1
|
Chamberlain R, Berio D, Mayer V, Chana K, Leymarie FF, Orgs G. A dot that went for a walk: People prefer lines drawn with human-like kinematics. Br J Psychol 2021; 113:105-130. [PMID: 34426976 PMCID: PMC9292284 DOI: 10.1111/bjop.12527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/08/2021] [Indexed: 11/28/2022]
Abstract
A dominant theory of embodied aesthetic experience (Freedberg & Gallese, 2007, Trends in Cognitive Sciences, 11, 197) posits that the appreciation of visual art is linked to the artist's movements when creating the artwork, yet a direct link between the kinematics of drawing actions and the aesthetics of drawing outcomes has not been experimentally demonstrated. Across four experiments, we measured aesthetic responses of students from arts and non-arts backgrounds to drawing movements generated from computational models of human writing. Experiment 1 demonstrated that human-like drawing movements with bell-shaped velocity profiles (Sigma Lognormal [SL] and Minimum Jerk [MJ]) are perceived as more natural and pleasant than movements with a uniform profile, and in both Experiments 1 and 2 movements that were perceived as more natural were also preferred. Experiment 3 showed that this effect persists if lower-level dynamic stimulus features are fully matched across experimental and control conditions. Furthermore, aesthetic preference for human-like movements were associated with greater perceptual fluency in Experiment 3, evidenced by unbiased estimations of the duration of natural movements. In Experiment 4, line drawings with visual features consistent with the dynamics of natural, human-like movements were preferred, but only by art students. Our findings directly link the aesthetics of human action to the visual aesthetics of drawings, but highlight the importance of incorporating artistic expertise into embodied accounts of aesthetic experience.
Collapse
Affiliation(s)
| | - Daniel Berio
- Department of Computing, Goldsmiths, University of London, UK
| | - Veronika Mayer
- Department of General and Experimental Psychology, LMU Munich, Germany
| | - Kirren Chana
- Department of Psychology, Goldsmiths, University of London, UK
| | | | - Guido Orgs
- Department of Psychology, Goldsmiths, University of London, UK
| |
Collapse
|
3
|
Serino A, Akselrod M, Salomon R, Martuzzi R, Blefari ML, Canzoneri E, Rognini G, van der Zwaag W, Iakova M, Luthi F, Amoresano A, Kuiken T, Blanke O. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain 2017; 140:2993-3011. [PMID: 29088353 DOI: 10.1093/brain/awx242] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/03/2017] [Indexed: 12/23/2022] Open
Abstract
Neuroprosthetics research in amputee patients aims at developing new prostheses that move and feel like real limbs. Targeted muscle and sensory reinnervation (TMSR) is such an approach and consists of rerouting motor and sensory nerves from the residual limb towards intact muscles and skin regions. Movement of the myoelectric prosthesis is enabled via decoded electromyography activity from reinnervated muscles and touch sensation on the missing limb is enabled by stimulation of the reinnervated skin areas. Here we ask whether and how motor control and redirected somatosensory stimulation provided via TMSR affected the maps of the upper limb in primary motor (M1) and primary somatosensory (S1) cortex, as well as their functional connections. To this aim, we tested three TMSR patients and investigated the extent, strength, and topographical organization of the missing limb and several control body regions in M1 and S1 at ultra high-field (7 T) functional magnetic resonance imaging. Additionally, we analysed the functional connectivity between M1 and S1 and of both these regions with fronto-parietal regions, known to be important for multisensory upper limb processing. These data were compared with those of control amputee patients (n = 6) and healthy controls (n = 12). We found that M1 maps of the amputated limb in TMSR patients were similar in terms of extent, strength, and topography to healthy controls and different from non-TMSR patients. S1 maps of TMSR patients were also more similar to normal conditions in terms of topographical organization and extent, as compared to non-targeted muscle and sensory reinnervation patients, but weaker in activation strength compared to healthy controls. Functional connectivity in TMSR patients between upper limb maps in M1 and S1 was comparable with healthy controls, while being reduced in non-TMSR patients. However, connectivity was reduced between S1 and fronto-parietal regions, in both the TMSR and non-TMSR patients with respect to healthy controls. This was associated with the absence of a well-established multisensory effect (visual enhancement of touch) in TMSR patients. Collectively, these results show how M1 and S1 process signals related to movement and touch are enabled by targeted muscle and sensory reinnervation. Moreover, they suggest that TMSR may counteract maladaptive cortical plasticity typically found after limb loss, in M1, partially in S1, and in their mutual connectivity. The lack of multisensory interaction in the present data suggests that further engineering advances are necessary (e.g. the integration of somatosensory feedback into current prostheses) to enable prostheses that move and feel as real limbs.
Collapse
Affiliation(s)
- Andrea Serino
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Department of Clinical Neurosciences, University Hospital Lausanne (CHUV), Switzerland
| | - Michel Akselrod
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Department of Clinical Neurosciences, University Hospital Lausanne (CHUV), Switzerland
| | - Roy Salomon
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Roberto Martuzzi
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Campus Biotech Geneva, Geneva, Switzerland
| | - Maria Laura Blefari
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland
| | - Elisa Canzoneri
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland
| | - Giulio Rognini
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Maria Iakova
- Département de l'appareil locomoteur, Clinique Romande de Réadaptation SUVA Care, Sion, Switzerland
| | - François Luthi
- Département de l'appareil locomoteur, Clinique Romande de Réadaptation SUVA Care, Sion, Switzerland
| | | | - Todd Kuiken
- Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Olaf Blanke
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Department of Neurology, University Hospital, Geneva, Switzerland
| |
Collapse
|