1
|
Pal S, Gordijenko I, Schmeing S, Biswas S, Akbulut Y, Gasper R, 't Hart P. Stapled Peptides as Inhibitors of mRNA Deadenylation. Angew Chem Int Ed Engl 2024:e202413911. [PMID: 39319385 DOI: 10.1002/anie.202413911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Therapeutic intervention targeting mRNA typically aims at reducing the levels of disease-causing sequences. Achieving the opposite effect of blocking the destruction of beneficial mRNA remains underexplored. The degradation of mRNA starts with the removal of poly(A) tails, reducing their stability and translational activity, which is mainly regulated by the CCR4-NOT complex. The subunit NOT9 binds various RNA binding proteins, that recruit mRNA in a sequence-specific manner to the CCR4-NOT complex to promote their deadenylation. These RNA binding proteins interact with NOT9 through a helical NOT9 binding motif, which we used as a starting point for development of the hydrocarbon stapled peptide NIP-2. The peptide (KD=60.4 nM) was able to inhibit RNA-binding (IC50=333 nM) as well as the deadenylation activity of the CCR4-NOT complex in vitro while being cell-permeable (cell-permeability EC50=2.44 μM). A co-crystal structure of NIP-2 bound to NOT9 allowed further optimization of the peptide through point mutation leading to NIP-2-H27A-N3 (KD=122 nM) with high cell permeability (cell-permeability EC50=0.34 μM). The optimized peptide was able to inhibit deadenylation of target mRNAs when used in HeLa cells at a concentration of 100 μM, demonstrating the feasibility of increasing mRNA stability.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Ilja Gordijenko
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Stefan Schmeing
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Somarghya Biswas
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Yasemin Akbulut
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Peter 't Hart
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Li D, Kok CYL, Wang C, Ray D, Osterburg S, Dötsch V, Ghosh S, Sabapathy K. Dichotomous transactivation domains contribute to growth inhibitory and promotion functions of TAp73. Proc Natl Acad Sci U S A 2024; 121:e2318591121. [PMID: 38739802 PMCID: PMC11127001 DOI: 10.1073/pnas.2318591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73β, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73β's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73β's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73β isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73β to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Catherine Yen Li Kok
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Chao Wang
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Debleena Ray
- Programme in Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Sujoy Ghosh
- Centre for Computational Biology & Programme in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore637551, Singapore
| |
Collapse
|
3
|
Li J, Tan YS, Verma CS. Dissecting the geometric and hydrophobic constraints of stapled peptides. Proteins 2024. [PMID: 38196284 DOI: 10.1002/prot.26662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Stapled peptides are a promising class of molecules with potential as highly specific probes of protein-protein interactions and as therapeutics. Hydrocarbon stapling affects the peptide properties through the interplay of two factors: enhancing the overall hydrophobicity and constraining the conformational flexibility. By constructing a series of virtual peptides, we study the role of each factor in modulating the structural properties of a hydrocarbon-stapled peptide PM2, which has been shown to enter cells, engage its target Mouse Double Minute 2 (MDM2), and activate p53. Hamiltonian replica exchange molecular dynamics (HREMD) simulations suggest that hydrocarbon stapling favors helical populations of PM2 through a combination of the geometric constraints and the enhanced hydrophobicity of the peptide. To further understand the conformational landscape of the stapled peptides along the binding pathway, we performed HREMD simulations by restraining the peptide at different distances from MDM2. When the peptide approaches MDM2, the binding pocket undergoes dehydration which appears to be greater in the presence of the stapled peptide compared with the linear peptide. In the binding pocket, the helicity of the stapled peptide is increased due to the favorable interactions between the peptide residues as well as the staple and the microenvironment of the binding pocket, contributing to enhanced affinity. The dissection of the multifaceted mechanism of hydrocarbon stapling into individual factors not only deepens fundamental understanding of peptide stapling, but also provides guidelines for the design of new stapled peptides.
Collapse
Affiliation(s)
- Jianguo Li
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Strizhak AV, Babii O, Afonin S, Bakanovich I, Pantelejevs T, Xu W, Fowler E, Eapen R, Sharma K, Platonov MO, Hurmach VV, Itzhaki L, Hyvönen M, Ulrich AS, Spring DR, Komarov IV. Diarylethene moiety as an enthalpy-entropy switch: photoisomerizable stapled peptides for modulating p53/MDM2 interaction. Org Biomol Chem 2021; 18:5359-5369. [PMID: 32390036 DOI: 10.1039/d0ob00831a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analogs of the known inhibitor (peptide pDI) of the p53/MDM2 protein-protein interaction are reported, which are stapled by linkers bearing a photoisomerizable diarylethene moiety. The corresponding photoisomers possess significantly different affinities to the p53-interacting domain of the human MDM2. Apparent dissociation constants are in the picomolar-to-low nanomolar range for those isomers with diarylethene in the "open" configuration, but up to eight times larger for the corresponding "closed" isomers. Spectroscopic, structural, and computational studies showed that the stapling linkers of the peptides contribute to their binding. Calorimetry revealed that the binding of the "closed" isomers is mostly enthalpy-driven, whereas the "open" photoforms bind to the protein stronger due to their increased binding entropy. The results suggest that conformational dynamics of the protein-peptide complexes may explain the differences in the thermodynamic profiles of the binding.
