1
|
Chen J, Liu L, Wang G, Chen G, Liu X, Li M, Han L, Song W, Wang S, Li C, Wang Z, Huang Y, Gu C, Yang Z, Zhou Z, Zhao J, Zhang X. The AGAMOUS-LIKE 16-GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber. THE PLANT CELL 2024; 36:2689-2708. [PMID: 38581430 PMCID: PMC11218829 DOI: 10.1093/plcell/koae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chuang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Yang Q, Wu X, Gao Y, Ni J, Li J, Pei Z, Bai S, Teng Y. PpyABF3 recruits the COMPASS-like complex to regulate bud dormancy maintenance via integrating ABA signaling and GA catabolism. THE NEW PHYTOLOGIST 2023; 237:192-203. [PMID: 36151925 DOI: 10.1111/nph.18508] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Bud dormancy is essential for perennial trees that survive the cold winters and to flower on time in the following spring. Histone modifications have been reported to be involved in the control of the dormancy cycle and DAM/SVPs are considered targets. However, how the histone modification marks are added to the specific gene loci during bud dormancy cycle is still unknown. Using yeast-two hybrid library screening and co-immunoprecipitation assays, we found that PpyABF3, a key protein regulating bud dormancy, recruits Complex of Proteins Associated with Set1-like complex via interacting with PpyWDR5a, which increases the H3K4me3 deposition at DAM4 locus. Chromatin immunoprecipitation-quantitative polymerase chain reaction showed that PpyGA2OX1 was downstream gene of PpyABF3 and it was also activated by H3K4me3 deposition. Silencing of GA2OX1 in pear calli and pear buds resulted in a similar phenotype with silencing of ABF3. Furthermore, overexpression of PpyWDR5a increased H3K4me3 levels at DAM4 and GA2OX1 loci and inhibited the growth of pear calli, whereas silencing of PpyWDR5a in pear buds resulted in a higher bud-break percentage. Our findings provide new insights into how H3K4me3 marks are added to dormancy-related genes in perennial woody plants and reveal a novel mechanism by which ABF3 integrates abscisic acid signaling and gibberellic acid catabolism during bud dormancy maintenance.
Collapse
Affiliation(s)
- Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Pei
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
3
|
Sun L, Nie T, Chen Y, Yin Z. From Floral Induction to Blooming: The Molecular Mysteries of Flowering in Woody Plants. Int J Mol Sci 2022; 23:ijms231810959. [PMID: 36142871 PMCID: PMC9500781 DOI: 10.3390/ijms231810959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Flowering is a pivotal developmental process in response to the environment and determines the start of a new life cycle in plants. Woody plants usually possess a long juvenile nonflowering phase followed by an adult phase with repeated flowering cycles. The molecular mechanism underlying flowering regulation in woody plants is believed to be much more complex than that in annual herbs. In this review, we briefly describe the successive but distinct flowering processes in perennial trees, namely the vegetative phase change, the floral transition, floral organogenesis, and final blooming, and summarize in detail the most recent advances in understanding how woody plants regulate flowering through dynamic gene expression. Notably, the florigen gene FLOWERING LOCUS T(FT) and its antagonistic gene TERMINAL FLOWER 1 (TFL1) seem to play a central role in various flowering transition events. Flower development in different taxa requires interactions between floral homeotic genes together with AGL6 conferring floral organ identity. Finally, we illustrate the issues and corresponding measures of flowering regulation investigation. It is of great benefit to the future study of flowering in perennial trees.
Collapse
Affiliation(s)
- Liyong Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Department of Biology, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Tangjie Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zengfang Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-85427316
| |
Collapse
|
4
|
Li Y, An S, Cheng Q, Zong Y, Chen W, Guo W, Zhang L. Analysis of Evolution, Expression and Genetic Transformation of TCP Transcription Factors in Blueberry Reveal That VcTCP18 Negatively Regulates the Release of Flower Bud Dormancy. FRONTIERS IN PLANT SCIENCE 2021; 12:697609. [PMID: 34305986 PMCID: PMC8299413 DOI: 10.3389/fpls.2021.697609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/15/2021] [Indexed: 05/23/2023]
Abstract
Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTORS (TCP) transcription factors have versatile functions in plant growth, development and response to environmental stress. Despite blueberry's value as an important fruit crop, the TCP gene family has not been systematically studied in this plant. The current study identified blueberry TCP genes (VcTCPs) using genomic data from the tetraploid blueberry variety 'Draper'; a total of 62 genes were obtained. Using multiple sequence alignment, conserved motif, and gene structure analyses, family members were divided into two subfamilies, of which class II was further divided into two subclasses, CIN and TB1. Synteny analysis showed that genome-wide or segment-based replication played an important role in the expansion of the blueberry TCP gene family. The expression patterns of VcTCP genes during fruit development, flower bud dormancy release, hormone treatment, and tissue-specific expression were analyzed using RNA-seq and qRT-PCR. The results showed that the TB1 subclass members exhibited a certain level of expression in the shoot, leaf, and bud; these genes were not expressed during fruit development, but transcript levels decreased uniformly during the release of flower bud dormancy by low-temperature accumulation. The further transgenic experiments showed the overexpression of VcTCP18 in Arabidopsis significantly decreased the seed germination rate in contrast to the wild type. The bud dormancy phenomena as late-flowering, fewer rosettes and main branches were also observed in transgenic plants. Overall, this study provides the first insight into the evolution, expression, and function of VcTCP genes, including the discovery that VcTCP18 negatively regulated bud dormancy release in blueberry. The results will deepen our understanding of the function of TCPs in plant growth and development.
