1
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. PLoS Negl Trop Dis 2024; 18:e0012529. [PMID: 39689121 DOI: 10.1371/journal.pntd.0012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/31/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Mariam Desouky
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Astra S Bryant
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612595. [PMID: 39314377 PMCID: PMC11419086 DOI: 10.1101/2024.09.12.612595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mariam Desouky
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Astra S Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Brown HE, Varderesian HV, Keane SA, Ryder SP. The mex-3 3' untranslated region is essential for reproduction during temperature stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587367. [PMID: 38798418 PMCID: PMC11123400 DOI: 10.1101/2024.04.01.587367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Organisms must sense temperature and modify their physiology to ensure survival during environmental stress. Elevated temperature leads to reduced fertility in most sexually reproducing organisms. Maternally supplied mRNAs are required for embryogenesis. They encode proteins that govern early events in embryonic patterning. RNA-binding proteins (RBPs) are major effectors of maternal mRNA regulation. MEX-3 is a conserved RBP essential for anterior patterning of Caenorhabditis elegans embryos. We previously demonstrated that the mex-3 3' untranslated region (3'UTR) represses MEX-3 abundance in the germline yet is dispensable for fertility. Here, we show that the 3'UTR becomes essential during thermal stress. Deletion of the 3'UTR causes a highly penetrant temperature sensitive embryonic lethality phenotype distinct from a mex-3 null. Loss of the 3'UTR decreases MEX-3 abundance specifically in maturing oocytes and early embryos experiencing temperature stress, suggesting a mechanism that regulates MEX-3 abundance at the oocyte-to-embryo transition is sensitive to temperature. We propose that a primary role of the mex-3 3'UTR is to buffer MEX-3 expression to ensure viability during fluctuating temperature. We hypothesize that a major role of maternally supplied mRNAs is to ensure robust expression of key cell fate determinants in uncertain conditions.
Collapse
|
4
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. Nucleic Acids Res 2023; 51:9610-9628. [PMID: 37587694 PMCID: PMC10570059 DOI: 10.1093/nar/gkad665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Gene expression is a multistep process and crosstalk among regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant gene expression coordination, we performed a systematic reverse-genetic interaction screen in C. elegans, combining RNA binding protein (RBP) and transcription factor (TF) mutants to generate over 100 RBP;TF double mutants. We identified many unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1, and the homeodomain TF ceh-14. Losing any one of these genes alone has no effect on the health of the organism. However, fust-1;ceh-14 and tdp-1;ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-Seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. A skipped exon in the polyglutamine-repeat protein pqn-41 is aberrantly included in tdp-1 mutants, and genetically forcing this exon to be skipped in tdp-1;ceh-14 double mutants rescues their fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility and a shared molecular role in exon inhibition.
Collapse
Affiliation(s)
- Morgan Taylor
- Southern Methodist University, Dallas, TX 75205, USA
| | - Olivia Marx
- Southern Methodist University, Dallas, TX 75205, USA
| | - Adam Norris
- Southern Methodist University, Dallas, TX 75205, USA
| |
Collapse
|
5
|
Kurepa J, Smalle JA. Plant Hormone Modularity and the Survival-Reproduction Trade-Off. BIOLOGY 2023; 12:1143. [PMID: 37627027 PMCID: PMC10452219 DOI: 10.3390/biology12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Biological modularity refers to the organization of living systems into separate functional units that interact in different combinations to promote individual well-being and species survival. Modularity provides a framework for generating and selecting variations that can lead to adaptive evolution. While the exact mechanisms underlying the evolution of modularity are still being explored, it is believed that the pressure of conflicting demands on limited resources is a primary selection force. One prominent example of conflicting demands is the trade-off between survival and reproduction. In this review, we explore the available evidence regarding the modularity of plant hormones within the context of the survival-reproduction trade-off. Our findings reveal that the cytokinin module is dedicated to maximizing reproduction, while the remaining hormone modules function to ensure reproduction. The signaling mechanisms of these hormone modules reflect their roles in this survival-reproduction trade-off. While the cytokinin response pathway exhibits a sequence of activation events that aligns with the developmental robustness expected from a hormone focused on reproduction, the remaining hormone modules employ double-negative signaling mechanisms, which reflects the necessity to prevent the excessive allocation of resources to survival.