Collapse
Affiliation(s)
- Alexander V Strizhak
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK. and Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.
| | - Iuliia Bakanovich
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK. and Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Wenshu Xu
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Elaine Fowler
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Rohan Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, UK
| | - Krishna Sharma
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | | | - Vasyl V Hurmach
- Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine and Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Laura Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany. and Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - David R Spring
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine and Lumobiotics GmbH, Auer Str. 2, 76227, Karlsruhe, Germany.
| |
Collapse
|
5
|
Chee SMQ, Wongsantichon J, Yi LS, Sana B, Frosi Y, Robinson RC, Ghadessy FJ. Functional display of bioactive peptides on the vGFP scaffold. Sci Rep 2021; 11:10127. [PMID: 33980885 PMCID: PMC8115314 DOI: 10.1038/s41598-021-89421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Grafting bioactive peptides into recipient protein scaffolds can often increase their activities by conferring enhanced stability and cellular longevity. Here, we describe use of vGFP as a novel scaffold to display peptides. vGFP comprises GFP fused to a bound high affinity Enhancer nanobody that potentiates its fluorescence. We show that peptides inserted into the linker region between GFP and the Enhancer are correctly displayed for on-target interaction, both in vitro and in live cells by pull-down, measurement of target inhibition and imaging analyses. This is further confirmed by structural studies highlighting the optimal display of a vGFP-displayed peptide bound to Mdm2, the key negative regulator of p53 that is often overexpressed in cancer. We also demonstrate a potential biosensing application of the vGFP scaffold by showing target-dependent modulation of intrinsic fluorescence. vGFP is relatively thermostable, well-expressed and inherently fluorescent. These properties make it a useful scaffold to add to the existing tool box for displaying peptides that can disrupt clinically relevant protein–protein interactions.
Collapse
Affiliation(s)
- Sharon Min Qi Chee
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lau Sze Yi
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Barindra Sana
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Yuri Frosi
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Farid J Ghadessy
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore.
| |
Collapse
|
6
|
Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci 2021; 12:5977-5993. [PMID: 33995995 PMCID: PMC8098664 DOI: 10.1039/d1sc00165e] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions (PPIs) are implicated in the majority of cellular processes by enabling and regulating the function of individual proteins. Thus, PPIs represent high-value, but challenging targets for therapeutic intervention. The development of constrained peptides represents an emerging strategy to generate peptide-based PPI inhibitors, typically mediated by α-helices. The approach can confer significant benefits including enhanced affinity, stability and cellular penetration and is ingrained in the premise that pre-organization simultaneously pays the entropic cost of binding, prevents a peptide from adopting a protease compliant β-strand conformation and shields the hydrophilic amides from the hydrophobic membrane. This conceptual blueprint for the empirical design of peptide-based PPI inhibitors is an exciting and potentially lucrative way to effect successful PPI inhibitor drug-discovery. However, a plethora of more subtle effects may arise from the introduction of a constraint that include changes to binding dynamics, the mode of recognition and molecular properties. In this review, we summarise the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour across a range of constraining chemistries and targets, to highlight the tremendous success that has been achieved with constrained peptides alongside emerging design opportunities and challenges.
Collapse
Affiliation(s)
- Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Nanjing 210023 Jiangsu China
| | - Robert S Dawber
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Martin Walko
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
7
|
Mortensen ACL, Morin E, Brown CJ, Lane DP, Nestor M. Enhancing the therapeutic effects of in vitro targeted radionuclide therapy of 3D multicellular tumor spheroids using the novel stapled MDM2/X-p53 antagonist PM2. EJNMMI Res 2020; 10:38. [PMID: 32300907 PMCID: PMC7163001 DOI: 10.1186/s13550-020-0613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Precision therapeutics continuously make advances in cancer therapy, and a field of growing interest is the combination of targeted radionuclide therapy (TRNT) with potential radiosensitizing agents. This study evaluated whether the effects of in vitro TRNT, using the 177Lu-labeled anti-CD44v6 antibody AbN44v6, were potentiated by the novel stapled MDM2/X-p53 antagonist PM2. MATERIALS AND METHODS Two wt p53 cell lines, HCT116 (colorectal carcinoma) and UM-SCC-74B (head and neck squamous cell carcinoma), expressing different levels of the target antigen, CD44v6, were used. Antigen-specific binding of 177Lu-AbN44v6 was initially verified in a 2D cell assay, after which the potential effects of unlabeled AbN44v6 on downstream phosphorylation of Erk1/2 were evaluated by western blotting. Further, the therapeutic effects of unlabeled AbN44v6, 177Lu-AbN44v6, PM2, or a combination (labeled/unlabeled AbN44v6 +/- PM2) were assessed in 3D multicellular tumor spheroid assays. RESULTS Radiolabeled antibody bound specifically to CD44v6 on both cell lines. Unlabeled AbN44v6 binding did not induce downstream phosphorylation of Erk1/2 at any of the concentrations tested, and repeated treatments with the unlabeled antibody did not result in any spheroid growth inhibition. 177Lu-AbN44v6 impaired spheroid growth in a dose-dependent and antigen-dependent manner. A single modality treatment with 20 μM of PM2 significantly impaired spheroid growth in both spheroid models. Furthermore, the combination of TRNT and PM2-based therapy proved significantly more potent than either monotherapy. In HCT116 spheroids, this resulted in a two- and threefold spheroid growth rate decrease for the combination of PM2 and 100 kBq 177Lu-AbN44v6 compared to monotherapies 14-day post treatment. In UM-SCC-74B spheroids, the combination therapy resulted in a reduction in spheroid size compared to the initial spheroid size 10-day post treatment. CONCLUSION TRNT using 177Lu-AbN44v6 proved efficient in stalling spheroid growth in a dose-dependent and antigen-dependent manner, and PM2 treatment demonstrated a growth inhibitory effect as a monotherapy. Moreover, by combining TRNT with PM2-based therapy, therapeutic effects of TRNT were potentiated in a 3D multicellular tumor spheroid model. This proof-of-concept study exemplifies the strength and possibility of combining TRNT targeting CD44v6 with PM2-based therapy.