Collapse
Affiliation(s)
- Yongqiang Li
- Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Shuang An
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qiangqiang Cheng
- Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Yu Zong
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Wenrong Chen
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Weidong Guo
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Lu Zhang
- Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, Teng Y. Bud endodormancy in deciduous fruit trees: advances and prospects. HORTICULTURE RESEARCH 2021; 8:139. [PMID: 34078882 PMCID: PMC8172858 DOI: 10.1038/s41438-021-00575-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
Bud endodormancy is a complex physiological process that is indispensable for the survival, growth, and development of deciduous perennial plants. The timely release of endodormancy is essential for flowering and fruit production of deciduous fruit trees. A better understanding of the mechanism of endodormancy will be of great help in the artificial regulation of endodormancy to cope with climate change and in creating new cultivars with different chilling requirements. Studies in poplar have clarified the mechanism of vegetative bud endodormancy, but the endodormancy of floral buds in fruit trees needs further study. In this review, we focus on the molecular regulation of endodormancy induction, maintenance and release in floral buds of deciduous fruit trees. We also describe recent advances in quantitative trait loci analysis of chilling requirements in fruit trees. We discuss phytohormones, epigenetic regulation, and the detailed molecular network controlling endodormancy, centered on SHORT VEGETATIVE PHASE (SVP) and Dormancy-associated MADS-box (DAM) genes during endodormancy maintenance and release. Combining previous studies and our observations, we propose a regulatory model for bud endodormancy and offer some perspectives for the future.
Collapse
Affiliation(s)
- Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Takaya Moriguchi
- Shizuoka Professional University of Agriculture, Iwata, Shizuoka, 438-0803, Japan
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
6
|
Morata J, Marín F, Payet J, Casacuberta JM. Plant Lineage-Specific Amplification of Transcription Factor Binding Motifs by Miniature Inverted-Repeat Transposable Elements (MITEs). Genome Biol Evol 2018; 10:1210-1220. [PMID: 29659815 PMCID: PMC5950925 DOI: 10.1093/gbe/evy073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transposable elements are one of the main drivers of plant genome evolution. Transposon insertions can modify the gene coding capacity or the regulation of their expression, the latter being a more subtle effect, and therefore particularly useful for evolution. Transposons have been show to contain transcription factor binding sites that can be mobilized upon transposition with the potential to integrate new genes into transcriptional networks. Miniature inverted-repeat transposable elements (MITEs) are a type of noncoding DNA transposons that could be particularly suited as a vector to mobilize transcription factor binding sites and modify transcriptional networks during evolution. MITEs are small in comparison to other transposons and can be excised, which should make them less mutagenic when inserting into promoters. On the other hand, in spite of their cut-and-paste mechanisms of transposition, they can reach very high copy numbers in genomes. We have previously shown that MITEs have amplified and redistributed the binding motif of the E2F transcription factor in different Brassicas. Here, we show that MITEs have amplified and mobilized the binding motifs of the bZIP60 and PIF3 transcription factors in peach and Prunus mume, and the TCP15/23 binding motif in tomato. Our results suggest that MITEs could have rewired new genes into transcriptional regulatory networks that are responsible for important adaptive responses and breeding traits in plants, such as stress responses, flowering time, or fruit ripening. The results presented here therefore suggest a general impact of MITEs in the evolution of transcriptional regulatory networks in plants.
