1
|
Payet R, Billmeier M. Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters. Methods Mol Biol 2023; 2630:103-115. [PMID: 36689179 DOI: 10.1007/978-1-0716-2982-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Next-generation sequencing (NGS) of small RNA (sRNA) cDNA libraries permits the identification and characterization of sRNA species de novo. However, the method through which these libraries are constructed can often introduce artifacts such as over- or underrepresentation of specific sequences or adapter oligonucleotides due to sequence biases held by the enzymes used. In this chapter we describe a protocol for sRNA library construction making use of high-definition (HD) adapters for the Illumina sequencing platform, which reduce ligation bias. This protocol leads to drastically reduced direct 5'/3' adapter ligation products and can be used for the synthesis of sRNA libraries from total RNA or sRNA of various plant, animal, and fungal samples. This protocol also includes a method for total RNA extraction from plant leaf and cultured cells or body fluids.
Collapse
Affiliation(s)
- Rocky Payet
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, Satheesh V, Zhou M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur 2020. [DOI: 10.1002/fes3.229] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Department of Forest Sciences University of Helsinki Helsinki Finland
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS) Chinese Academy of Sciences Shanghai China
| | - Viswanathan Satheesh
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- Shanghai Center for Plant Stress Biology CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High‐efficiency Utilization Zhejiang A&F University Hangzhou China
| |
Collapse
|
3
|
Ma X, Zhao H, Xu W, You Q, Yan H, Gao Z, Su Z. Co-expression Gene Network Analysis and Functional Module Identification in Bamboo Growth and Development. Front Genet 2018; 9:574. [PMID: 30542370 PMCID: PMC6277748 DOI: 10.3389/fgene.2018.00574] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/08/2018] [Indexed: 11/27/2022] Open
Abstract
Bamboo is one of the fastest-growing non-timber forest plants. Moso bamboo (Phyllostachys edulis) is the most economically valuable bamboo in Asia, especially in China. With the release of the whole-genome sequence of moso bamboo, there are increasing demands for refined annotation of bamboo genes. Recently, large amounts of bamboo transcriptome data have become available, including data on the multiple growth stages of tissues. It is now feasible for us to construct co-expression networks to improve bamboo gene annotation and reveal the relationships between gene expression and growth traits. We integrated the genome sequence of moso bamboo and 78 transcriptome data sets to build genome-wide global and conditional co-expression networks. We overlaid the gene expression results onto the network with multiple dimensions (different development stages). Through combining the co-expression network, module classification and function enrichment tools, we identified 1,896 functional modules related to bamboo development, which covered functions such as photosynthesis, hormone biosynthesis, signal transduction, and secondary cell wall biosynthesis. Furthermore, an online database (http://bioinformatics.cau.edu.cn/bamboo) was built for searching the moso bamboo co-expression network and module enrichment analysis. Our database also includes cis-element analysis, gene set enrichment analysis, and other tools. In summary, we integrated public and in-house bamboo transcriptome data sets and carried out co-expression network analysis and functional module identification. Through data mining, we have yielded some novel insights into the regulation of growth and development. Our established online database might be convenient for the bamboo research community to identify functional genes or modules with important traits.
Collapse
Affiliation(s)
- Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Lu WT, Hawley BR, Skalka GL, Baldock RA, Smith EM, Bader AS, Malewicz M, Watts FZ, Wilczynska A, Bushell M. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun 2018; 9:532. [PMID: 29416038 PMCID: PMC5803274 DOI: 10.1038/s41467-018-02893-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.