Collapse
Affiliation(s)
| | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
6
|
Aprison EZ, Dzitoyeva S, Ruvinsky I. Serotonergic signaling plays a deeply conserved role in improving oocyte quality. Dev Biol 2023; 499:24-30. [PMID: 37121310 PMCID: PMC10247452 DOI: 10.1016/j.ydbio.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Declining germline quality is a major cause of reproductive senescence. Potential remedies could be found by studying regulatory pathways that promote germline quality. Several lines of evidence, including a C. elegans male pheromone ascr#10 that counteracts the effects of germline aging in hermaphrodites, suggest that the nervous system plays an important role in regulating germline quality. Inspired by the fact that serotonin mediates ascr#10 signaling, here we show that serotonin reuptake inhibitors recapitulate the effects of ascr#10 on the germline and promote healthy oocyte aging in C. elegans. Surprisingly, we found that pharmacological increase of serotonin signaling stimulates several developmental processes in D. melanogaster, including improved oocyte quality, although underlying mechanisms appear to be different between worms and flies. Our results reveal a plausibly conserved role for serotonin in maintaining germline quality and identify a class of therapeutic interventions using available compounds that could efficiently forestall reproductive aging.
Collapse
Affiliation(s)
- Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
7
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537345. [PMID: 37131843 PMCID: PMC10153140 DOI: 10.1101/2023.04.18.537345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gene expression is a multistep, carefully controlled process, and crosstalk between regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant coordination between transcriptional and post-transcriptional gene regulation, we performed a systematic reverse-genetic interaction screen in C. elegans . We combined RNA binding protein (RBP) and transcription factor (TF) mutants, creating over 100 RBP; TF double mutants. This screen identified a variety of unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1 , and the homeodomain TF ceh-14 . Losing any one of these genes alone has no significant effect on the health of the organism. However, fust-1; ceh-14 and tdp-1; ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. We identify a cassette exon in the polyglutamine-repeat protein pqn-41 which tdp-1 inhibits. Loss of tdp-1 causes the pqn-41 exon to be aberrantly included, and forced skipping of this exon in tdp-1; ceh-14 double mutants rescues fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility in a ceh-14 mutant background and reveal a shared molecular function of fust-1 and tdp-1 in exon inhibition.
Collapse
|
8
|
Burkhardt RN, Artyukhin AB, Aprison EZ, Curtis BJ, Fox BW, Ludewig AH, Palomino DF, Luo J, Chaturbedi A, Panda O, Wrobel CJJ, Baumann V, Portman DS, Lee SS, Ruvinsky I, Schroeder FC. Sex-specificity of the C. elegans metabolome. Nat Commun 2023; 14:320. [PMID: 36658169 PMCID: PMC9852247 DOI: 10.1038/s41467-023-36040-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.
Collapse
Affiliation(s)
- Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andreas H Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jintao Luo
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Victor Baumann
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Ordovás-Montañés M, Preston GM, Hoang KL, Rafaluk-Mohr C, King KC. Trade-offs in defence to pathogen species revealed in expanding nematode populations. J Evol Biol 2022; 35:1002-1011. [PMID: 35647763 DOI: 10.1111/jeb.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Many host organisms live in polymicrobial environments and must respond to a diversity of pathogens. The degree to which host defences towards one pathogen species affect susceptibility to others is unclear. We used a panel of Caenorhabditis elegans nematode isolates to test for natural genetic variation in fitness costs of immune upregulation and pathogen damage, as well as for trade-offs in defence against two pathogen species, Staphylococcus aureus and Pseudomonas aeruginosa. We examined the fitness impacts of transient pathogen exposure (pathogen damage and immune upregulation) or exposure to heat-killed culture (immune upregulation only) by measuring host population sizes, which allowed us to simultaneously capture changes in reproductive output, developmental time and survival. We found significant decreases in population sizes for hosts exposed to live versus heat-killed S. aureus and found increased reproductive output after live P. aeruginosa exposure, compared with the corresponding heat-killed challenge. Nematode isolates with relatively higher population sizes after live P. aeruginosa infection produced fewer offspring after live S. aureus challenge. These findings reveal that wild C. elegans genotypes display a trade-off in defences against two distinct pathogen species that are evident in subsequent generations.