Collapse
Affiliation(s)
- Anja C. L. Mortensen
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Eric Morin
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Christopher J. Brown
- p53Lab, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
| | - David P. Lane
- p53Lab, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648 Singapore
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics, and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
8
|
Diller DJ, Swanson J, Bayden AS, Brown CJ, Thean D, Lane DP, Partridge AW, Sawyer TK, Audie J. Rigorous Computational and Experimental Investigations on MDM2/MDMX-Targeted Linear and Macrocyclic Peptides. Molecules 2019; 24:E4586. [PMID: 31847417 PMCID: PMC6943714 DOI: 10.3390/molecules24244586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
There is interest in peptide drug design, especially for targeting intracellular protein-protein interactions. Therefore, the experimental validation of a computational platform for enabling peptide drug design is of interest. Here, we describe our peptide drug design platform (CMDInventus) and demonstrate its use in modeling and predicting the structural and binding aspects of diverse peptides that interact with oncology targets MDM2/MDMX in comparison to both retrospective (pre-prediction) and prospective (post-prediction) data. In the retrospective study, CMDInventus modules (CMDpeptide, CMDboltzmann, CMDescore and CMDyscore) were used to accurately reproduce structural and binding data across multiple MDM2/MDMX data sets. In the prospective study, CMDescore, CMDyscore and CMDboltzmann were used to accurately predict binding affinities for an Ala-scan of the stapled α-helical peptide ATSP-7041. Remarkably, CMDboltzmann was used to accurately predict the results of a novel D-amino acid scan of ATSP-7041. Our investigations rigorously validate CMDInventus and support its utility for enabling peptide drug design.
Collapse
Affiliation(s)
- David J. Diller
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- Venenum BioDesign, LLC, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Jon Swanson
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- ChemModeling, LLC, Suite 101, 500 Huber Park Ct, Weldon Spring, MO 63304, USA
| | - Alexander S. Bayden
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- Kleo Pharmaceuticals, 25 Science Park, Ste 235, New Haven, CT 06511, USA
| | - Chris J. Brown
- A*STAR, p53 Laboratory, Singapore 138648, Singapore; (C.J.B.); (D.T.); (D.P.L.)
| | - Dawn Thean
- A*STAR, p53 Laboratory, Singapore 138648, Singapore; (C.J.B.); (D.T.); (D.P.L.)
| | - David P. Lane
- A*STAR, p53 Laboratory, Singapore 138648, Singapore; (C.J.B.); (D.T.); (D.P.L.)
| | - Anthony W. Partridge
- MSD International GmbH, Singapore 138665, Singapore;
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tomi K. Sawyer
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Joseph Audie
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- College of Arts and Sciences, Department of Chemistry, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| |
Collapse
|
9
|
Yuen TY, Brown CJ, Tan YS, Johannes CW. Synthesis of Chiral Alkenyl Cyclopropane Amino Acids for Incorporation into Stapled Peptides. J Org Chem 2019; 85:1556-1566. [DOI: 10.1021/acs.joc.9b02659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tsz Ying Yuen
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 8 Biomedical Grove, #07-01, Neuros, Singapore 138665
| | - Christopher J. Brown
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Charles W. Johannes
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| |
Collapse
|
10
|
Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Comput Struct Biotechnol J 2019; 17:263-281. [PMID: 30867891 PMCID: PMC6396041 DOI: 10.1016/j.csbj.2019.01.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Protein-protein interaction (PPI) is a hot topic in clinical research as protein networking has a major impact in human disease. Such PPIs are potential drugs targets, leading to the need to inhibit/block specific PPIs. While small molecule inhibitors have had some success and reached clinical trials, they have generally failed to address the flat and large nature of PPI surfaces. As a result, larger biologics were developed for PPI surfaces and they have successfully targeted PPIs located outside the cell. However, biologics have low bioavailability and cannot reach intracellular targets. A novel class -hydrocarbon-stapled α-helical peptides that are synthetic mini-proteins locked into their bioactive structure through site-specific introduction of a chemical linker- has shown promise. Stapled peptides show an ability to inhibit intracellular PPIs that previously have been intractable with traditional small molecule or biologics, suggesting that they offer a novel therapeutic modality. In this review, we highlight what stapling adds to natural-mimicking peptides, describe the revolution of synthetic chemistry techniques and how current drug discovery approaches have been adapted to stabilize active peptide conformations, including ring-closing metathesis (RCM), lactamisation, cycloadditions and reversible reactions. We provide an overview on the available stapled peptide high-resolution structures in the protein data bank, with four selected structures discussed in details due to remarkable interactions of their staple with the target surface. We believe that stapled peptides are promising drug candidates and open the doors for peptide therapeutics to reach currently "undruggable" space.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan1, 9700AD Groningen, the Netherlands