Collapse
Affiliation(s)
- Wei-Ting Lu
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ben R Hawley
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Robert A Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15232, PA, USA
| | - Ewan M Smith
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Aldo S Bader
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | | | - Martin Bushell
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
5
|
Dard-Dascot C, Naquin D, d'Aubenton-Carafa Y, Alix K, Thermes C, van Dijk E. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 2018; 19:118. [PMID: 29402217 PMCID: PMC5799908 DOI: 10.1186/s12864-018-4491-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/22/2018] [Indexed: 01/19/2023] Open
Abstract
Background Next-generation sequencing technologies have revolutionized the study of small RNAs (sRNAs) on a genome-wide scale. However, classical sRNA library preparation methods introduce serious bias, mainly during adapter ligation steps. Several types of sRNA including plant microRNAs (miRNA), piwi-interacting RNAs (piRNA) in insects, nematodes and mammals, and small interfering RNAs (siRNA) in insects and plants contain a 2’-O-methyl (2’-OMe) modification at their 3′ terminal nucleotide. This inhibits 3′ adapter ligation and makes library preparation particularly challenging. To reduce bias, the NEBNext kit (New England Biolabs) uses polyethylene glycol (PEG), the NEXTflex V2 kit (BIOO Scientific) uses both randomised adapters and PEG, and the novel SMARTer (Clontech) and CATS (Diagenode) kits avoid ligation altogether. Here we compared these methods with Illumina’s classical TruSeq protocol regarding the detection of normal and 2’ OMe RNAs. In addition, we modified the TruSeq and NEXTflex protocols to identify conditions that improve performance. Results Among the five kits tested with their respective standard protocols, the SMARTer and CATS kits had the lowest levels of bias but also had a strong formation of side products, and as a result performed relatively poorly with biological samples; NEXTflex detected the largest numbers of different miRNAs. The use of a novel type of randomised adapters called MidRand-Like (MRL) adapters and PEG improved the detection of 2’ OMe RNAs both in the TruSeq as well as in the NEXTflex protocol. Conclusions While it is commonly accepted that biases in sRNA library preparation protocols are mainly due to adapter ligation steps, the ligation-free protocols were not the best performing methods. Our modified versions of the TruSeq and NEXTflex protocols provide an improved tool for the study of 2’ OMe RNAs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4491-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cloelia Dard-Dascot
- Institute for Integrative Biology of the Cell, UMR9198, CNRS CEA Univ Paris-Sud, Université Paris-Saclay, 9198, Gif sur Yvette Cedex, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell, UMR9198, CNRS CEA Univ Paris-Sud, Université Paris-Saclay, 9198, Gif sur Yvette Cedex, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell, UMR9198, CNRS CEA Univ Paris-Sud, Université Paris-Saclay, 9198, Gif sur Yvette Cedex, France
| | - Karine Alix
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell, UMR9198, CNRS CEA Univ Paris-Sud, Université Paris-Saclay, 9198, Gif sur Yvette Cedex, France
| | - Erwin van Dijk
- Institute for Integrative Biology of the Cell, UMR9198, CNRS CEA Univ Paris-Sud, Université Paris-Saclay, 9198, Gif sur Yvette Cedex, France.
| |
Collapse
|
6
|
Beckers M, Mohorianu I, Stocks M, Applegate C, Dalmay T, Moulton V. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench. RNA (NEW YORK, N.Y.) 2017; 23:823-835. [PMID: 28289155 PMCID: PMC5435855 DOI: 10.1261/rna.059360.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Recently, high-throughput sequencing (HTS) has revealed compelling details about the small RNA (sRNA) population in eukaryotes. These 20 to 25 nt noncoding RNAs can influence gene expression by acting as guides for the sequence-specific regulatory mechanism known as RNA silencing. The increase in sequencing depth and number of samples per project enables a better understanding of the role sRNAs play by facilitating the study of expression patterns. However, the intricacy of the biological hypotheses coupled with a lack of appropriate tools often leads to inadequate mining of the available data and thus, an incomplete description of the biological mechanisms involved. To enable a comprehensive study of differential expression in sRNA data sets, we present a new interactive pipeline that guides researchers through the various stages of data preprocessing and analysis. This includes various tools, some of which we specifically developed for sRNA analysis, for quality checking and normalization of sRNA samples as well as tools for the detection of differentially expressed sRNAs and identification of the resulting expression patterns. The pipeline is available within the UEA sRNA Workbench, a user-friendly software package for the processing of sRNA data sets. We demonstrate the use of the pipeline on a H. sapiens data set; additional examples on a B. terrestris data set and on an A. thaliana data set are described in the Supplemental Information A comparison with existing approaches is also included, which exemplifies some of the issues that need to be addressed for sRNA analysis and how the new pipeline may be used to do this.