Collapse
Affiliation(s)
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Kim L Hoang
- Department of Zoology, University of Oxford, Oxford, UK
| | - Charlotte Rafaluk-Mohr
- Department of Zoology, University of Oxford, Oxford, UK.,Institute of Biology, Freie Universitat Berlin, Berlin, Germany
| | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Aprison EZ, Dzitoyeva S, Angeles-Albores D, Ruvinsky I. A male pheromone that improves the quality of the oogenic germline. Proc Natl Acad Sci U S A 2022; 119:e2015576119. [PMID: 35576466 PMCID: PMC9173808 DOI: 10.1073/pnas.2015576119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | | | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
11
|
Wang WWY, Gunderson AR. The Physiological and Evolutionary Ecology of Sperm Thermal Performance. Front Physiol 2022; 13:754830. [PMID: 35399284 PMCID: PMC8987524 DOI: 10.3389/fphys.2022.754830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Ongoing anthropogenic climate change has increased attention on the ecological and evolutionary consequences of thermal variation. Most research in this field has focused on the physiology and behavior of diploid whole organisms. The thermal performance of haploid gamete stages directly tied to reproductive success has received comparatively little attention, especially in the context of the evolutionary ecology of wild (i.e., not domesticated) organisms. Here, we review evidence for the effects of temperature on sperm phenotypes, emphasizing data from wild organisms whenever possible. We find that temperature effects on sperm are pervasive, and that above normal temperatures in particular are detrimental. That said, there is evidence that sperm traits can evolve adaptively in response to temperature change, and that adaptive phenotypic plasticity in sperm traits is also possible. We place results in the context of thermal performance curves, and encourage this framework to be used as a guide for experimental design to maximize ecological relevance as well as the comparability of results across studies. We also highlight gaps in our understanding of sperm thermal performance that require attention to more fully understand thermal adaptation and the consequences of global change.
Collapse
|
12
|
Ordovás‐Montañés M, Preston GM, Drew GC, Rafaluk‐Mohr C, King KC. Reproductive consequences of transient pathogen exposure across host genotypes and generations. Ecol Evol 2022; 12:e8720. [PMID: 35356553 PMCID: PMC8938310 DOI: 10.1002/ece3.8720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
To maximize fitness upon pathogenic infection, host organisms might reallocate energy and resources among life-history traits, such as reproduction and defense. The fitness costs of infection can result from both immune upregulation and direct pathogen exploitation. The extent to which these costs, separately and together, vary by host genotype and across generations is unknown. We attempted to disentangle these costs by transiently exposing wild isolates and a lab-domesticated strain of Caenorhabditis elegans nematodes to the pathogen Staphylococcus aureus, using exposure to heat-killed pathogens to distinguish costs due to immune upregulation and pathogen exploitation. We found that host nematodes exhibit a short-term delay in offspring production when exposed to live and heat-killed pathogen, but their lifetime fecundity (total offspring produced) recovered to control levels. We also found genetic variation between host isolates for both cumulative offspring production and magnitude of fitness costs. We further investigated whether there were maternal pathogen exposure costs (or benefits) to offspring and revealed a positive correlation between the magnitude of the pathogen-induced delay in the parent's first day of reproduction and the cost to offspring population growth. Our findings highlight the capacity for hosts to recover fecundity after transient exposure to a pathogen.