| |
Collapse
|
11
|
Sana B, Chee SMQ, Wongsantichon J, Raghavan S, Robinson RC, Ghadessy FJ. Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions. J Biol Chem 2019; 294:7002-7012. [PMID: 30770473 PMCID: PMC6497955 DOI: 10.1074/jbc.ra118.007141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Protein–protein interactions (PPIs) are ubiquitous in almost all biological processes and are often corrupted in diseased states. A detailed understanding of PPIs is therefore key to understanding cellular physiology and can yield attractive therapeutic targets. Here, we describe the development and structural characterization of novel Escherichia coli CueO multi-copper oxidase variants engineered to recapitulate protein–protein interactions with commensurate modulation of their enzymatic activities. The fully integrated single-protein sensors were developed through modular grafting of ligand-specific peptides into a highly compliant and flexible methionine-rich loop of CueO. Sensitive detection of diverse ligand classes exemplified by antibodies, an E3 ligase, MDM2 proto-oncogene (MDM2), and protease (SplB from Staphylococcus aureus) was achieved in a simple mix and measure homogeneous format with visually observable colorimetric readouts. Therapeutic antagonism of MDM2 by small molecules and peptides in clinical development for treatment of cancer patients was assayed using the MDM2-binding CueO enzyme. Structural characterization of the free and MDM2-bound CueO variant provided functional insight into signal-transducing mechanisms of the engineered enzymes and highlighted the robustness of CueO as a stable and compliant scaffold for multiple applications.
Collapse
Affiliation(s)
- Barindra Sana
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sharon M Q Chee
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jantana Wongsantichon
- the Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand, and.,the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sarada Raghavan
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Robert C Robinson
- the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Farid J Ghadessy
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore,
| |
Collapse
|
12
|
Miyafusa T, Hirota K, Honda S. Generation of ubiquitin-based binder with an inserted active peptide. Biochem Biophys Res Commun 2018; 503:3162-3166. [PMID: 30146256 DOI: 10.1016/j.bbrc.2018.08.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Abstract
The grafting of active peptides onto structurally stable scaffold proteins is effective for the generation of functional proteins. In this study, we aimed to develop a grafting method using ubiquitin as a scaffold protein. Ubiquitin is a small protein consisting of 76 amino acid residues that is highly stable against heat and pH stress, which are desirable characteristics for a scaffold protein. Moreover, its structure is maintained even if it is split or additional residues are inserted. Therefore, we assumed that grafting of an active peptide into ubiquitin would result in a functional protein. As a proof of concept, we developed the ubiquitin-based binder (UbB), into which the p53 (17-28) peptide was inserted between Ile36 and Pro37. The p53 (17-28) peptide, utilized as a model active peptide in this work, is known to bind to mouse double minute 2 homolog (Mdm2). Size exclusion chromatography and circular dichroism indicated that UbB maintained a similar structure to that of ubiquitin. The affinity for Mdm2 measured by surface plasmon resonance was 292 times greater than that of the p53 (17-28) peptide. These observations indicate that ubiquitin is a robust scaffold for peptide grafting. We hope that this study will aid further development of ubiquitin-based protein engineering.
Collapse
Affiliation(s)
- Takamitsu Miyafusa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kiyonori Hirota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
13
|
Mercurio FA, Pirone L, Di Natale C, Marasco D, Pedone EM, Leone M. Sam domain-based stapled peptides: Structural analysis and interaction studies with the Sam domains from the EphA2 receptor and the lipid phosphatase Ship2. Bioorg Chem 2018; 80:602-610. [PMID: 30036816 DOI: 10.1016/j.bioorg.2018.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
Sam (Sterile alpha motif) domains represent small helical protein-protein interaction modules which play versatile functions in different cellular processes. The Sam domain from the EphA2 receptor binds the Sam domain of the lipid phosphatase Ship2 and this interaction modulates receptor endocytosis and degradation primarily generating pro-oncogenic effects in cell. To identify molecule antagonists of the EphA2-Sam/Ship2-Sam complex with anti-cancer activity, we focused on hydrocarbon helical stapled peptides. EphA2-Sam and one of its interactors (i.e., the first Sam domain of the adaptor protein Odin) were used as model systems for peptide design. Increase in helicity in the stapled peptides, with respect to the corresponding linear/native-like regions, was proved by structural studies conducted through CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance). Interestingly, interaction assays by means of NMR, SPR (Surface Plasmon Resonance) and MST (MicroScale Thermophoresis) techniques led to the discovery of a novel ligand of Ship2-Sam.
