1
|
Adnan M, Akhter MH, Afzal O, Altamimi ASA, Ahmad I, Alossaimi MA, Jaremko M, Emwas AH, Haider T, Haider MF. Exploring Nanocarriers as Treatment Modalities for Skin Cancer. Molecules 2023; 28:5905. [PMID: 37570875 PMCID: PMC10421083 DOI: 10.3390/molecules28155905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a progressive disease of multi-factorial origin that has risen worldwide, probably due to changes in lifestyle, food intake, and environmental changes as some of the reasons. Skin cancer can be classified into melanomas from melanocytes and nonmelanoma skin cancer (NMSC) from the epidermally-derived cell. Together it constitutes about 95% of skin cancer. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (CSCC) are creditworthy of 99% of NMSC due to the limited accessibility of conventional formulations in skin cancer cells of having multiple obstacles in treatment reply to this therapeutic regime. Despite this, it often encounters erratic bioavailability and absorption to the target. Nanoparticles developed through nanotechnology platforms could be the better topical skin cancer therapy option. To improve the topical delivery, the nano-sized delivery system is appropriate as it fuses with the cutaneous layer and fluidized membrane; thus, the deeper penetration of therapeutics could be possible to reach the target spot. This review briefly outlooks the various nanoparticle preparations, i.e., liposomes, niosomes, ethosomes, transferosomes, transethosomes, nanoemulsions, and nanoparticles technologies tested into skin cancer and impede their progress tend to concentrate in the skin layers. Nanocarriers have proved that they can considerably boost medication bioavailability, lowering the frequency of dosage and reducing the toxicity associated with high doses of the medication.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India;
| | - Md. Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, Uttarakhand, India;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia;
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior 474005, Madhya Pradesh, India;
| | - Md. Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India;
| |
Collapse
|
2
|
Hypoxia in Skin Cancer: Molecular Basis and Clinical Implications. Int J Mol Sci 2023; 24:ijms24054430. [PMID: 36901857 PMCID: PMC10003002 DOI: 10.3390/ijms24054430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Skin cancer is one of the most prevalent cancers in the Caucasian population. In the United States, it is estimated that at least one in five people will develop skin cancer in their lifetime, leading to significant morbidity and a healthcare burden. Skin cancer mainly arises from cells in the epidermal layer of the skin, where oxygen is scarce. There are three main types of skin cancer: malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Accumulating evidence has revealed a critical role for hypoxia in the development and progression of these dermatologic malignancies. In this review, we discuss the role of hypoxia in treating and reconstructing skin cancers. We will summarize the molecular basis of hypoxia signaling pathways in relation to the major genetic variations of skin cancer.
Collapse
|
3
|
Ghahartars M, Parvar SY, Samipour L, Hadibarhaghtalab M. Trichoepithelioma presenting as leonine facies in a young female. SKIN HEALTH AND DISEASE 2023; 3:e177. [PMID: 36751311 PMCID: PMC9892421 DOI: 10.1002/ski2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Trichoepithelioma is a rare benign tumour of the pilosebaceous unit that originates from the hair follicles. Although it rarely results in facial disfigurement, it is thought to be the cause of leonine facies. We discuss a 27-year-old woman who presented with facies Leonine caused by trichoepitheliomas. The first line of treatment for these multiple symmetrical, firm, and round papules or nodules is excisional surgery.