Collapse
Affiliation(s)
| | | | | | - Charlotte Rafaluk‐Mohr
- Department of ZoologyUniversity of OxfordOxfordUK
- Institute of BiologyFreie Universitat BerlinBerlinGermany
| | | |
Collapse
|
13
|
Ravi B, Zhao J, Chaudhry I, Signorelli R, Bartole M, Kopchock RJ, Guijarro C, Kaplan JM, Kang L, Collins KM. Presynaptic Gαo (GOA-1) signals to depress command neuron excitability and allow stretch-dependent modulation of egg laying in Caenorhabditis elegans. Genetics 2021; 218:6284136. [PMID: 34037773 DOI: 10.1093/genetics/iyab080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Egg laying in the nematode worm Caenorhabditis elegans is a two-state behavior modulated by internal and external sensory input. We have previously shown that homeostatic feedback of embryo accumulation in the uterus regulates bursting activity of the serotonergic HSN command neurons that sustains the egg-laying active state. How sensory feedback of egg release signals to terminate the egg-laying active state is less understood. We find that Gαo, a conserved Pertussis Toxin-sensitive G protein, signals within HSN to inhibit egg-laying circuit activity and prevent entry into the active state. Gαo signaling hyperpolarizes HSN, reducing HSN Ca2+ activity and input onto the postsynaptic vulval muscles. Loss of inhibitory Gαo signaling uncouples presynaptic HSN activity from a postsynaptic, stretch-dependent homeostat, causing precocious entry into the egg-laying active state when only a few eggs are present in the uterus. Feedback of vulval opening and egg release activates the uv1 neuroendocrine cells which release NLP-7 neuropeptides which signal to inhibit egg laying through Gαo-independent mechanisms in the HSNs and Gαo-dependent mechanisms in cells other than the HSNs. Thus, neuropeptide and inhibitory Gαo signaling maintains a bi-stable state of electrical excitability that dynamically controls circuit activity in response to both external and internal sensory input to drive a two-state behavior output.
Collapse
Affiliation(s)
- Bhavya Ravi
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | - Jian Zhao
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - I Chaudhry
- Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | - Mattingly Bartole
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | | | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - Lijun Kang
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kevin M Collins
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| |
Collapse
|
14
|
Plagens RN, Mossiah I, Kim Guisbert KS, Guisbert E. Chronic temperature stress inhibits reproduction and disrupts endocytosis via chaperone titration in Caenorhabditis elegans. BMC Biol 2021; 19:75. [PMID: 33858388 PMCID: PMC8051109 DOI: 10.1186/s12915-021-01008-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Temperature influences biology at all levels, from altering rates of biochemical reactions to determining sustainability of entire ecosystems. Although extended exposure to elevated temperatures influences organismal phenotypes important for human health, agriculture, and ecology, the molecular mechanisms that drive these responses remain largely unexplored. Prolonged, mild temperature stress (48 h at 28 °C) has been shown to inhibit reproduction in Caenorhabditis elegans without significantly impacting motility or viability. Results Analysis of molecular responses to chronic stress using RNA-seq uncovers dramatic effects on the transcriptome that are fundamentally distinct from the well-characterized, acute heat shock response (HSR). While a large portion of the genome is differentially expressed ≥ 4-fold after 48 h at 28 °C, the only major class of oogenesis-associated genes affected is the vitellogenin gene family that encodes for yolk proteins (YPs). Whereas YP mRNAs decrease, the proteins accumulate and mislocalize in the pseudocoelomic space as early as 6 h, well before reproduction declines. A trafficking defect in a second, unrelated fluorescent reporter and a decrease in pre-synaptic neuronal signaling indicate that the YP mislocalization is caused by a generalized defect in endocytosis. Molecular chaperones are involved in both endocytosis and refolding damaged proteins. Decreasing levels of the major HSP70 chaperone, HSP-1, causes similar YP trafficking defects in the absence of stress. Conversely, increasing chaperone levels through overexpression of the transcription factor HSF-1 rescues YP trafficking and restores neuronal signaling. Conclusions These data implicate chaperone titration during chronic stress as a molecular mechanism contributing to endocytic defects that influence multiple aspects of organismal physiology. Notably, HSF-1 overexpression improves recovery of viable offspring after exposure to stress. These findings provide important molecular insights into understanding organismal responses to temperature stress as well as phenotypes associated with chronic protein misfolding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01008-1.
Collapse
Affiliation(s)
- Rosemary N Plagens
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Isiah Mossiah
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
15
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
16
|
Health and longevity studies in C. elegans: the "healthy worm database" reveals strengths, weaknesses and gaps of test compound-based studies. Biogerontology 2021; 22:215-236. [PMID: 33683565 PMCID: PMC7973913 DOI: 10.1007/s10522-021-09913-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Several biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the “Healthy Worm Database” (http://healthy-worm-database.eu). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.