Collapse
Affiliation(s)
- Jordi Morata
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Fatima Marín
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Josep M Casacuberta
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
7
|
Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing. Sci Rep 2018. [PMID: 29540706 PMCID: PMC5852092 DOI: 10.1038/s41598-018-22415-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tree peony, one of the most valuable horticultural and medicinal plants in the world, has to go through winter to break dormancy. Growing studies from molecular aspects on dormancy release process have been reported, but inadequate study has been done on miRNA-guided regulation in tree peony. In this study, high-throughput sequencing was employed to identify and characterize miRNAs in three libraries (6 d, 18 d and 24 d chilling treatments). There were 7,122, 10,076 and 9,097 unique miRNA sequences belonging to 52, 87 and 68 miRNA families, respectively. A total of 32 conserved miRNAs and 17 putative novel miRNAs were identified during dormancy release. There were 771 unigenes as potential targets of 62 miRNA families. Total 112 known miRNAs were differentially expressed, of which 55 miRNAs were shared among three libraries and 28 miRNAs were only found in 18 d chilling duration library. The expression patterns of 15 conserved miRNAs were validated and classified into four types by RT-qPCR. Combining with our microarray data under same treatments, five miRNAs (miR156k, miR159a, miR167a, miR169a and miR172a) were inversely correlated to those of their target genes. Our results would provide new molecular basis about dormancy release in tree peony.
Collapse
|
8
|
Sun MY, Fu XL, Tan QP, Liu L, Chen M, Zhu CY, Li L, Chen XD, Gao DS. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:54-70. [PMID: 27107182 DOI: 10.1016/j.plaphy.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Dormancy is a biological characteristic developed to resist the cold conditions in winter. The bZIP transcription factors are present exclusively in eukaryotes and have been identified and classified in many species. bZIP proteins are known to regulate numerous biological processes, however, the role of bZIP in bud dodormancy has not been studied extensively. In total, 50 PpbZIP transcription factor-encoding genes were identified and categorized them into 10 groups (A-I and S). Similar intron/exon structures, additional conserved motifs, and DNA-binding site specificity supported our classification scheme. Additionally, chromosomal distribution and collinearity analyses suggested that expansion of the PpbZIP transcription factor family was due to segment/chromosomal duplications. We also predicted the dimerization properties based on characteristic features of the leucine zipper and classified PpbZIP proteins into 23 subfamilies. Furthermore, qRT-PCR results indicated that PpbZIPs genes may be involved in regulating dormancy. The same gene of different species might participate in different regulating networks through interactions with specific partners. Our expression profiling results complemented the microarray data, suggesting that co-expression patterns of bZIP transcription factors during dormancy differed among deciduous fruit trees. Our findings further clarify the molecular characteristics of the PpbZIP transcription factor family, including potential gene functions during dormancy. This information may facilitate further research on the evolutionary history and biological functions of bZIP proteins in peach and other rosaceae plants.
Collapse
Affiliation(s)
- Ming-Yue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Xi-Ling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Qiu-Ping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Li Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Cui-Ying Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Xiu-De Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China
| | - Dong-Sheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
9
|
Chen M, Tan Q, Sun M, Li D, Fu X, Chen X, Xiao W, Li L, Gao D. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Mol Genet Genomics 2016; 291:1319-32. [PMID: 26951048 PMCID: PMC4875958 DOI: 10.1007/s00438-016-1171-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Bud dormancy in deciduous fruit trees is an important adaptive mechanism for their survival in cold climates. The WRKY genes participate in several developmental and physiological processes, including dormancy. However, the dormancy mechanisms of WRKY genes have not been studied in detail. We conducted a genome-wide analysis and identified 58 WRKY genes in peach. These putative genes were located on all eight chromosomes. In bioinformatics analyses, we compared the sequences of WRKY genes from peach, rice, and Arabidopsis. In a cluster analysis, the gene sequences formed three groups, of which group II was further divided into five subgroups. Gene structure was highly conserved within each group, especially in groups IId and III. Gene expression analyses by qRT-PCR showed that WRKY genes showed different expression patterns in peach buds during dormancy. The mean expression levels of six WRKY genes (Prupe.6G286000, Prupe.1G393000, Prupe.1G114800, Prupe.1G071400, Prupe.2G185100, and Prupe.2G307400) increased during endodormancy and decreased during ecodormancy, indicating that these six WRKY genes may play a role in dormancy in a perennial fruit tree. This information will be useful for selecting fruit trees with desirable dormancy characteristics or for manipulating dormancy in genetic engineering programs.
Collapse
Affiliation(s)
- Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
10
|
Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica). FRONTIERS IN PLANT SCIENCE 2015; 6:1248. [PMID: 26793222 PMCID: PMC4707674 DOI: 10.3389/fpls.2015.01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/21/2015] [Indexed: 05/07/2023]
Abstract
Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.
Collapse
Affiliation(s)
- Dongling Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Zhenzhen Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Peiyong Du
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Wei Xiao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Qiuping Tan
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Ling Li
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- *Correspondence: Ling Li
| | - Dongsheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- Dongsheng Gao
| |
Collapse
|