Collapse
Affiliation(s)
- Mehdi Ghahartars
- Molecular Dermatology Research CenterShiraz University of Medical SciencesShirazIran
| | - Seyedeh Yasamin Parvar
- Molecular Dermatology Research CenterShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Leila Samipour
- Department of DermatologySchool of MedicineKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
4
|
Adnan M, Afzal O, S A Altamimi A, Alamri MA, Haider T, Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment. Int J Pharm 2023; 631:122506. [PMID: 36535455 DOI: 10.1016/j.ijpharm.2022.122506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The main aim of this study was to optimize the transethosomes of apigenin formulated by the thin film hydration method using surfactant Span 80. Response surface Box-Behnken design with three levels of three factors was used to design and optimize the formulations. The prepared transethosomal formulations were characterized for entrapment efficiency, vesicle size, and flux to obtain the optimized formulation batch. The optimized batch was further incorporated into the gel and characterized for the in-vitro, ex-vivo, and cytotoxic studies. The result showed the optimized transethosomes were smooth, nanosized, unilamellar, and spherical with an entrapment efficiency of 78.75 ± 3.14 %, a vesicle size of 108.75 ± 2.31 nm, and a flux of 4.10 ± 0.63 µg/cm2/h. In-vitro cumulative drug release of transethosomal gel of apigenin (TEL gel) and the conventional gel was 92.25 ± 3.5 % and 53.40 ± 3.10 %, respectively, after 24 h study. Ex-vivo permeation of TEL gel and conventional gel showed 86.20 ± 3.60 % and 51.20 ± 3.20 % permeation of apigenin at 24 h, respectively. A cytotoxic study confirmed that TEL gel significantly reduces cell viability compared to conventional gel. The results suggested that topical application of apigenin transethosomal gel may be a better treatment strategy for skin cancer because of the prolonged sustained release of the drug and the better permeability of apigenin through the skin.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India.
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| |
Collapse
|
5
|
Wang J, Cui B, Chen Z, Ding X. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol 2022; 10:950973. [PMID: 35938153 PMCID: PMC9355246 DOI: 10.3389/fcell.2022.950973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermis, the outmost layer of the skin, is a stratified squamous epithelium that protects the body from the external world. The epidermis and its appendages need constantly renew themselves and replace the damaged tissues caused by environmental assaults. The mechanistic target of rapamycin (mTOR) signaling is a central controller of cell growth and metabolism that plays a critical role in development, homeostasis and diseases. Recent findings suggest that mTOR signaling is activated in a spatiotemporal and context-dependent manner in the epidermis, coordinating diverse skin homeostatic processes. Dysregulation of mTOR signaling underlies the pathogenesis of skin diseases, including psoriasis and skin cancer. In this review, we discuss the role of epidermal mTOR signaling activity and function in skin, with a focus on skin barrier formation, hair regeneration, wound repair, as well as skin pathological disorders. We propose that fine-tuned control of mTOR signaling is essential for epidermal structural and functional integrity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiaolei Ding,
| |
Collapse
|
6
|
Mercurio L, Albanesi C, Madonna S. Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Front Med (Lausanne) 2021; 8:665647. [PMID: 33996865 PMCID: PMC8119789 DOI: 10.3389/fmed.2021.665647] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
PhosphoInositide-3 Kinase (PI3K) represents a family of different classes of kinases which control multiple biological processes in mammalian cells, such as cell growth, proliferation, and survival. Class IA PI3Ks, the main regulators of proliferative signals, consists of a catalytic subunit (α, β, δ) that binds p85 regulatory subunit and mediates activation of AKT and mammalian Target Of Rapamycin (mTOR) pathways and regulation of downstream effectors. Dysregulation of PI3K/AKT/mTOR pathway in skin contributes to several pathological conditions characterized by uncontrolled proliferation, including skin cancers, psoriasis, and atopic dermatitis (AD). Among cutaneous cancers, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) display PI3K/AKT/mTOR signaling hyperactivation, implicated in hyperproliferation, and tumorigenesis, as well as in resistance to apoptosis. Upregulation of mTOR signaling proteins has also been reported in psoriasis, in association with enhanced proliferation, defective keratinocyte differentiation, senescence-like growth arrest, and resistance to apoptosis, accounting for major parts of the overall disease phenotypes. On the contrary, PI3K/AKT/mTOR role in AD is less characterized, even though recent evidence demonstrates the relevant function for mTOR pathway in the regulation of epidermal barrier formation and stratification. In this review, we provide the most recent updates on the role and function of PI3K/AKT/mTOR molecular axis in the pathogenesis of different hyperproliferative skin disorders, and highlights on the current status of preclinical and clinical studies on PI3K-targeted therapies.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
7
|