Collapse
|
17
|
Manjarrez JR, Mailler R. Stress and timing associated with Caenorhabditis elegans immobilization methods. Heliyon 2020; 6:e04263. [PMID: 32671240 PMCID: PMC7339059 DOI: 10.1016/j.heliyon.2020.e04263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Caenorhabditis elegans is a model organism used to study gene, protein, and cell influence on function and behavior. These studies frequently require C. elegans to be immobilized for imaging or laser ablation experiments. There are a number of known techniques for immobilizing worms, but to our knowledge, there are no comprehensive studies of the various agents in common use today. New method This study determines the relationship between concentration, immobilization time, exposure time, and recovery likelihood for several immobilization agents. The agents used in this study are 1-Phenoxy-2-propanol, levamisole, sodium azide, polystyrene beads, and environmental cold shock. These tests are conducted using a humidified chamber to keep chemical concentrations consistent. Each of these agents is also tested to determine if they exhibit stress-related after effects using the gcs-1, daf-16, hsp-4, hif-1, hsp-16.2, and tmem-135 stress reporters. Results We present a range of quick mount immobilization and recovery conditions for each agent tested. This study shows that, under controlled conditions, 1-Phenoxy-2-propanol shows significant stress from the daf-16 reporter. While 1-Phenoxy-2-propanol and sodium azide both create stress related after effects with long term recovery in the case of the hsp-16.2 reporter. Comparison with existing method(s) This study shows that commonly used concentrations of immobilizing agents are ineffective when evaporation is prevented. Conclusions To improve reproducibility of results it is essential to use consistent concentrations of immobilizing agents. It is also critically important to account for stress-related after effects elicited by immobilization agents when designing any experiment.
Collapse
Affiliation(s)
| | - Roger Mailler
- University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104, USA
| |
Collapse
|
18
|
Nett EM, Sepulveda NB, Petrella LN. Defects in mating behavior and tail morphology are the primary cause of sterility in Caenorhabditis elegans males at high temperature. ACTA ACUST UNITED AC 2019; 222:jeb.208041. [PMID: 31672732 DOI: 10.1242/jeb.208041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Reproduction is a fundamental imperative of all forms of life. For all the advantages sexual reproduction confers, it has a deeply conserved flaw: it is temperature sensitive. As temperatures rise, fertility decreases. Across species, male fertility is particularly sensitive to elevated temperature. Previously, we have shown in the model nematode Caenorhabditis elegans that all males are fertile at 20°C, but almost all males have lost fertility at 27°C. Male fertility is dependent on the production of functional sperm, successful mating and transfer of sperm, and successful fertilization post-mating. To determine how male fertility is impacted by elevated temperature, we analyzed these aspects of male reproduction at 27°C in three wild-type strains of C. elegans: JU1171, LKC34 and N2. We found no effect of elevated temperature on the number of immature non-motile spermatids formed. There was only a weak effect of elevated temperature on sperm activation. In stark contrast, there was a strong effect of elevated temperature on male mating behavior, male tail morphology and sperm transfer such that males very rarely completed mating successfully when exposed to 27°C. Therefore, we propose a model where elevated temperature reduces male fertility as a result of the negative impacts of temperature on the somatic tissues necessary for mating. Loss of successful mating at elevated temperature overrides any effects that temperature may have on the germline or sperm cells.
