1
|
Embryo culture media differentially alter DNA methylating enzymes and global DNA methylation in embryos and oocytes. J Mol Histol 2021; 53:63-74. [PMID: 34741214 PMCID: PMC8570397 DOI: 10.1007/s10735-021-10038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/28/2021] [Indexed: 11/06/2022]
Abstract
The effects of culture media on DNA methylation process, which is one of the epigenetic mechanisms, have not been clearly elucidated although it is known that in vitro culture conditions alter epigenetic mechanisms. This study was designed to address the question: does embryo culture media approach, sequential or single step, differentially affect DNA methylating enzymes and global DNA methylation. Mouse zygotes were cultured either in single step or sequential culture media until the blastocyst stage and in vivo developed blastocyst were utilized as control. Similarly, GV stage oocytes were in vitro matured either in single step or first step of sequential culture media. In vivo matured MII oocytes were used as control. The expression levels and cellular localization of Dnmt1 and 3a enzymes were analyzed by immunofluorescence and western blot analysis while global DNA methylation was evaluated by immunofluorescence. We found that signal intensities of Dnmt1 and Dnmt3a enzymes were significantly low in embryos or oocytes cultured in sequential media compared to single step media and control, which were comparable amongst themself. Similarly, global DNA methylation level in single step media and control groups was comparable but both was higher than the sequential media. This study demonstrated that composition of culture media may differentially affect DNA methylation levels in mouse embryos and oocytes. Since abnormal DNA methylation may cause aberrant oocyte or embryo development, we think that further studies are needed to test human embryos and oocyte, and to explain molecular mechanisms.
Collapse
|
2
|
Liu T, Li J, Dou H, Xiang X, Chen W, Zhang T, Li L, Zhang X, Dong X, Chen L, Lin X, Li J, Sun HX, Gu Y, Lin L. Low-Concentration Essential Amino Acids in PZM-3 Improve the Developmental Competence of Porcine Embryos Produced by Handmade Cloning. Cell Reprogram 2020; 22:282-290. [PMID: 33181023 DOI: 10.1089/cell.2020.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Essential amino acids (EAA) of inappropriate concentration have been reported to compromise the development of embryo. This study aimed to investigate the effect of EAA on the developmental competence of porcine embryos produced by either handmade cloning (HMC) or parthenogenetic activation (PA). In experiment 1, we examined the in vitro developmental competence of PA embryos after culture in PZM-3 containing different concentrations (v/v) of EAA (0%, 1%, and 2%). The results indicated that reducing the concentration of EAA from 2% to 1% significantly improved the blastocyst formation (36% vs. 54%), while 0% would compromise the blastocyst formation rate (54% vs. 38%). In experiment 2, we further investigated the effect of EAA concentration (1% and 2%) on the in vitro developmental competence and gene expression of HMC embryos. Blastocyst rate significantly increased by reducing concentration of EAA (41% vs. 53%) and those genes upregulated were enriched in oxidative phosphorylation, PPAR signaling pathway, and metabolism-related pathways. In experiment 3, the in vivo developmental competence of HMC embryos cultured in the medium supplemented with 1% EAA was examined. Embryos derived from both non-gene-modified fetal fibroblasts (FFs) and gene-modified fetal fibroblasts (GMFFs) were transferred to recipients. The pregnancy rates were 83% and 78% separately. Out of the pregnancies, 5 (FFs) and 6 (GMFFs) were successfully developed to term. Our study indicates that supplementing EAA to embryo culture medium at a concentration of 1% can improve the in vitro developmental competence of porcine HMC embryos and the blastocyst obtained can successfully develop to term, which could be beneficial for the production of gene-modified piglets.