Collapse
Affiliation(s)
- Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (CNR), Naples, Italy; InterUniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging (CNR), Naples, Italy; InterUniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Naples, Italy
| | | | - Daniela Marasco
- Institute of Biostructures and Bioimaging (CNR), Naples, Italy; InterUniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Naples, Italy; University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging (CNR), Naples, Italy; InterUniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), Naples, Italy; InterUniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Naples, Italy.
| |
Collapse
|
14
|
Chee SMQ, Wongsantichon J, Siau J, Thean D, Ferrer F, Robinson RC, Lane DP, Brown CJ, Ghadessy FJ. Structure-activity studies of Mdm2/Mdm4-binding stapled peptides comprising non-natural amino acids. PLoS One 2017; 12:e0189379. [PMID: 29228061 PMCID: PMC5724825 DOI: 10.1371/journal.pone.0189379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022] Open
Abstract
As primary p53 antagonists, Mdm2 and the closely related Mdm4 are relevant cancer therapeutic targets. We have previously described a series of cell-permeable stapled peptides that bind to Mdm2 with high affinity, resulting in activation of the p53 tumour suppressor. Within this series, highest affinity was obtained by modification of an obligate tryptophan residue to the non-natural L-6-chlorotryptophan. To understand the structural basis for improved affinity we have solved the crystal structure of this stapled peptide (M011) bound to Mdm2 (residues 6–125) at 1.66 Å resolution. Surprisingly, near identity to the structure of a related peptide (M06) without the 6-chloro modification is observed. Further analysis of linear and stapled peptides comprising 6-Me-tryptophan provides mechanistic insight into dual Mdm2/Mdm4 antagonism and confirms L98 of Mdm4 as a mutable steric gate. The results also highlight a possible role of the flexible hinge region in determining Mdm2/Mdm4 plasticity.
Collapse
Affiliation(s)
- Sharon Min Qi Chee
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | - Jiawei Siau
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Dawn Thean
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Fernando Ferrer
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Robert C. Robinson
- Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore
| | - David P. Lane
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Christopher J. Brown
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (CJB); (FJG)
| | - Farid J. Ghadessy
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (CJB); (FJG)
| |
Collapse
|
15
|
Quach K, LaRochelle J, Li XH, Rhoades E, Schepartz A. Unique arginine array improves cytosolic localization of hydrocarbon-stapled peptides. Bioorg Med Chem 2017; 26:1197-1202. [PMID: 29150077 DOI: 10.1016/j.bmc.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 11/19/2022]
Abstract
We have previously reported that miniature proteins containing a distinct array of 5 arginine residues on a folded α-helix - a penta-arg motif - traffic with high efficiency from endosomes into the cytosol and nucleus of mammalian cells. Here we evaluate whether a penta-arg motif can improve the intracellular trafficking of an otherwise impermeant hydrocarbon-stapled peptide, SAH-p53-4Rho. We prepared a panel of SAH-p53-4Rho variants containing penta-arg sequences with different spacings and axial arrangement and evaluated their overall uptake (as judged by flow cytometry) and their intracellular access (as determined by fluorescence correlation spectroscopy, FCS). One member of this panel reached the cytosol extremely well, matching the level achieved by SAH-p53-8Rho, a previously reported and highly permeant hydrocarbon-stapled peptide. Notably, we found no relationship between cellular uptake as judged by flow cytometry and cytosolic access as determined by FCS. This result reiterates that overall uptake and endosomal release represent fundamentally different biological processes. To determine cytosolic and/or nuclear access, one must measure concentration directly using a quantitative and non-amplified tool such as FCS. As has been observed for highly cell permeant miniature proteins such as ZF5.3, optimal penetration of hydrocarbon-stapled peptides into the cell cytosol results when the penta-arg motif is located within more (as opposed to less) structured regions.
Collapse
Affiliation(s)
- Kim Quach
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
| | - Jonathan LaRochelle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8107, United States
| | - Xiao-Han Li
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8107, United States.
| |
Collapse
|
16
|
Estrada-Ortiz N, Neochoritis CG, Twarda-Clapa A, Musielak B, Holak TA, Dömling A. Artificial Macrocycles as Potent p53-MDM2 Inhibitors. ACS Med Chem Lett 2017; 8:1025-1030. [PMID: 29057045 PMCID: PMC5641952 DOI: 10.1021/acsmedchemlett.7b00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/20/2017] [Indexed: 11/28/2022] Open
Abstract
Based on a combination of an Ugi four component reaction and a ring closing metathesis, a library of novel artificial macrocyclic inhibitors of the p53-MDM2 interaction was designed and synthesized. These macrocycles, alternatively to stapled peptides, target for the first time the large hydrophobic surface area formed by Tyr67, Gln72, His73, Val93, and Lys94 yielding derivatives with affinity to MDM2 in the nanomolar range. Their binding affinity with MDM2 was evaluated using fluorescence polarization (FP) assay and 1H-15N two-dimensional HSQC nuclear magnetic resonance experiments.