Collapse
Affiliation(s)
- Emily M Nett
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
19
|
Dynamic Regulation of Adult-Specific Functions of the Nervous System by Signaling from the Reproductive System. Curr Biol 2019; 29:4116-4123.e3. [PMID: 31708396 DOI: 10.1016/j.cub.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Unlike juveniles, adult animals engage in suites of behaviors related to the search for and selection of potential mates and mating, including appropriate responses to sex pheromones. As in other species [1], male sex pheromones modulate several behaviors and physiological processes in C. elegans hermaphrodites [2-5]. In particular, one of these small-molecule signals, an ascaroside ascr#10, causes reduced exploration, more avid mating, and improved reproductive performance (see the accompanying paper by Aprison and Ruvinsky in this issue of Current Biology) [6]. Here, we investigated the mechanism that restricts pheromone response to adult hermaphrodites. Unexpectedly, we found that attainment of developmental adulthood was not alone sufficient for the behavioral response to the pheromone. To modify exploratory behavior in response to male pheromone, adult hermaphrodites also require functional germline and egg-laying apparatus. We show that this dependence of behavior on the reproductive system is due to feedback from the vulva muscles that reports ongoing reproduction to the nervous system. Our results reveal an activity-dependent conduit by which the reproductive system continuously licenses adult behaviors, including appropriate responses to the pheromones of the opposite sex. More broadly, our results suggest that signals from peripheral organs may serve as an important component of assuring age-appropriate functions of the nervous system.
Collapse
|
20
|
Aprison EZ, Ruvinsky I. Coordinated Behavioral and Physiological Responses to a Social Signal Are Regulated by a Shared Neuronal Circuit. Curr Biol 2019; 29:4108-4115.e4. [PMID: 31708394 DOI: 10.1016/j.cub.2019.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Successful reproduction in animals requires orchestration of behavior and physiological processes. Pheromones can induce both "releaser" (behavioral) and "priming" (physiological) effects [1] in vertebrates [2, 3] and invertebrates [4, 5]. Therefore, understanding the mechanisms underlying pheromone responses could reveal how reproduction-related behaviors and physiology are coordinated. Here, we describe a neuronal circuit that couples the reproductive system and behavior in adult Caenorhabditis elegans hermaphrodites. We found that the response of the oogenic germline to the male pheromone requires serotonin signal from NSM and HSN neurons that acts via the mod-1 receptor in AIY and RIF interneurons and is antagonized by pigment-dispersing factor (PDF). Surprisingly, the same neurons and pathways have been previously implicated in regulation of exploratory behavior in the absence of male-produced signals [6]. We demonstrate that male pheromone acts via this circuit in hermaphrodites to reduce exploration and decrease mating latency, thereby tuning multiple fitness-proximal processes. Our results demonstrate how a single circuit could coordinate behavioral and physiological responses to the environment, even those that unfold on different timescales. Our findings suggest the existence of a centralized regulatory mechanism that balances organismal resources between reproductive investment and somatic maintenance.
Collapse
Affiliation(s)
- Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
21
|
Jones LM, Eves-van den Akker S, van-Oosten Hawle P, Atkinson HJ, Urwin PE. Duplication of hsp-110 Is Implicated in Differential Success of Globodera Species under Climate Change. Mol Biol Evol 2019; 35:2401-2413. [PMID: 29955862 PMCID: PMC6188557 DOI: 10.1093/molbev/msy132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Managing the emergence and spread of crop pests and pathogens is essential for global food security. Understanding how organisms have adapted to their native climate is key to predicting the impact of climate change. The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens that cause yield losses of up to 50% in potato. The two species have different thermal optima that may relate to differences in the altitude of their regions of origin in the Andes. Here, we demonstrate that juveniles of G. pallida are less able to recover from heat stress than those of G. rostochiensis. Genome-wide analysis revealed that while both Globodera species respond to heat stress by induction of various protective heat-inducible genes, G. pallida experiences heat stress at lower temperatures. We use C. elegans as a model to demonstrate the dependence of the heat stress response on expression of Heat Shock Factor-1 (HSF-1). Moreover, we show that hsp-110 is induced by heat stress in G. rostochiensis, but not in the less thermotolerant G. pallida. Sequence analysis revealed that this gene and its promoter was duplicated in G. rostochiensis and acquired thermoregulatory properties. We show that hsp-110 is required for recovery from acute thermal stress in both C. elegans and in G. rostochiensis. Our findings point towards an underlying molecular mechanism that allows the differential expansion of one species relative to another closely related species under current climate change scenarios. Similar mechanisms may be true of other invertebrate species with pest status.
