1
|
Hu WJ, Liu TW, Zhu CQ, Wu Q, Chen L, Lu HL, Jiang CK, Wei J, Shen GX, Zheng HL. Physiological, Proteomic Analysis, and Calcium-Related Gene Expression Reveal Taxus wallichiana var. mairei Adaptability to Acid Rain Stress Under Various Calcium Levels. FRONTIERS IN PLANT SCIENCE 2022; 13:845107. [PMID: 35386672 PMCID: PMC8978443 DOI: 10.3389/fpls.2022.845107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 06/11/2023]
Abstract
As one of the serious environmental problems worldwide, acid rain (AR) has always caused continuous damage to the forestry ecosystem. Studies have shown that AR can leach calcium ions from plants and soil. Calcium (Ca) is also a crucial regulator of the plant stress response, whereas there are few reports on how Ca regulates the response of AR-resistant woody plants to AR stress. In this study, by setting different exogenous Ca levels, we study the physiological and molecular mechanism of Ca in regulating the Taxus wallichiana var. mairei response to AR stress. Our results showed that low Ca level leads to photosynthesis, and antioxidant defense system decreases in T. wallichiana var. mairei leaves; however, these negative effects could be reversed at high Ca level. In addition, proteomic analyses identified 44 differentially expressed proteins in different Ca level treatments of T. wallichiana var. mairei under AR stress. These proteins were classified into seven groups, which include metabolic process, photosynthesis and energy pathway, cell rescue and defense, transcription and translation, protein modification and degradation, signal transduction, etc. Furthermore, the study found that low Ca level leads to an obvious increase of Ca-related gene expression under AR stress in T. wallichiana var. mairei using qRT-PCR analyses and however can be reversed at high Ca level. These findings would enrich and extend the Ca signaling pathways of AR stress in AR-resistant woody plants and are expected to have important theoretical and practical significance in revealing the mechanism of woody plants tolerating AR stress and protecting forestry ecosystem in soil environment under different Ca levels.
Collapse
Affiliation(s)
- Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting-Wu Liu
- School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Chun-Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qian Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education (MOE), College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hong-Ling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chen-Kai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guo-Xin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education (MOE), College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Liaquat F, Munis MFH, Arif S, Haroon U, Shi J, Saqib S, Zaman W, Che S, Liu Q. PacBio Single-Molecule Long-Read Sequencing Reveals Genes Tolerating Manganese Stress in Schima superba Saplings. Front Genet 2021; 12:635043. [PMID: 33889177 PMCID: PMC8057201 DOI: 10.3389/fgene.2021.635043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022] Open
Abstract
Schima superba (Theaceae) is a subtropical evergreen tree and is used widely for forest firebreaks and gardening. It is a plant that tolerates salt and typically accumulates elevated amounts of manganese in the leaves. With large ecological amplitude, this tree species grows quickly. Due to its substantial biomass, it has a great potential for soil remediation. To evaluate the thorough framework of the mRNA, we employed PacBio sequencing technology for the first time to generate S. Superba transcriptome. In this analysis, overall, 511,759 full length non-chimeric reads were acquired, and 163,834 high-quality full-length reads were obtained. Overall, 93,362 open reading frames were obtained, of which 78,255 were complete. In gene annotation analyses, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Genes (COG), Gene Ontology (GO), and Non-Redundant (Nr) databases were allocated 91,082, 71,839, 38,914, and 38,376 transcripts, respectively. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT), and Coding Non-Coding Index (CNCI) databases and observed 8,551, 9,174, 20,720, and 18,669 lncRNAs, respectively. Moreover, nine genes were randomly selected for the expression analysis, which showed the highest expression of Gene 6 (Na_Ca_ex gene), and CAX (CAX-interacting protein 4) was higher in manganese (Mn)-treated group. This work provided significant number of full-length transcripts and refined the annotation of the reference genome, which will ease advanced genetic analyses of S. superba.
Collapse
Affiliation(s)
- Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Urooj Haroon
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wajid Zaman
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shengquan Che
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Qunlu Liu
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Alleviatory effects of silicon on the foliar micromorphology and anatomy of rice (Oryza sativa L.) seedlings under simulated acid rain. PLoS One 2017; 12:e0187021. [PMID: 29065171 PMCID: PMC5655354 DOI: 10.1371/journal.pone.0187021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
Silicon (Si) is a macroelement in plants. The biological effects and mitigation mechanisms of silicon under environmental stress have become hot topics. The main objectives of this study were to elucidate the roles of Si in alleviating the effects on the phenotype, micromorphology and anatomy of the leaves of rice seedlings under acid rain stress. The results indicated that the combined or single effects of Si and simulated acid rain (SAR) stress on rice roots depended on the concentration of Si and the intensity of the SAR stress. The combined or single effects of the moderate concentration of Si (2.0 mM) and light SAR (pH 4.0) enhanced the growth of the rice leaves and the development of the mesophyll cells, and the combined effects were stronger than those of the single treatments. The high concentration of Si (4.0 mM) and severe SAR (pH 3.0 or 2.0) exerted deleterious effects. The incorporation of Si (2.0 or 4.0 mM) into SAR at pH values of 3.0 or 2.0 promoted rice leaf growth, decreased necrosis spots, maintained the structure and function of the mesophyll cells, increased the epicuticular wax content and wart-like protuberance (WP) density, and improved the stomatal characteristics of the leaves of rice seedlings more than the SAR only treatments. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with the high concentration of Si (4.0 mM). The alleviatory effects were due to the enhancement of the mechanical barriers in the leaf epidermis.