Collapse
Affiliation(s)
- Matthew Beckers
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Matthew Stocks
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Christopher Applegate
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
7
|
Ao R, Wang Y, Tong J, Wang BF. Altered microRNA-9 Expression Level is Directly Correlated with Pathogenesis of Nonalcoholic Fatty Liver Disease by Targeting Onecut2 and SIRT1. Med Sci Monit 2016; 22:3804-3819. [PMID: 27756894 PMCID: PMC5074799 DOI: 10.12659/msm.897207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA-9 (miR-9) was detected in nonalcoholic fatty liver disease (NAFLD) patients to understand the role of miR-9 in NAFLD development. Material/Methods Between February 2014 and February 2015, 105 cases of NAFLD were recruited and confirmed by liver biopsy pathology, including patients with mild NAFLD (n=58) and moderate-severe NAFLD (n=47); nonalcoholic steatohepatitis (NASH) (n=53) and non-NASH (n=52); and 50 healthy participants were regarded as the healthy control group. MiR-9 expression was measured by qRT-PCR. For in vitro experiments, L-02 normal liver cells were divided into normal control group (cultured with original culture medium), dimethyl sulfoxide (DMSO) group (cultured with DMSO) and oleic acid group (cultured with oleic acid to induce fatty change), and MTT assay was used to measure the effect of different oleic acid concentrations on cell proliferation. Nile red staining was used to detect intracellular accumulation of lipid droplets. Further, synthetic miR-9 mimic and its control and miR-9 inhibitors and its control were independently transfected into L-02 cells. Results MiR-9 levels in the mild NAFLD group and moderate-severe NAFLD group were significantly higher than in the healthy control group (both P<0.05). Mean fluorescence intensity of lipid droplets increased with the duration of induction, and were dramatically higher in oleate-treated L-02 cells; intracellular triglyceride (TG) content was also higher. miR-9 levels significantly increased following oleate induction. Importantly, miR-9 levels were significantly elevated upon miR-9 mimic transfection. Conversely, miR-9 level was lowered with miR-9 inhibitors transfection. Additionally, Onecut2 and SIRT1 were identified as miR-9 targets. Conclusions A positive relationship between miR-9 and steatosis was established with our results that miR-9 mimic transfection decreased intracellular lipid content. Finally, we identified 2 miR-9 targets, Onecut2 and SIRT1, which may be crucial players in NAFLD development.
Collapse
Affiliation(s)
- Ran Ao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jing Tong
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bai-Fang Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
8
|
Zhou M, Tao G, Pi P, Zhu Y, Bai Y, Meng X. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla). PLANTA 2016; 244:775-787. [PMID: 27160169 DOI: 10.1007/s00425-016-2544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Moso bamboo MITEs were genome-wide identified first time, and data shows that MITEs contribute to the genomic diversity and differentiation of bamboo. Miniature inverted-repeat transposable elements (MITEs) are widespread in animals and plants. There are a large number of transposable elements in moso bamboo (Phyllostachys heterocycla var. pubescens) genome, but the genome-wide information of moso bamboo MITEs is not known yet. Here we identified 362 MITE families with a total of 489,592 MITE-related sequences, accounting for 4.74 % of the moso bamboo genome. The 362 MITE families are clustered into six known and one unknown super-families. Our analysis indicated that moso bamboo MITEs preferred to reside in or near the genes that might be involved in regulation of host gene expression. Of the seven super-families, three might undergo major expansion event twice, respectively, during 8-11 million years ago (mya) ago and 22-28 mya ago; two might experience a long expansion period from 6 to 13 mya. Almost 1/3 small RNAs might be derived from the MITE sequences. Some MITE families generate small RNAs mainly from the terminals, while others predominantly from the central region. Given the high copy number of MITEs, many siRNAs and miRNAs derived from MITE sequences and the preferential insertion of MITE into gene regions, MITEs may contribute to the genomic diversity and differentiation of bamboo.