Collapse
Affiliation(s)
- Laura M Jones
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Patricija van-Oosten Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Howard J Atkinson
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter E Urwin
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Hoang KL, Gerardo NM, Morran LT. The effects of Bacillus subtilis on Caenorhabditis elegans fitness after heat stress. Ecol Evol 2019; 9:3491-3499. [PMID: 30962907 PMCID: PMC6434544 DOI: 10.1002/ece3.4983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
Microbes can provide their hosts with protection from biotic and abiotic factors. While many studies have examined how certain bacteria can increase host lifespan, fewer studies have examined how host reproduction can be altered. The nematode Caenorhabditis elegans has been a particularly useful model system to examine how bacteria affect the fitness of their hosts under different contexts. Here, we examine how the bacterium Bacillus subtilis, compared to the standard C. elegans lab diet, Escherichia coli, affects C. elegans survival and reproduction after experiencing a period of intense heat stress. We find that under standard conditions, nematodes reared on B. subtilis produce fewer offspring than when reared on E. coli.However, despite greater mortality rates on B. subtilis after heat shock, young adult nematodes produced more offspring after heat shock when fed B. subtilis compared to E. coli. Because offspring production is necessary for host population growth and evolution, the reproductive advantage conferred by B. subtilis supersedes the survival advantage of E. coli. Furthermore, we found that nematodes must be reared on B. subtilis (particularly at the early stages of development) and not merely be exposed to the bacterium during heat shock, to obtain the reproductive benefits provided by B. subtilis. Taken together, our findings lend insight into the importance of environmental context and interaction timing in shaping the protective benefits conferred by a microbe toward its host.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia
| | | | | |
Collapse
|
23
|
Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018; 208:909-935. [PMID: 29487147 PMCID: PMC5844341 DOI: 10.1534/genetics.117.300294] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
As fundamental features of nearly all animal species, sexual dimorphisms and sex differences have particular relevance for the development and function of the nervous system. The unique advantages of the nematode Caenorhabditis elegans have allowed the neurobiology of sex to be studied at unprecedented scale, linking ultrastructure, molecular genetics, cell biology, development, neural circuit function, and behavior. Sex differences in the C. elegans nervous system encompass prominent anatomical dimorphisms as well as differences in physiology and connectivity. The influence of sex on behavior is just as diverse, with biological sex programming innate sex-specific behaviors and modifying many other aspects of neural circuit function. The study of these differences has provided important insights into mechanisms of neurogenesis, cell fate specification, and differentiation; synaptogenesis and connectivity; principles of circuit function, plasticity, and behavior; social communication; and many other areas of modern neurobiology.
Collapse
Affiliation(s)
- Maureen M Barr
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082
| | - L Rene García
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, New York 14642
- Department of Neuroscience, University of Rochester, New York 14642
- Department of Biology, University of Rochester, New York 14642
| |
Collapse
|
24
|
Jovic K, Sterken MG, Grilli J, Bevers RPJ, Rodriguez M, Riksen JAG, Allesina S, Kammenga JE, Snoek LB. Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans. PLoS One 2017; 12:e0189445. [PMID: 29228038 PMCID: PMC5724892 DOI: 10.1371/journal.pone.0189445] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022] Open
Abstract
There is considerable insight into pathways and genes associated with heat-stress conditions. Most genes involved in stress response have been identified using mutant screens or gene knockdowns. Yet, there is limited understanding of the temporal dynamics of global gene expression in stressful environments. Here, we studied global gene expression profiles during 12 hours of heat stress in the nematode C. elegans. Using a high-resolution time series of increasing stress exposures, we found a distinct shift in gene expression patterns between 3–4 hours into the stress response, separating an initially highly dynamic phase from a later relatively stagnant phase. This turning point in expression dynamics coincided with a phenotypic turning point, as shown by a strong decrease in movement, survival and, progeny count in the days following the stress. Both detectable at transcriptional and phenotypic level, this study pin-points a relatively small time frame during heat stress at which enough damage is accumulated, making it impossible to recover the next few days.
