1
|
Ieda T, Tazawa H, Okabayashi H, Yano S, Shigeyasu K, Kuroda S, Ohara T, Noma K, Kishimoto H, Nishizaki M, Kagawa S, Shirakawa Y, Saitou T, Imamura T, Fujiwara T. Visualization of epithelial-mesenchymal transition in an inflammatory microenvironment-colorectal cancer network. Sci Rep 2019; 9:16378. [PMID: 31705021 PMCID: PMC6841984 DOI: 10.1038/s41598-019-52816-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process by which epithelial cells acquire mesenchymal characteristics. In malignant tumors, EMT is crucial for acquisition of a mesenchymal phenotype with invasive and metastatic properties, leading to tumor progression. An inflammatory microenvironment is thought to be responsible for the development and progression of colorectal cancer (CRC); however, the precise role of inflammatory microenvironments in EMT-related CRC progression remains unclear. Here, we show the spatiotemporal visualization of CRC cells undergoing EMT using a fluorescence-guided EMT imaging system in which the mesenchymal vimentin promoter drives red fluorescent protein (RFP) expression. An inflammatory microenvironment including TNF-α, IL-1β, and cytokine-secreting inflammatory macrophages induced RFP expression in association with the EMT phenotype in CRC cells. In vivo experiments further demonstrated the distribution of RFP-positive CRC cells in rectal and metastatic tumors. Our data suggest that the EMT imaging system described here is a powerful tool for monitoring EMT in inflammatory microenvironment-CRC networks.
Collapse
Affiliation(s)
- Takeshi Ieda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, 700-8558, Japan.
| | - Hiroki Okabayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Pathology & Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Masahiko Nishizaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, 791-0295, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, 791-0295, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
2
|
Chen Z, Peng Y, Xie X, Feng Y, Li T, Li S, Qin X, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Dendrimer-Functionalized Superparamagnetic Nanobeacons for Real-Time Detection and Depletion of HSP90α mRNA and MR Imaging. Am J Cancer Res 2019; 9:5784-5796. [PMID: 31534519 PMCID: PMC6735378 DOI: 10.7150/thno.36545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background & Aims: The use of antisense oligonucleotide-based nanosystems for the detection and regulation of tumor-related gene expression is thought to be a promising approach for cancer diagnostics and therapies. Herein, we report that a cubic-shaped iron oxide nanoparticle (IONC) core nanobeacon is capable of delivering an HSP90α mRNA-specific molecular beacon (HSP90-MB) into living cells and enhancing T2-weighted MR imaging in a tumor model. Methods: The nanobeacons were built with IONC, generation 4 poly(amidoamine) dendrimer (G4 PAMAM), Pluronic P123 (P123) and HSP90-MB labeled with a quencher (BHQ1) and a fluorophore (Alexa Fluor 488). Results: After internalization by malignant cells overexpressing HSP90α, the fluorescence of the nanobeacon was recovered, thus distinguishing cancer cells from normal cells. Meanwhile, MB-mRNA hybridization led to enzyme activity that degraded DNA/RNA hybrids and resulted in downregulation of HSP90α at both the mRNA and protein levels. Furthermore, the T2-weighted MR imaging ability of the nanobeacons was increased after PAMAM and P123 modification, which exhibited good biocompatibility and hemocompatibility. Conclusions: The nanobeacons show promise for applicability to tumor-related mRNA detection, regulation and multiscale imaging in the fields of cancer diagnostics and therapeutics.
Collapse
|
3
|
Abstract
Similar to embryonic development, changes in cell phenotypes defined as an epithelial to mesenchymal transition (EMT) have been shown to play a role in the tumorigenic process. Although the first description of EMT in cancer was in cell cultures, evidence for its role in vivo is now widely reported but also actively debated. Moreover, current research has exemplified just how complex this phenomenon is in cancer, leaving many exciting, open questions for researchers to answer in the future. With these points in mind, we asked four scientists for their opinions on the role of EMT in cancer and the challenges faced by scientists working in this fast-moving field.