Collapse
Affiliation(s)
- Mingbing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China.
| | - Guiyun Tao
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Peiyao Pi
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Yihang Zhu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Youhuang Bai
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Xianwen Meng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| |
Collapse
|
9
|
Wang L, Zhao H, Chen D, Li L, Sun H, Lou Y, Gao Z. Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. PLANT CELL REPORTS 2016; 35:1371-83. [PMID: 27021381 DOI: 10.1007/s00299-016-1970-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 05/04/2023]
Abstract
PeSNAC1 , a stress-related NAC1 from Phyllostachys edulis , was characterized. Ectopic expression in Arabidopsis indicated that PeSNAC1 together with ped -miR164b participated in the regulation of organ boundaries and stress tolerance. NAC (NAM, ATAF1/2 and CUC2) participates in many different processes regulating plant growth, development, and stress response. A total of 125 NAC genes have been predicted in moso bamboo (Phyllostachys edulis), but their roles are poorly understood. PeSNAC1 targeted by ped-miR164b was focused for further study. The cleavage of PeSNAC1 mRNA guided by ped-miR164b was validated using RLM-5' RACE. Tissue-specific expression analysis demonstrated that ped-miR164b had a declining trend from root, sheath, leaf, to that of stem, which was opposite to that of PeSNAC1. Transgenic Arabidopsis plants overexpressing either PeSNAC1 (OX-PeSNAC1) or, ped-miR164b (OX-ped-miR164b) driven by the CaMV35S promoter were generated. OX-ped-miR164b plants showed similar phenotype of cuc2 mutants whose growth was seriously suppressed. Compared with Col-0, sense OX-PeSNAC1 plants grew rapidly and flowered earlier, whereas antisense plants grew slowly and exhibited delayed flowering. Sense OX-PeSNAC1 plants had the greatest number of lateral roots, while antisense OX-PeSNAC1 and OX-ped-miR164b plants had fewer lateral roots than Col-0. Under NaCl and PEG6000 stresses, survival rates were higher and F v/F m values declined more slowly in sense OX-PeSNAC1 plants than in Col-0, with lower survival rates and a more rapid decrease in F v/F m values conversely observed in antisense OX-PeSNAC1 and OX-ped-miR164b plants. These findings indicated that ped-miR164b-targeted PeSNAC1 may play key roles in plant development and tolerance to salinity and drought stresses.
Collapse
Affiliation(s)
- Lili Wang
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
- Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000, China
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Dongliang Chen
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lichao Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Huayu Sun
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Yongfeng Lou
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
10
|
High-throughput-sequencing-based identification of a grapevine fanleaf virus satellite RNA in Vitis vinifera. Arch Virol 2016; 161:1401-3. [PMID: 26873812 DOI: 10.1007/s00705-016-2776-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
A new satellite RNA (satRNA) of grapevine fanleaf virus (GFLV) was identified by high-throughput sequencing of high-definition (HD) adapter libraries from grapevine plants of the cultivar Panse precoce (PPE) affected by enation disease. The complete nucleotide sequence was obtained by automatic sequencing using primers designed based on next-generation sequencing (NGS) data. The full-length sequence, named satGFLV-PPE, consisted of 1119 nucleotides with a single open reading frame from position 15 to 1034. This satRNA showed maximum nucleotide sequence identity of 87 % to satArMV-86 and satGFLV-R6. Symptomatic grapevines were surveyed for the presence of the satRNA, and no correlation was found between detection of the satRNA and enation symptom expression.
Collapse
|