Collapse
Affiliation(s)
- Natalia Estrada-Ortiz
- Department of Drug
Design, University of Groningen, A. Deusinglaan 1, Groningen 9700AV, The Netherlands
| | | | - Aleksandra Twarda-Clapa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska Centre
of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Department of Chemistry, Jagiellonian University, Ingardena
3, 30-060 Krakow, Poland
| | - Tad A. Holak
- Malopolska Centre
of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
- Department of Chemistry, Jagiellonian University, Ingardena
3, 30-060 Krakow, Poland
| | - Alexander Dömling
- Department of Drug
Design, University of Groningen, A. Deusinglaan 1, Groningen 9700AV, The Netherlands
| |
Collapse
|
17
|
Lee XA, Verma C, Sim AY. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99. Proteins 2017; 85:1493-1506. [DOI: 10.1002/prot.25310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/28/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Xiong An Lee
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
- Department of Biological Sciences; National University of Singapore; 117543 Singapore
- School of Biological Sciences; Nanyang Technological University; 637551 Singapore
| | - Adelene Y.L Sim
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
| |
Collapse
|
18
|
Functional characterization of p53 pathway components in the ancient metazoan Trichoplax adhaerens. Sci Rep 2016; 6:33972. [PMID: 27678309 PMCID: PMC5039725 DOI: 10.1038/srep33972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
The identification of genes encoding a p53 family member and an Mdm2 ortholog in the ancient placozoan Trichoplax adhaerens advocates for the evolutionary conservation of a pivotal stress-response pathway observed in all higher eukaryotes. Here, we recapitulate several key functionalities ascribed to this known interacting protein pair by analysis of the placozoan proteins (Tap53 and TaMdm2) using both in vitro and cellular assays. In addition to interacting with each other, the Tap53 and TaMdm2 proteins are also able to respectively bind human Mdm2 and p53, providing strong evidence for functional conservation. The key p53-degrading function of Mdm2 is also conserved in TaMdm2. Tap53 retained DNA binding associated with p53 transcription activation function. However, it lacked transactivation function in reporter genes assays using a heterologous cell line, suggesting a cofactor incompatibility. Overall, the data supports functional roles for TaMdm2 and Tap53, and further defines the p53 pathway as an evolutionary conserved fulcrum mediating cellular response to stress.
Collapse
|
19
|
Teveroni E, Lucà R, Pellegrino M, Ciolli G, Pontecorvi A, Moretti F. Peptides and peptidomimetics in the p53/MDM2/MDM4 circuitry - a patent review. Expert Opin Ther Pat 2016; 26:1417-1429. [DOI: 10.1080/13543776.2017.1233179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Rossella Lucà
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| | | | - Germana Ciolli
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| |
Collapse
|
20
|
Tan YS, Reeks J, Brown CJ, Thean D, Ferrer
Gago FJ, Yuen TY, Goh EL, Lee XEC, Jennings CE, Joseph TL, Lakshminarayanan R, Lane DP, Noble MEM, Verma CS. Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design. J Phys Chem Lett 2016; 7:3452-7. [PMID: 27532490 PMCID: PMC5515508 DOI: 10.1021/acs.jpclett.6b01525] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Protein flexibility poses a major challenge in binding site identification. Several computational pocket detection methods that utilize small-molecule probes in molecular dynamics (MD) simulations have been developed to address this issue. Although they have proven hugely successful at reproducing experimental structural data, their ability to predict new binding sites that are yet to be identified and characterized has not been demonstrated. Here, we report the use of benzenes as probe molecules in ligand-mapping MD (LMMD) simulations to predict the existence of two novel binding sites on the surface of the oncoprotein MDM2. One of them was serendipitously confirmed by biophysical assays and X-ray crystallography to be important for the binding of a new family of hydrocarbon stapled peptides that were specifically designed to target the other putative site. These results highlight the predictive power of LMMD and suggest that predictions derived from LMMD simulations can serve as a reliable basis for the identification of novel ligand binding sites in structure-based drug design.
Collapse
Affiliation(s)
- Yaw Sing Tan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Judith Reeks
- Northern
Institute for Cancer Research, Newcastle
University, Framlington
Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Christopher J. Brown
- p53
Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
| | - Dawn Thean
- p53
Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
| | | | - Tsz Ying Yuen
- Institute
of Chemical & Engineering Sciences, A*STAR, 8 Biomedical
Grove, #07-01 Neuros, Singapore 138665
| | - Eunice
Tze Leng Goh
- Singapore
Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751
| | - Xue Er Cheryl Lee
- p53
Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
| | - Claire E. Jennings
- Northern
Institute for Cancer Research, Newcastle
University, Framlington
Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Thomas L. Joseph
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | - David P. Lane
- p53
Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
- E-mail:
| | - Martin E. M. Noble
- Northern
Institute for Cancer Research, Newcastle
University, Framlington
Place, Newcastle upon Tyne NE2 4HH, U.K.
- E-mail:
| | - Chandra S. Verma
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, 14 Science
Drive 4, Singapore 117543
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang
Drive, Singapore 637551
- E-mail:
| |
Collapse
|
21
|
Lemos A, Leão M, Soares J, Palmeira A, Pinto M, Saraiva L, Sousa ME. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Med Res Rev 2016; 36:789-844. [PMID: 27302609 DOI: 10.1002/med.21393] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The growth inhibitory activity of p53 tumor suppressor is tightly regulated by interaction with two negative regulatory proteins, murine double minute 2 (MDM2) and X (MDMX), which are overexpressed in about half of all human tumors. The elucidation of crystallographic structures of MDM2/MDMX complexes with p53 has been pivotal for the identification of several classes of inhibitors of the p53-MDM2/MDMX interaction. The present review provides in silico strategies and screening approaches used in drug discovery as well as an overview of the most relevant classes of small-molecule inhibitors of the p53-MDM2/MDMX interaction, their progress in pipeline, and highlights particularities of each class of inhibitors. Most of the progress made with high-throughput screening has led to the development of inhibitors belonging to the cis-imidazoline, piperidinone, and spiro-oxindole series. However, novel potent and selective classes of inhibitors of the p53-MDM2 interaction with promising antitumor activity are emerging. Even with the discovery of the 3D structure of complex p53-MDMX, only two small molecules were reported as selective p53-MDMX antagonists, WK298 and SJ-172550. Dual inhibition of the p53-MDM2/MDMX interaction has shown to be an alternative approach since it results in full activation of the p53-dependent pathway. The knowledge of structural requirements crucial to the development of small-molecule inhibitors of the p53-MDMs interactions has enabled the identification of novel antitumor agents with improved in vivo efficacy.