Collapse
Affiliation(s)
- Katharina Jovic
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jacopo Grilli
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Roel P. J. Bevers
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | - L. Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
25
|
Plesnar-Bielak A, Labocha MK, Kosztyła P, Woch KR, Banot WM, Sychta K, Skarboń M, Prus MA, Prokop ZM. Fitness Effects of Thermal Stress Differ Between Outcrossing and Selfing Populations in Caenorhabditis elegans. Evol Biol 2017; 44:356-364. [PMID: 28890581 PMCID: PMC5569660 DOI: 10.1007/s11692-017-9413-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/23/2017] [Indexed: 11/03/2022]
Abstract
The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use Caenorhabditis elegans-a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)-to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.
Collapse
Affiliation(s)
- Agata Plesnar-Bielak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta K. Labocha
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paulina Kosztyła
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna R. Woch
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Weronika M. Banot
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Karolina Sychta
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Skarboń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika A. Prus
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zofia M. Prokop
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
26
|
Robinson JD, Powell JR. Long-term recovery from acute cold shock in Caenorhabditis elegans. BMC Cell Biol 2016; 17:2. [PMID: 26754108 PMCID: PMC4709947 DOI: 10.1186/s12860-015-0079-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Background Animals are exposed to a wide range of environmental stresses that can cause potentially fatal cellular damage. The ability to survive the period of stress as well as to repair any damage incurred is essential for fitness. Exposure to 2 °C for 24 h or longer is rapidly fatal to the nematode Caenorhabditis elegans, but the process of recovery from a shorter, initially non-lethal, cold shock is poorly understood. Results We report that cold shock of less than 12-hour duration does not initially kill C. elegans, but these worms experience a progression of devastating phenotypes over the next 96 h that correlate with their eventual fate: successful recovery from the cold shock and survival, or failure to recover and death. Cold-shocked worms experience a marked loss of pigmentation, decrease in the size of their intestine and gonads, and disruption to the vulva. Those worms who will successfully recover from the cold shock regain their pigmentation and much of the integrity of their intestine and gonads. Those who will die do so with a distinct phenotype from worms dying during or immediately following cold shock, suggesting independent mechanisms. Worms lacking the G-protein coupled receptor FSHR-1 are resistant to acute death from longer cold shocks, and are more successful in their recovery from shorter sub-lethal cold shocks. Conclusions We have defined two distinct phases of death associated with cold shock and described a progression of phenotypes that accompanies the course of recovery from that cold shock. The G-protein coupled receptor FSHR-1 antagonizes these novel processes of damage and recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph D Robinson
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA. .,Present address: Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94702, USA.
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.
| |
Collapse
|
27
|
Gouvêa DY, Aprison EZ, Ruvinsky I. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS One 2015; 10:e0145925. [PMID: 26713620 PMCID: PMC4699941 DOI: 10.1371/journal.pone.0145925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.
Collapse
Affiliation(s)
- Devin Y. Gouvêa
- Committee on Conceptual and Historical Studies of Science, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
28
|
Aprison EZ, Ruvinsky I. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress. PLoS Genet 2015; 11:e1005729. [PMID: 26645097 PMCID: PMC4672928 DOI: 10.1371/journal.pgen.1005729] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022] Open
Abstract
Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. The Caenorhabditis elegans metabolome contains over a hundred ascaroside molecules. Most of them have no known function, or no function at all, but some act as pheromones. Two of these molecules, ascr#10 and ascr#3, are produced in different proportions by males and hermaphrodites. We report that when a hermaphrodite senses a male-specific mixture of these molecules, it changes several aspects of its reproductive physiology, including signaling that guides sperm toward oocytes. During evolution from an ancestor that had both males and females, C. elegans hermaphrodites lost several female-specific traits, but their reproductive system retained the ability to respond to male pheromones. This greatly aids them during recovery from heat stress. We suggest that serendipitous side benefits of female-specific traits could be a general cause of their retention during evolution.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Poullet N, Vielle A, Gimond C, Ferrari C, Braendle C. Evolutionarily divergent thermal sensitivity of germline development and fertility in hermaphroditicCaenorhabditisnematodes. Evol Dev 2015; 17:380-97. [DOI: 10.1111/ede.12170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nausicaa Poullet
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Anne Vielle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Clotilde Gimond
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
30
|
Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae. Cell Rep 2015; 10:647-653. [DOI: 10.1016/j.celrep.2015.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 12/29/2014] [Indexed: 01/08/2023] Open
|