Wang L, Wang H, Shen K, Park H, Zhang T, Wu X, Hu M, Yuan H, Chen Y, Wu Z, Wang Q, Li Z. Development of Novel 18F-PET Agents for Tumor Hypoxia Imaging. J Med Chem 2021; 64:5593-5602. [PMID: 33901402 DOI: 10.1021/acs.jmedchem.0c01962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor hypoxia is a major factor responsible for tumor progression, metastasis, invasion, and treatment resistance, leading to low local tumor control and recurrence after radiotherapy in cancers. Here,18F-positron emission tomography (PET) probes are developed for visualizing viable hypoxic cells in biopsies. Pimonidazole derivatives and nitroimidazole-based agents bearing sulfonyl linkers were evaluated. A small-animal PET study showed that the tumor uptake of [18F]-23 [poly(ethylene glycols) (PEG)-sulfonyl linker] of 3.36 ± 0.29%ID/g was significantly higher (P < 0.01) than that of [18F]-20 (piperazine-linker tracer, 2.55 ± 0.49%ID/g) at 2 h postinjection in UPPL tumors. The tumor-to-muscle uptake ratio of [18F]-23 (2.46 ± 0.48 at 2 h pi) was well improved compared with that of [18F]-FMISO (1.25 ± 0.14 at 2 h pi). A comparable distribution pattern was observed between ex vivo autoradiography of [18F]-23 and pimonidazole staining of the neighboring slice, indicating that [18F]-23 is a promising PET agent for hypoxia imaging.
Collapse
Affiliation(s)
- Li Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States.,Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Kun Shen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hyejin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tao Zhang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Mei Hu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Hong Yuan
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
8
|
Lobo Y, Blake T, Wheller L. Management of multiple trichoepithelioma: A review of pharmacological therapies. Australas J Dermatol 2021; 62:e192-e200. [PMID: 33403677 DOI: 10.1111/ajd.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/01/2022]
Abstract
Trichoepithelioma is a rare benign adnexal neoplasm that can occur in various forms including solitary, multiple, familial or nonfamilial. Multiple facial trichoepithelioma can be associated with significant psychosocial burden. Conventional treatment modalities such as surgical excision and ablative laser have variable results and can be associated with unacceptable complications and tumour regrowth. Pharmacological interventions such as topical and systemic agents are potentially effective but clinical data are limited and treatments are poorly standardised. We review the available evidence to determine the role of pharmacological therapies in the management of multiple trichoepithelioma. Demographic and clinical data were retrospectively collected from the available English literature. Majority of cases treated with pharmacological therapies (93.75%) had a positive treatment outcome, achieving partial lesion response. Adverse effects associated with pharmacological therapies were generally well tolerated and did not interrupt treatment. There are limitations as to how our results can be interpreted owing to the paucity of good quality evidence, spectrum of disease severity, and diversity of study designs utilised in the included articles. Nonetheless, the results of our study indicate that while most pharmacological interventions for multiple trichoepithelioma produce a partial response, they can be employed as effective suppressive therapies, either alone or in conjunction with conventional treatments. The current evidence for pharmacological therapies remains largely anecdotal justifying the need for further clinical studies in this area.
Collapse
Affiliation(s)
- Yolanka Lobo
- Department of Dermatology, Mater Misericordiae Health Services, Brisbane, Queensland, Australia
| | - Tristan Blake
- Department of Dermatology, Mater Misericordiae Health Services, Brisbane, Queensland, Australia
| | - Laura Wheller
- Department of Dermatology, Mater Misericordiae Health Services, Brisbane, Queensland, Australia.,Department of Dermatology, Queensland Children's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Shimizu A, Toyoda A, Motegi SI, Yasuda M, Ishikawa O. First Japanese case of trichoepithelioma papulosum multiplex successfully treated with sirolimus gel. J Dermatol 2020; 47:e197-e198. [PMID: 32077127 DOI: 10.1111/1346-8138.15271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akira Shimizu
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Aiko Toyoda
- Division of Dermatology, Uchida Hospital, Numata, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Division of Dermatology, Uchida Hospital, Numata, Japan
| |
Collapse
|
10
|
Abstract
With the discovery of rapamycin 45 years ago, studies in the mechanistic target of rapamycin (mTOR) field started 2 decades before the identification of the mTOR kinase. Over the years, studies revealed that the mTOR signaling is a master regulator of homeostasis and integrates a variety of environmental signals to regulate cell growth, proliferation, and metabolism. Deregulation of mTOR signaling, particularly hyperactivation, frequently occurs in human tumors. Recent advances in molecular profiling have identified mutations or amplification of certain genes coding proteins involved in the mTOR pathway (eg, PIK3CA, PTEN, STK11, and RICTOR) as the most common reasons contributing to mTOR hyperactivation. These genetic alterations of the mTOR pathway are frequently observed in lung neoplasms and may serve as a target for personalized therapy. mTOR inhibitor monotherapy has met limited clinical success so far; however, rational drug combinations are promising to improve efficacy and overcome acquired resistance. A better understanding of mTOR signaling may have the potential to help translation of mTOR pathway inhibitors into the clinical setting.