Collapse
Affiliation(s)
- Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Mariana Leão
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| |
Collapse
|
22
|
Wei SJ, Chee S, Yurlova L, Lane D, Verma C, Brown C, Ghadessy F. Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides. Oncotarget 2016; 7:32232-46. [PMID: 27057630 PMCID: PMC5078010 DOI: 10.18632/oncotarget.8572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer drugs often fail due to the emergence of clinical resistance. This can manifest through mutations in target proteins that selectively exclude drug binding whilst retaining aberrant function. A priori knowledge of resistance-inducing mutations is therefore important for both drug design and clinical surveillance. Stapled peptides represent a novel class of antagonists capable of inhibiting therapeutically relevant protein-protein interactions. Here, we address the important question of potential resistance to stapled peptide inhibitors. HDM2 is the critical negative regulator of p53, and is often overexpressed in cancers that retain wild-type p53 function. Interrogation of a large collection of randomly mutated HDM2 proteins failed to identify point mutations that could selectively abrogate binding by a stapled peptide inhibitor (PM2). In contrast, the same interrogation methodology has previously uncovered point mutations that selectively inhibit binding by Nutlin, the prototypical small molecule inhibitor of HDM2. Our results demonstrate both the high level of structural p53 mimicry employed by PM2 to engage HDM2, and the potential resilience of stapled peptide antagonists to mutations in target proteins. This inherent feature could reduce clinical resistance should this class of drugs enter the clinic.
Collapse
Affiliation(s)
- Siau Jia Wei
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Sharon Chee
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | | | - David Lane
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), 07-01 Matrix, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | | | - Farid Ghadessy
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| |
Collapse
|
23
|
Abstract
During the three decades of cell-penetrating peptides era the superfamily of CPPs has rapidly expanded, and the quest for new sequences continues. CPPs have been well recognized by scientific community and they have been used for transduction of a wide variety of molecules and particles into cultured cells and in vivo. In parallel with application of CPPs for delivering of active payloads, the mechanisms that such peptides take advantage of for gaining access to cells' insides have been in the focus of intense studies. Although the common denominator "cell penetration" unites all CPPs, the interaction partners on the cell surface, evoked cellular responses and even the uptake mechanisms might greatly vary between different peptide types. Here we present some possibilities for classification of CPPs based on their type of origin, physical-chemical properties, and the extent of modifications and design efforts. We also briefly analyze the internalization mechanisms with regard to their classification into groups based on physical-chemical characteristics.
Collapse
|
24
|
Estrada-Ortiz N, Neochoritis CG, Dömling A. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. ChemMedChem 2016; 11:757-72. [PMID: 26676832 PMCID: PMC4838565 DOI: 10.1002/cmdc.201500487] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Indexed: 01/10/2023]
Abstract
A recent therapeutic strategy in oncology is based on blocking the protein-protein interaction between the murine double minute (MDM) homologues MDM2/X and the tumor-suppressor protein p53. Inhibiting the binding between wild-type (WT) p53 and its negative regulators MDM2 and/or MDMX has become an important target in oncology to restore the antitumor activity of p53, the so-called guardian of our genome. Interestingly, based on the multiple disclosed compound classes and structural analysis of small-molecule-MDM2 adducts, the p53-MDM2 complex is perhaps the best studied and most targeted protein-protein interaction. Several classes of small molecules have been identified as potent, selective, and efficient inhibitors of the p53-MDM2/X interaction, and many co-crystal structures with the protein are available. Herein we review the properties as well as preclinical and clinical studies of these small molecules and peptides, categorized by scaffold type. A particular emphasis is made on crystallographic structures and the observed binding modes of these compounds, including conserved water molecules present.
Collapse
Affiliation(s)
- Natalia Estrada-Ortiz
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Constantinos G Neochoritis
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD, Groningen, The Netherlands.
| |
Collapse
|
25
|
Thayer KM, Beyer GA. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction. PLoS One 2016; 11:e0147806. [PMID: 26992014 PMCID: PMC4798270 DOI: 10.1371/journal.pone.0147806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field.
Collapse
Affiliation(s)
- Kelly M. Thayer
- Department of Chemistry, 124 Raymond Avenue, Poughkeepsie, New York 12604, United States of America
- Wesleyan University, Hall Atwater Laboratories, Middletown, Connecticut 06459, United States of America
- * E-mail:
| | - George A. Beyer
- Biochemistry Program, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604, United States of America
| |
Collapse
|
26
|
Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Maria Lokshin
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| |
Collapse
|
27
|
Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL, Tan YS, Madhumalar A, Tay BH, Brenner S, Verma CS, Ghadessy FJ, Venkatesh B, Lane DP. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes Dev 2016; 30:281-92. [PMID: 26798135 PMCID: PMC4743058 DOI: 10.1101/gad.274118.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023]
Abstract
Here, Coffill et al. characterize Tp53, Tp63, and Tp73 in a jawless vertebrate, the Japanese lamprey, as well as the Mdm2 and Mdm4 genes using genome analysis. Functional analysis reveals conservation of p63 and p73 compared with p53, which shows substantial variability within the C-terminal and N-terminal domains, and that lamprey Mdm2 degrades human p53 with great efficiency; however, this interaction is not inhibited by currently available small molecule inhibitors of the human HDM2 protein. The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family—Tp53, Tp63, and Tp73—as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53–Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.