Collapse
Affiliation(s)
- Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - M Angela Nieto
- Instituto de Neurociencias CSIC-UMH, Avda. Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Ludwig Massachusetts Institute for Technology (MIT) Center for Molecular Oncology and MIT Department of Biology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
4
|
Li WM, Chan CM, Miller AL, Lee CH. Dual Functional Roles of Molecular Beacon as a MicroRNA Detector and Inhibitor. J Biol Chem 2017; 292:3568-3580. [PMID: 28100783 PMCID: PMC5339743 DOI: 10.1074/jbc.m116.765776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs are essential in many cellular processes. The ability to detect microRNAs is important for understanding its function and biogenesis. This study is aimed at using a molecular beacon to detect miR-430 in developing zebrafish embryos as a proof of principle. miR-430 is crucial for the clearance of maternal mRNA during maternal zygotic transition in embryonic development. Despite its known function, the temporal and spatial expression of miR-430 remains unclear. We used various imaging techniques, including laser scanning confocal microscopy, spinning disk, and lightsheet microscopy, to study the localization of miR-430 and any developmental defects possibly caused by the molecular beacon. Our results show that miR-430 is expressed early in development and is localized in distinct cytoplasmic granules where its target mRNA can be detected. We also show that the designed molecular beacon can inhibit the function of miR-430 and cause developmental defect in the brain, notochord, heart, and kidney, depending on the delivery site within the embryo, suggesting that miR-430 plays a diverse role in embryonic morphogenesis. When compared with morpholino, molecular beacon is 2 orders of magnitude more potent in inhibiting miR-430. Thus, our results reveal that in addition to being used as a valuable tool for the detection of microRNAs in vivo, molecular beacons can also be employed to inhibit microRNAs in a specific manner.
Collapse
Affiliation(s)
- Wai Ming Li
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada and
| | - Ching-Man Chan
- the Division of Life Science and Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Andrew L Miller
- the Division of Life Science and Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chow H Lee
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada and
| |
Collapse
|
5
|
Zhao Z, Zhu X, Cui K, Mancuso J, Federley R, Fischer K, Teng G, Mittal V, Gao D, Zhao H, Wong ST. In Vivo Visualization and Characterization of Epithelial-Mesenchymal Transition in Breast Tumors. Cancer Res 2016; 76:2094-2104. [PMID: 26893478 DOI: 10.1158/0008-5472.can-15-2662] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/04/2016] [Indexed: 12/11/2022]
Abstract
The activation of the epithelial-to-mesenchymal transition (EMT) program is a critical step in cancer progression and metastasis, but visualization of this process at the single-cell level, especially in vivo, remains challenging. We established an in vivo approach to track the fate of tumor cells based on a novel EMT-driven fluorescent color switching breast cancer mouse model and intravital two-photon laser scanning microscopy. Specifically, the MMTV-PyMT, Rosa26-RFP-GFP, and Fsp1-Cre triple transgenic mouse model was used to monitor the conversion of RFP-positive epithelial cells to GFP-positive mesenchymal cells in mammary tumors under the control of the Fsp1 (ATL1) promoter, a gate-keeper of EMT initiation. RFP-positive cells were isolated from the tumors, sorted, and transplanted into mammary fat pads of SCID mice to monitor EMT during breast tumor formation. We found that the conversion from RFP- to GFP-positive and spindle-shaped cells was a gradual process, and that GFP-positive cells preferentially localized close to blood vessels, independent of tumor size. Furthermore, cells undergoing EMT expressed high levels of the HGF receptor, c-Met, and treatment of RFP-positive cells with the c-Met inhibitor, cabozantinib, suppressed the RFP-to-GFP conversion in vitro Moreover, administration of cabozantinib to mice with palpable RFP-positive tumors resulted in a silent EMT phenotype whereby GFP-positive cells exhibited reduced motility, leading to suppressed tumor growth. In conclusion, our imaging technique provides a novel opportunity for visualizing tumor EMT at the single-cell level and may help to reveal the intricacies underlying tumor dynamics and treatment responses. Cancer Res; 76(8); 2094-104. ©2016 AACR.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Radiology, Zhong-Da Hospital, Southeast University, Nanjing 210009, China.,Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xiaoping Zhu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Kemi Cui
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA
| | - James Mancuso
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Richard Federley