Collapse
|
11
|
Zayas B, Lebron V, Vélez C, Cox O. Novel NBQ-48 as marker of hypoxic cells in 2D and 3D colon cancer cells. JOURNAL OF CANCER PREVENTION & CURRENT RESEARCH 2020; 11:13-18. [PMID: 34765722 PMCID: PMC8580369 DOI: 10.15406/jcpcr.2020.11.00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study presents the applicability of a novel nitro-substituted heterocyclic compound NBQ48, member of the family of compounds identified as 3 nitrobenzazolo[3, 2-a] quinolinium chloride salts (NBQS) as a screening tool to identify hypoxic tumor cells. The applicability was tested on COLO 205 colon cancer cells 2D and 3D cultures treated with NBQ48 to assess the formation of a bio-reduction fluorescent metabolite under hypoxic conditions in contrast, to those under aerobic environment. Hypoxic environment was created applying a controlled hypoxic gas chamber. Prior to testing the applicability of NBQ48 as a hypoxic fluorescent marker, cytotoxic studies where performed to identify a low-toxicity dose at 24 hours under aerobic and hypoxic environments that would allow the bio-reduction process with little toxicity. The differences in fluorescence emission after treatment was measured by fluorometer and fluorescence microscopy. Results indicated that cell treatments up to 24 hours with NBQ48 under aerobic environment did not reach an IC50 dose in COLO205 cells, however under hypoxic environment the IC50 reached at 100μM. The significant fluorescence increment after 24 and 48 hrs in 2D and 3D cultures treated with NBQ48 (75uM) at hypoxic in contrast to aerobic environments clearly demonstrated the need of a low oxygen content for the bio-reduction of the parent NBQ48. This study confirms the applicability of NBQ48 as markers for hypoxia in metabolically active 2D and 3D cultures. This hydrophilic hypoxic marker could additionally aid researchers in testing hypoxia activated pro-drugs for therapeutic applications in cancer as well as on other diseases where cellular hypoxia is a significant risk factor.
Collapse
Affiliation(s)
- Beatriz Zayas
- School of Science, Technology and Environment, Ana G. Mendez University (UAGM), USA
| | - Vivian Lebron
- School of Science, Technology and Environment, Ana G. Mendez University (UAGM), USA
| | - Christian Vélez
- School of Science, Technology and Environment, Ana G. Mendez University (UAGM), USA
| | - Osvaldo Cox
- School of Science, Technology and Environment, Ana G. Mendez University (UAGM), USA
| |
Collapse
|
12
|
Kim AL, Back JH, Chaudhary SC, Zhu Y, Athar M, Bickers DR. SOX9 Transcriptionally Regulates mTOR-Induced Proliferation of Basal Cell Carcinomas. J Invest Dermatol 2018; 138:1716-1725. [PMID: 29550418 DOI: 10.1016/j.jid.2018.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/17/2018] [Accepted: 01/28/2018] [Indexed: 01/20/2023]
Abstract
Currently available smoothened targeted therapies in patients with basal cell nevus syndrome are associated with substantial tumor recurrence and clinical resistance. Strategies bypassing smoothened and/or identifying additional downstream components of the Hedgehog pathway could provide novel antitumor targets with a better therapeutic index. Sry-related high mobility group box 9 (SOX9) is a Hedgehog/glioma-associated oncogene homolog-regulated transcription factor known to be overexpressed in basal cell carcinomas (BCCs). A sequence motif search for SOX9-responsive elements identified three motifs in the promoter region of mammalian target of rapamycin (mTOR). In murine BCC cells, SOX9 occupies the mTOR promoter and induces its transcriptional activity. Short hairpin RNA (shRNA)-mediated knockdown of SOX9, as well as smoothened inhibition by itraconazole and vismodegib, reduces mTOR expression and the phosphorylation of known downstream mTOR targets. These effects culminate in diminishing the proliferative capacity of BCC cells, demonstrating a direct mechanistic link between the Hedgehog and mTOR pathways capable of driving BCC growth. Furthermore, rapamycin, a pharmacologic mTOR inhibitor, suppressed the growth of UV-induced BCCs in Ptch1+/-/SKH-1 mice, a model that closely mimics the accelerated BCC growth pattern of patients with basal cell nevus syndrome. Our data demonstrate that Hedgehog signaling converges on mTOR via SOX9, and highlight the SOX9-mTOR axis as a viable additional target downstream of smoothened that could enhance tumor elimination in patients with BCC.