Collapse
Affiliation(s)
- Tianbin Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China.,BGI Ark Biotechnology Co., LTD (BAB), Shenzhen, China
| | - Jie Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Hongwei Dou
- BGI Ark Biotechnology Co., LTD (BAB), Shenzhen, China
| | - Xi Xiang
- BGI Ark Biotechnology Co., LTD (BAB), Shenzhen, China
| | - Wenbin Chen
- BGI Ark Biotechnology Co., LTD (BAB), Shenzhen, China
| | | | - Lin Li
- BGI Ark Biotechnology Co., LTD (BAB), Shenzhen, China
| | - Xingju Zhang
- BGI Ark Biotechnology Co., LTD (BAB), Shenzhen, China
| | | | | | - Xuyi Lin
- BGI-Shenzhen, Shenzhen, China.,Guangdong Xin 'an Vocational and Technical College, Shenzhen, China
| | - Jing Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Ying Gu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Lin Lin
- BGI Ark Biotechnology Co., LTD (BAB), Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Horibe Y, Nakabayashi K, Arai M, Okamura K, Hashimoto K, Matsui H, Hata K. Comprehensive analysis of whole genome methylation in mouse blastocysts cultured with four different constituents following in vitro fertilization. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2020. [DOI: 10.1186/s43043-019-0012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
With the development of assisted reproductive technology (ART), diseases believed to be caused by ART have begun to be identified as imprinted disease. However, no conclusion has been reached. So we sought to determine whether ART procedures disturb gene methylation and whether imprinted genes alone are selectively disturbed. To examine whether the constituents of the culture medium contribute to the changes in methylation, we used a mouse model to conduct IVF and comprehensively analyzed 5′–C–phosphate–G–3′ (CpG) by reduced representation bisulfite sequencing (RRBS) using a second-generation sequencer to determine changes in methylation using four types of culture media with different amino acid constituents.
Results
We cultured ova to the blastocyst stage in a mouse model in culture media with four different amino acid constituents. Each culture medium included (1) KSOM culture medium (NoAA), (2) KSOM media + essential amino acids (EAAs), (3) KSOM medium + non-essential amino acids (NEAAs), or (4) KSOM medium + EAAs + NEAAs (AllAA) analyzed by reduced representation bisulfite sequencing. The results showed that (1) there were many regions that maintained hypermethylation with NEAAs, (2) there was little effect of demethylation on reprogramming in the 5′UTR and promoter regions, and (3) specific changes were observed in imprinted genes such as Nnat and Nespas.
Conclusions
Compared with EAAs, NEAAs could protect genes from demethylation caused by reprogramming. On the imprinted genes, methylation of the promoter region of H19 was decreased by NEAAs, suggesting that specific genes were prone to changes in methylation. It was suggested that these changes could provide similar results in humans. Further studies are needed to understand how changes in methylation may affect gene expression profiles.
Collapse
|
4
|
Gardner DK, Harvey AJ. Blastocyst metabolism. Reprod Fertil Dev 2015; 27:638-54. [DOI: 10.1071/rd14421] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/10/2015] [Indexed: 12/15/2022] Open
Abstract
The mammalian blastocyst exhibits an idiosyncratic metabolism, reflecting its unique physiology and its ability to undergo implantation. Glucose is the primary nutrient of the blastocyst, and is metabolised both oxidatively and through aerobic glycolysis. The production of significant quantities of lactate by the blastocyst reflects specific metabolic requirements and mitochondrial regulation; it is further proposed that lactate production serves to facilitate several key functions during implantation, including biosynthesis, endometrial tissue breakdown, the promotion of new blood vessel formation and induction of local immune-modulation of the uterine environment. Nutrient availability, oxygen concentration and the redox state of the blastocyst tightly regulate the relative activities of specific metabolic pathways. Notably, a loss of metabolic normality is associated with a reduction in implantation potential and subsequent fetal development. Even a transient metabolic stress at the blastocyst stage culminates in low fetal weights after transfer. Further, it is evident that there are differences between male and female embryos, with female embryos being characterised by higher glucose consumption and differences in their amino acid turnover, reflecting the presence of two active X-chromosomes before implantation, which results in differences in the proteomes between the sexes. In addition to the role of Hypoxia-Inducible Factors, the signalling pathways involved in regulating blastocyst metabolism are currently under intense analysis, with the roles of sirtuins, mTOR, AMP-activated protein kinase and specific amino acids being scrutinised. It is evident that blastocyst metabolism regulates more than the production of ATP; rather, it is apparent that metabolites and cofactors are important regulators of the epigenome, putting metabolism at centre stage when considering the interactions of the blastocyst with its environment.
Collapse
|
5
|
Wang X, Lan X, Radunz AE, Khatib H. Maternal nutrition during pregnancy is associated with differential expression of imprinted genes and DNA methyltranfereases in muscle of beef cattle offspring1. J Anim Sci 2015; 93:35-40. [DOI: 10.2527/jas.2014-8148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- X. Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi province, 712100, China
- Department of Animal Sciences, University of Wisconsin, Madison 53706
| | - X. Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi province, 712100, China
| | - A. E. Radunz
- University of Wisconsin – River Falls, River Falls 54022
| | - H. Khatib
- Department of Animal Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|