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Kari Fischer
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York 10065, USA
| | - Gaojun Teng
- Department of Radiology, Zhong-Da Hospital, Southeast University, Nanjing 210009, China
| | - Vivek Mittal
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York 10065, USA
| | - Dingcheng Gao
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York 10065, USA
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA.,NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Stephen Tc Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA.,NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
6
|
Molecular mechanisms of microRNAs in regulating epithelial-mesenchymal transitions in human cancers. Cancer Lett 2015; 371:301-13. [PMID: 26683775 DOI: 10.1016/j.canlet.2015.11.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
The epithelial-mesenchymal transition (EMT) provides a strong driving force in the progression of various human cancers and the development of chemoresistance. Recently, numbers of studies have demonstrated that microRNAs (miRNAs), by post-transcriptionally silencing EMT-related molecules, can promote or inhibit the EMT process and play pivotal roles in effectively manipulating the occurrence, development, invasion, and metastasis of cancers. MiRNAs can also control the EMT or be controlled by genetic modification and mutual regulation, especially negative feedback. Therefore, miRNAs can be viewed as either oncogenes or tumor suppressor genes to facilitate or retard the EMT, resulting in far-reaching impact on tumor metastasis and effective diagnosis, treatment, and prognosis.
Collapse
|
7
|
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015; 115:10530-74. [PMID: 26313138 DOI: 10.1021/acs.chemrev.5b00321] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenxia M Guan
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey N Barnaby
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Baril P, Ezzine S, Pichon C. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities. Int J Mol Sci 2015; 16:4947-72. [PMID: 25749473 PMCID: PMC4394458 DOI: 10.3390/ijms16034947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.
Collapse
Affiliation(s)
- Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Safia Ezzine
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| |
Collapse
|
9
|
Zhu HZ, An JH, Yao Q, Han J, Li XT, Jiang FL, Chen GP, Peng LN, Li YS, Sun JG, Chen ZT. Chitosan combined with molecular beacon for mir-155 detection and imaging in lung cancer. Molecules 2014; 19:14710-22. [PMID: 25230125 PMCID: PMC6270718 DOI: 10.3390/molecules190914710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the major cause of cancer-related deaths worldwide, thus developing effective methods for its early diagnosis is urgently needed. In recent years, microRNAs (miRNAs, miR) have been reported to play important roles in carcinogenesis and have become potential biomarkers for cancer diagnosis and treatment. Molecular beacon (MB) technology is a universal technology to detect DNA/RNA expression in living cells. As a natural polymers, chitosan (CS) nanoparticles could be used as a carrier for safe delivery of nucleic acid. In this study, we developed a probe using nanoparticles of miR-155 MB self assembled with CS (CS-miR-155 MB) to image the expression of miR-155 in cancer cells. Hybridization assay showed that the locked nucleic acid (LAN) modified miR-155 MB could target miR-155 effectively and sensitively. The miR-155 MB self-assembly with CS nanoparticles formed stable complexes at the proper weight ratio. The CS nanoparticles showed higher fluorescence intensity and transfection efficiency than the lipid-based formulation transfection agent by confocal microscopy and flow cytometry analysis. The CS-MB complexes were found to be easily synthesized and exhibited strong enzymatic stability, efficient cellular uptake, high target selectivity and biocompatibility. The CS-MB complexes can also be applied in other cancers just by simply changing for a targeted miRNA highly expressed in those cancer cells. Therefore, it is a promising vehicle used for detecting miRNA expression in living cells.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Jiang-Hong An
- Department of Oncology, People's Liberation Army 532 Hospital, Huangshan 242700, China.
| | - Quan Yao
- Diagnosis and Treatment Center of Cancer, Chengdu Military General Hospital, Chengdu 646000, China.
| | - Jing Han
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Xue-Tao Li
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Fei-Long Jiang
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Guang-Peng Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Li-Na Peng
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yong-Sheng Li
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Jian-Guo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Zheng-Tang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|