Preassembly Is Not Required for Shiga Toxin Activity. J Bacteriol 2016; 198:1621-1630. [PMID: 27002129 DOI: 10.1128/jb.00918-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/15/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major cause of foodborne illness, including the life-threatening complication hemolytic-uremic syndrome. The German outbreak in 2011 resulted in nearly 4,000 cases of infection, with 54 deaths. Two forms of Stx, Stx1 and Stx2, differ in potency, and subtype Stx2a is most commonly associated with fatal human disease. Stx is considered to be an AB5 toxin. The single A (enzymatically active) subunit inhibits protein synthesis by cleaving a catalytic adenine from the eukaryotic rRNA. The B (binding) subunit forms a homopentamer and mediates cellular association and toxin internalization by binding to the glycolipid globotriaosylceramide (Gb3). Both subunits are essential for toxicity. Here we report that unlike other AB5 toxin family members, Stx is produced by STEC as unassembled A and B subunits. A preformed AB5 complex is not required for cellular toxicity or in vivo toxicity to mice, and toxin assembly likely occurs at the cell membrane. We demonstrate that disruption of A- and B-subunit association by use of A-subunit peptides that lack enzymatic activity can protect mice from lethal doses of toxin. Currently, no treatments have been proven to be effective for hemolytic-uremic syndrome. Our studies demonstrate that agents that interfere with A- and B-subunit assembly may have therapeutic potential. Shiga toxin (Stx) produced by pathogenic Escherichia coli is considered to be an AB5 heterohexamer; however, no known mechanisms ensure AB5 assembly. Stx released by E. coli is not in the AB5 conformation and assembles at the receptor interface. Thus, unassembled Stx can impart toxicity. This finding shows that preventing AB5 assembly is a potential treatment for Stx-associated illnesses. IMPORTANCE Complications due to Shiga toxin are frequently fatal, and at present, supportive care is the only treatment option. Furthermore, antibiotic treatment is contraindicated due to the ability of antibiotics to amplify bacterial expression of Shiga toxin. We report, contrary to prevailing assumptions, that Shiga toxin produced by STEC circulates as unassembled A and B subunits at concentrations that are lethal to mice. Similar to the case for anthrax toxin, assembly occurs on receptors expressed on the surfaces of mammalian target cells. Disruption of Shiga toxin assembly by use of A-subunit peptides that lack enzymatic activity protects mice from lethal challenge with Shiga toxin, suggesting a new approach for development of therapeutics.
Collapse
|
31
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
32
|
Skinner C, Patfield S, Khalil R, Kong Q, He X. New Monoclonal Antibodies against a Novel Subtype of Shiga Toxin 1 Produced by Enterobacter cloacae and Their Use in Analysis of Human Serum. mSphere 2016; 1:e00099-15. [PMID: 27303707 PMCID: PMC4863616 DOI: 10.1128/msphere.00099-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 01/14/2023] Open
Abstract
Shiga toxin (Stx) is a major virulence factor of several bacterial pathogens that cause potentially fatal illness, including Escherichia coli and Shigella spp. The continual emergence of new subtypes of Stxs presents challenges for the clinical diagnosis of infections caused by Stx-producing organisms. Here, we report the development of four new monoclonal antibodies (MAbs) against Stx1e, a novel subtype of Stx1 that was produced by an Enterobacter cloacae strain and had limited reactivity with existing anti-Stx1 antibodies. Western blot analysis indicates that these MAbs were Stx1 specific, bound to the A subunit, and had distinct preferences for subtypes of Stx1. Of the four MAbs, Stx1e-2 was capable of partially neutralizing cytotoxicities derived from Stx1e in Vero cells. Enzyme-linked immunosorbent assays assembled with these high-affinity MAbs detected Stx1e at concentrations as low as 4.8 pg/ml in phosphate-buffered saline and 53.6 pg/ml in spiked human serum samples and were also capable of distinguishing Stx1e-producing strains in enriched cultures. These assays may therefore have clinical value in diagnosing Stx1e-producing bacterial infection. Additionally, characteristics of Stx1e, such as the origin of stx1e genes, conditions for toxin expression, receptor binding, and cytotoxicity, were investigated with the new antibodies developed in this study. This information should be useful for further understanding the clinical significance and prevalence of Stx1e-harboring E. cloacae and other organisms. IMPORTANCE Stxs are among the most clinically important virulence factors of Shigella and enterohemorrhagic Escherichia coli. There are many varieties of Stx, and although Stx1a and Stx2a are the most common and widely distributed types of Stx, new variants of Stx are continually emerging. These new variants of Stx can be challenging to detect, since most Stx detection kits are optimized for the detection of Stx1a and Stx2a. Stx1e, recently discovered in an atypical host (Enterobacter cloacae), is undetectable by many Stx assays. To formulate new assays for the detection of Stx1e, we generated four new MAbs that recognize this Stx subtype. Using these antibodies, we generated an assay capable of detecting Stx1e at low picogram-per-milliliter concentrations. This assay is also compatible with a human serum matrix, suggesting that it may have utility for the clinical detection and diagnosis of Stx1e-associated infections.
Collapse
Affiliation(s)
- Craig Skinner
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, USA
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, USA
| | - Rowaida Khalil
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, USA
| | - Qiulian Kong
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, USA
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, USA
| |
Collapse
|
33
|
The Dramatic Modulatory Role of the 2'N Substitution of the Terminal Amino Hexose of Globotetraosylceramide in Determining Binding by Members of the Verotoxin Family. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2030529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Ercoli L, Farneti S, Ranucci D, Scuota S, Branciari R. Role of Verocytotoxigenic Escherichia Coli in the Swine Production Chain. Ital J Food Saf 2015; 4:5156. [PMID: 27800398 PMCID: PMC5076656 DOI: 10.4081/ijfs.2015.5156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/02/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe clinical diseases in humans, such as haemorrhagic colitis (HC) and haemolytic-uremic syndrome (HUS). Although ruminants, primarily cattle, have been suggested as typical reservoirs of STEC, many food products of other origins, including pork products, have been confirmed as vehicles for STEC transmission. Only in rare cases, pork consumption is associated with severe clinical symptoms caused by high pathogenic STEC strains. However, in these outbreaks, it is unknown whether the contamination of food products occurs during swine processing or via cross-contamination from foodstuffs of different sources. In swine, STEC plays an important role in the pathogenesis of oedema disease. In particular a Shiga toxin subtype, named stx2e, it is considered as a key factor involved in the damage of swine endothelial cells. On the contrary, stx2e-producing Escherichia coli has rarely been isolated in humans, and usually only from asymptomatic carriers or from patients with mild symptoms, such as uncomplicated diarrhoea. In fact, the presence of gene stx2e, encoding for stx2e, has rarely been reported in STEC strains that cause HUS. Moreover, stx2e-producing STEC isolated from humans and pigs were found to differ in serogroup, their virulence profile and interaction with intestinal epithelial cells. Because of the limited epidemiologic data of STEC in swine and the increasing role of non-O157 STEC in human illnesses, the relationship between swine STEC and human disease needs to be further investigated.
Collapse
Affiliation(s)
- Laura Ercoli
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | - Silvana Farneti
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Italy
| | - Stefania Scuota
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | | |
Collapse
|
35
|
Basu D, Tumer NE. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins (Basel) 2015; 7:1467-85. [PMID: 25938272 PMCID: PMC4448158 DOI: 10.3390/toxins7051467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity.
Collapse
Affiliation(s)
- Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|