Collapse
|
4
|
Roy SK, Cho SW, Kwon SJ, Kamal AHM, Kim SW, Oh MW, Lee MS, Chung KY, Xin Z, Woo SH. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum. PLoS One 2016; 11:e0150431. [PMID: 26919231 PMCID: PMC4769174 DOI: 10.1371/journal.pone.0150431] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants.
Collapse
Affiliation(s)
- Swapan Kumar Roy
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| | - Seong-Woo Cho
- Division of Rice Research, National Institute of Crop Science, Rural Development Administration, Suwon, Korea
| | - Soo Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| | - Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Sang-Woo Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| | - Myeong-Won Oh
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Moon-Soon Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheong-ju, Korea
| | - Keun-Yook Chung
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX, United States of America
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| |
Collapse
|
5
|
Hu W, Chen L, Qiu X, Lu H, Wei J, Bai Y, He N, Hu R, Sun L, Zhang H, Shen G. Morphological, Physiological and Proteomic Analyses Provide Insights into the Improvement of Castor Bean Productivity of a Dwarf Variety in Comparing with a High-Stalk Variety. FRONTIERS IN PLANT SCIENCE 2016; 7:1473. [PMID: 27746800 PMCID: PMC5040714 DOI: 10.3389/fpls.2016.01473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/15/2016] [Indexed: 05/16/2023]
Abstract
Ricinus communis displays a broad range of phenotypic diversity in size, with dwarf, common, and large-sized varieties. To better understand the differences in plant productivity between a high-stalk variety and a dwarf variety under normal growth conditions, we carried out a comparative proteomic study between Zhebi 100 (a high stalk variety) and Zhebi 26 (a dwarf variety) combined with agronomic and physiological analyses. Over 1000 proteins were detected, 38 of which differed significantly between the two varieties and were identified by mass spectrometry. Compared with Zhebi 100, we found that photosynthesis, energy, and protein biosynthesis related proteins decreased in abundance in Zhebi 26. The lower yield of the dwarf castor is likely related to its lower photosynthetic rate, therefore we hypothesize that the lower yield of the dwarf castor, in comparing to high stalk castor, could be increased by increasing planting density. Consequently, we demonstrated that at the higher planting density in Zhebi 26 (36,000 seedlings/hm2) can achieve a higher yield than that of Zhebi 100 (12,000 seedlings/hm2). Proteomic and physiological studies showed that for developing dwarf R. communis cultivar that is suitable for large scale-production (i.e., mechanical harvesting), it is imperative to identify the optimum planting density that will contribute to higher leaf area index, higher photosynthesis, and eventually higher productivity.
Collapse
Affiliation(s)
- Wenjun Hu
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Lin Chen
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xiaoyun Qiu
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongling Lu
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jia Wei
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yueqing Bai
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing, China
| | - Rongbin Hu
- Department of Biological Sciences, Texas Tech UniversityLubbock, TX, USA
| | - Li Sun
- Department of Biological Sciences, Texas Tech UniversityLubbock, TX, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech UniversityLubbock, TX, USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Guoxin Shen
| |
Collapse
|
6
|
Hu WJ, Wu Q, Liu X, Shen ZJ, Chen J, Liu TW, Chen J, Zhu CQ, Wu FH, Chen L, Wei J, Qiu XY, Shen GX, Zheng HL. Comparative Proteomic Analysis Reveals the Effects of Exogenous Calcium against Acid Rain Stress in Liquidambar formosana Hance Leaves. J Proteome Res 2015; 15:216-28. [PMID: 26616104 DOI: 10.1021/acs.jproteome.5b00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species.
Collapse
Affiliation(s)
- Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China.,Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Qian Wu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Xiang Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Zhi-Jun Shen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Ting-Wu Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Chun-Quan Zhu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| | - Fei-Hua Wu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China.,College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou, Zhejiang 310036, P. R. China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Xiao-Yun Qiu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Guo-Xin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University , Xiamen, Fujian 361005, P. R. China
| |
Collapse
|