Collapse
Affiliation(s)
- Cynthia R Coffill
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore 138648
| | - Alison P Lee
- Institute of Molecular and Cellular Biology, A*STAR, Singapore 138673
| | - Jia Wei Siau
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore 138648
| | - Sharon M Chee
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore 138648
| | | | - Yaw Sing Tan
- Bioinformatics Institute, A*STAR, Singapore 138671
| | - Arumugam Madhumalar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Boon-Hui Tay
- Institute of Molecular and Cellular Biology, A*STAR, Singapore 138673
| | - Sydney Brenner
- Institute of Molecular and Cellular Biology, A*STAR, Singapore 138673; Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR, Singapore 138671; School of Biological Sciences, Nanyang Technological University, Singapore 637551; Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Farid J Ghadessy
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore 138648
| | - Byrappa Venkatesh
- Institute of Molecular and Cellular Biology, A*STAR, Singapore 138673; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore 138648
| |
Collapse
|
28
|
ElSawy KM, Lane DP, Verma CS, Caves LSD. Recognition Dynamics of p53 and MDM2: Implications for Peptide Design. J Phys Chem B 2016; 120:320-8. [PMID: 26701330 DOI: 10.1021/acs.jpcb.5b11162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptides that inhibit MDM2 and attenuate MDM2-p53 interactions, thus activating p53, are currently being pursued as anticancer drug leads for tumors harboring wild type p53. The thermodynamic determinants of peptide-MDM2 interactions have been extensively studied. However, a detailed understanding of the dynamics that underlie these interactions is largely missing. In this study, we explore the kinetics of the binding of a set of peptides using Brownian dynamics simulations. We systematically investigate the effect of peptide C-terminal substitutions (Ser, Ala, Asn, Pro) of a Q16ETFSDLWKLLP27 p53-based peptide and a M1PRFMDYWEGLN12 12/1 phage-derived peptide on their interaction dynamics with MDM2. The substitutions modulate peptide residence times around the MDM2 protein. In particular, the highest affinity peptide, Q16ETFSDLWKLLS27, has the longest residence time (t ∼ 25 μs) around MDM2, suggesting its potentially important contribution to binding affinity. The binding of the p53-based peptides appears to be kinetically driven while that of the phage-derived series appears to be thermodynamically driven. The phage-derived peptides were found to adopt distinctly different modes of interaction with the MDM2 protein compared to their p53-based counterparts. The p53-based peptides approach the N-terminal region of the MDM2 protein with the peptide C-terminal end oriented toward the protein, while the M1PRFMDYWEGLN12-based peptides adopt the reverse orientation. To probe the determinants of this switch in orientation, a designed mutant of the phage-derived peptide, R3E (M1PEFMDYWEGLN12), was simulated and found to adopt the orientation adopted by the p53-based peptides and also to result in almost a 5-fold increase in the peptide residence time (∼120 μs) relative to the p53-based peptides. On this basis, we suggest that the R3E mutant phage-derived peptide has a higher affinity for MDM2 than the p53-based peptides and would therefore, competitively inhibit MDM2-p53. The study, therefore, provides a novel computational framework for kinetics-based lead optimization for anticancer drug development strategies.
Collapse
Affiliation(s)
- Karim M ElSawy
- York Centre for Complex Systems Analysis (YCCSA), University of York , York, YO10 5GE, United Kingdom.,Department of Chemistry, College of Science, Qassim University , Buraydah 52571, Saudi Arabia
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore , 138648
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research) , 30 Biopolis Street, #07-01 Matrix , Singapore , 138671.,Department of Biological Sciences, National University of Singapore , 14 Science Drive 4 , Singapore 117543.,School of Biological Sciences, Nanyang Technological University , 50 Nanyang Drive , Singapore 637551
| | - Leo S D Caves
- York Centre for Complex Systems Analysis (YCCSA), University of York , York, YO10 5GE, United Kingdom.,Department of Biology, University of York , York YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Cromm PM, Spiegel J, Grossmann TN. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem Biol 2015; 10:1362-75. [PMID: 25798993 DOI: 10.1021/cb501020r] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based drug discovery has experienced a significant upturn within the past decade since the introduction of chemical modifications and unnatural amino acids has allowed for overcoming some of the drawbacks associated with peptide therapeutics. Strengthened by such features, modified peptides become capable of occupying a niche that emerges between the two major classes of today's therapeutics-small molecules (<500 Da) and biologics (>5000 Da). Stabilized α-helices have proven particularly successful at impairing disease-relevant PPIs previously considered "undruggable." Among those, hydrocarbon stapled α-helical peptides have emerged as a novel class of potential peptide therapeutics. This review provides a comprehensive overview of the development and applications of hydrocarbon stapled peptides discussing the benefits and limitations of this technique.
Collapse
Affiliation(s)
- Philipp M. Cromm
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jochen Spiegel
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Tom N. Grossmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| |
Collapse
|