Collapse
Affiliation(s)
- Arianna L Kim
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA.
| | - Jung Ho Back
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Sandeep C Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yucui Zhu
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David R Bickers
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Tu JH, Teng JMC. Use of topical sirolimus in the management of multiple familial trichoepitheliomas. Dermatol Ther 2017; 30. [DOI: 10.1111/dth.12458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Joanna H. Tu
- Columbia University College of Physicians and Surgeons; New York New York
- Department of Dermatology; Stanford University; Palo Alto California
| | - Joyce M. C. Teng
- Department of Dermatology; Stanford University; Palo Alto California
| |
Collapse
|
14
|
Zhanwei C, Dubin S, Shengyun H, Haiwei W, Dongsheng Z. [Analysis of BNIP3 expression and clinical research in salivary adenoid cystic carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:404-407. [PMID: 28317361 DOI: 10.7518/hxkq.2016.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study investigated the expression of BNIP3 in salivary adenoid cystic carcinoma (SACC) and its correlations to the clinicopathological features and prognosis of patients with SACC. The role of BNIP3 in the progress of hypoxia-induced autophagy was elucidated. METHODS The expression levels of BNIP3, hypoxia inducible factor (HIF)-1α, and LC3 in 65 SACC cases were detected by immunohistochemical staining method, and the correlation between the expression of BNIP3 and the clinicopathological features in SACC was analyzed. In addition, the correlations of BNIP3 gene expression with HIF-1α and LC3 gene expression were analyzed. The survival rate of patients with SACC was evaluated by univa-riate survival analysis. RESULTS BNIP3 was considerably expressed in SACC in all three histological patterns, and was positive in 41 cases (63.1%). BNIP3 gene expression was significantly correlated with histological grade (P=0.001) and HIF-1α gene expression (P=0.011). By contrast, BNIP3 gene expression was not significantly correlated with LC3 gene expression (P=
0.167). The overall survival rate of patients with negative BNIP3 expression was better than that of patients with positive BNIP3 expression (P<0.05). CONCLUSIONS BNIP3 might play a vital role in the tumorigenesis of SACC and may be a new target for gene therapy.
.
Collapse
Affiliation(s)
- Chen Zhanwei
- Dept. of Oral and Maxillofacial Surgery, Shandong Provincial Hos-pital Affiliated to Shandong University, Jinan 250021, China
| | - Sun Dubin
- Dept. of Stomatology, The People's Hospital of Zoucheng City, Jining 273500, China
| | - Huang Shengyun
- Dept. of Oral and Maxillofacial Surgery, Shandong Provincial Hos-pital Affiliated to Shandong University, Jinan 250021, China
| | - Wu Haiwei
- Dept. of Oral and Maxillofacial Surgery, Shandong Provincial Hos-pital Affiliated to Shandong University, Jinan 250021, China
| | - Zhang Dongsheng
- Dept. of Oral and Maxillofacial Surgery, Shandong Provincial Hos-pital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|