1
|
Li W, Si Y, Wang Y, Chen J, Huo X, Xu P, Jiang B, Li Z, Shang K, Luo Q, Xiong Y. hUCMSC-derived exosomes protect against GVHD-induced endoplasmic reticulum stress in CD4 + T cells by targeting the miR-16-5p/ATF6/CHOP axis. Int Immunopharmacol 2024; 135:112315. [PMID: 38805908 DOI: 10.1016/j.intimp.2024.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Exosomes generated from mesenchymal stem cells (MSCs) are thought to be a unique therapeutic strategy for several autoimmune deficiency illnesses. The purpose of this study was to elucidate the protective effects of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) on CD4+ T cells dysfunction during graft-versus-host disease (GVHD) and to identify the underlying processes involved. Here, we showed that hUCMSC-Exo treatment can effectively attenuate GVHD injury by alleviating redox metabolism disorders and inflammatory cytokine bursts in CD4+ T cells. Furthermore, hUCMSC-Exo ameliorate ER stress and ATF6/CHOP signaling-mediated apoptosis in CD4+ T cells and promote the development of CD4+IL-10+ T cells during GVHD. Moreover, downregulating miR-16-5p in hUCMSC-Exo impaired their ability to prevent CD4+ T cells apoptosis and weakened their ability to promote the differentiation of CD4+IL-10+ T cells. Collectively, the obtained data suggested that hUCMSC-Exo suppress ATF6/CHOP signaling-mediated ER stress and apoptosis in CD4+ T cells, enhance the differentiation of CD4+IL-10+ T cells, and reverse the imbalance of immune homeostasis in the GVHD process by transferring miR-16-5p. Our study provided further evidence that GVHD patients can benefit from hUCMSC-Exo-mediated therapy.
Collapse
Affiliation(s)
- Weihan Li
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Shanghai Mebo Life Science & Technology Co., Shanghai, PR China
| | - Yaru Si
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yueming Wang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Juntong Chen
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Xingyu Huo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Pengzhan Xu
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Bingzhen Jiang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zile Li
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kangdi Shang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Qianqian Luo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| | - Yanlian Xiong
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
2
|
Slama P, Kabourkova E, Sladek Z, Zavadilova T, Kratochvilova L, Kharkevich K, Roychoudhury S, Pavlik A, Roztocilova A, Uhrincat M, Tancin V, Kimura K, Konecny R, Kiku Y, Watanabe A, Kwak JY, Zouharova M. Effect of Lipopolysaccharide and Muramyl Dipeptide on Apoptosis of Bovine Mammary Gland Lymphocytes. Animals (Basel) 2020; 10:ani10060990. [PMID: 32517153 PMCID: PMC7341217 DOI: 10.3390/ani10060990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Inflammation of the mammary gland in dairy cattle is a global problem and causes huge financial loss to dairy farmers. Inflammation is caused by many species of bacteria penetrating through the teat canals into the udder. Those bacteria are usually eliminated by treatment with intramammary injection of antibiotics, while they are also eliminated by the immune cells of the cow. One of the immune cells are lymphocytes which are responsible for specific immunity. When viable, they are able to carry out their normal functions. The present study focused on the investigation of cell death of lymphocytes during bovine mammary gland inflammation. We analyzed apoptosis in mammary gland lymphocytes under the stimulation of lipopolysaccharides and muramyl dipeptide as the endotoxin of Gram-negative bacteria and the natural content of the cell wall of Gram-positive bacteria. We found that they induce lymphocyte apoptosis in the early phase of inflammation, which can be associated with the expression of CD44 receptors on lymphocytes. This receptor is important in many physiological processes, including apoptosis of cells. For a better understanding of immune responses in mammary glands and for developing of immunotherapy without antibiotics, the process of inflammation, including cell death of immune cells necessitates further holistic studies. Abstract The aim of this study was to evaluate whether apoptosis of lymphocytes is modulated by stimulation by lipopolysaccharide (LPS) of Escherichia coli or muramyl dipeptide (MDP). Cell populations were obtained by lavaging of the mammary glands 24, 48, 72, and 168 h following intramammary induced inflammation. The portion of apoptotic lymphocytes peaked at 48 h after treatment with LPS or MDP. The analysis of CD44 expression of the same cell populations showed a higher percentage of CD44-positive lymphocytes 24- and 48-h following induction of inflammation by LPS or MDP. The results demonstrate that during both experimental infection of bovine mammary glands with LPS or MDP, apoptosis of lymphocytes was induced in the initial phase of the inflammatory response and CD44 was also overexpressed at the beginning of inflammation. These data suggest a connection of lymphocyte apoptosis with the expression of CD44 receptors.
Collapse
Affiliation(s)
- Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (T.Z.); (L.K.); (K.K.); (S.R.); (A.P.)
- Correspondence:
| | - Eliska Kabourkova
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1, 612 42 Brno, Czech Republic;
| | - Zbysek Sladek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (T.Z.); (L.K.); (K.K.); (S.R.); (A.P.)
| | - Terezie Zavadilova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (T.Z.); (L.K.); (K.K.); (S.R.); (A.P.)
| | - Lucie Kratochvilova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (T.Z.); (L.K.); (K.K.); (S.R.); (A.P.)
| | - Kristina Kharkevich
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (T.Z.); (L.K.); (K.K.); (S.R.); (A.P.)
| | - Shubhadeep Roychoudhury
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (T.Z.); (L.K.); (K.K.); (S.R.); (A.P.)
- Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India
| | - Ales Pavlik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (T.Z.); (L.K.); (K.K.); (S.R.); (A.P.)
| | - Andrea Roztocilova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Michal Uhrincat
- NPPC-Research Institute for Animal Production, Hlohovecka 2, 951 41 Luzianky, Slovakia; (M.U.); (V.T.)
| | - Vladimir Tancin
- NPPC-Research Institute for Animal Production, Hlohovecka 2, 951 41 Luzianky, Slovakia; (M.U.); (V.T.)
- Department of Veterinary Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan;
| | - Roman Konecny
- Department of Animal Husbandry Sciences, Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 37005 Ceske Budejovice, Czech Republic;
| | - Yoshio Kiku
- Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan; (Y.K.); (A.W.)
| | - Atsushi Watanabe
- Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan; (Y.K.); (A.W.)
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Monika Zouharova
- Department of Immunology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic;
| |
Collapse
|
3
|
Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin Sci (Lond) 2020; 133:2143-2157. [PMID: 31654074 DOI: 10.1042/cs20190294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
The successful application of mesenchymal stem cells (MSCs) remains a major challenge in stem cell therapy. Currently, several in vitro studies have indicated potentially beneficial interactions of MSCs with immunosuppressive drugs. These interactions can be even more complex in vivo, and it is in this setting that we investigate the effect of MSCs in combination with Cyclosporine A (CsA) on transplantation reaction and allogeneic cell survival. Using an in vivo mouse model, we found that CsA significantly promoted the survival of MSCs in various organs and tissues of the recipients. In addition, compared to treatment with CsA or MSCs alone, the survival of transplanted allogeneic cells was significantly improved after the combined application of MSCs with CsA. We further observed that the combinatory treatment suppressed immune response to the alloantigen challenge and modulated the immune balance by harnessing proinflammatory CD4+T-bet+ and CD4+RORγt+ cell subsets. These changes were accompanied by a significant decrease in IL-17 production along with an elevated level of IL-10. Co-cultivation of purified naive CD4+ cells with peritoneal macrophages isolated from mice treated with MSCs and CsA revealed that MSC-educated macrophages play an important role in the immunomodulatory effect observed on distinct T-cell subpopulations. Taken together, our findings suggest that CsA promotes MSC survival in vivo and that the therapeutic efficacy of the combination of MSCs with CsA is superior to each monotherapy. This combinatory treatment thus represents a promising approach to reducing immunosuppressant dosage while maintaining or even improving the outcome of therapy.
Collapse
|
4
|
Zeng Y, Li B, Li T, Liu W, Ran C, Penson RT, Poznansky MC, Du Y, Chen H. CD90 low MSCs modulate intratumoral immunity to confer antitumor activity in a mouse model of ovarian cancer. Oncotarget 2019; 10:4479-4491. [PMID: 31320999 PMCID: PMC6633895 DOI: 10.18632/oncotarget.27065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Both anti-tumoral and pro-tumoral effects of mesenchymal stem cells (MSCs) in preclinical treatment of ovarian cancer have been controversially demonstrated. In this study, we profiled the phenotypes of mouse compact bone-derived MSCs (CB-MSCs) and bone marrow-derived MSCs (BM-MSCs) and found that CB-MSCs expressed lower CD90 compared to BM-MSCs. We examined gene expression of immune regulating cytokines of CB-MSCs in 2D and 3D culture and under stimulation with TLR4 agonist LPS or immune activator VIC-008. Our data showed that when CB-MSCs were cultured in simulated in vivo 3D condition, CD90 expression was further decreased. Moreover, gene expressions of immune activating cytokines IL-12, IL-21, IFNγ and a pro-inflammatory cytokine CXCL10 in CB-MSCs were increased in 3D culture whereas gene expression of anti-inflammatory cytokines IL-10 and CCL5 were downregulated. Stimulation of CB-MSCs by LPS or VIC-008 presented similar profile of the cytokine gene expressions to that in 3D culture which might benefit the anti-tumor efficacy of CD90low MSCs. The anti-tumor effects of CD90low CB-MSCs alone or in combination with VIC-008 were evaluated in a syngeneic orthotopic mouse model of ovarian cancer. Treatment that combines CB-MSCs and VIC-008 significantly decreased tumor growth and prolonged mouse survival. This was associated with the increase of activated anti-tumoral CD4+ and CD8+ T cells and the decrease of Treg cells in the tumor microenvironment. Taken together, our study demonstrates the synergistic anti-tumoral efficacy by application of CB-MSCs combined with immune activator VIC-008 and provides new insight into CD90low MSCs as a new anti-tumor arsenal.
Collapse
Affiliation(s)
- Yang Zeng
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston 02215, USA
| | - Binghao Li
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tao Li
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | - Richard T. Penson
- Medical Gynecologic Oncology, Gillette Center for Women's Cancers, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| |
Collapse
|
5
|
Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev 2019; 47:32-42. [DOI: 10.1016/j.cytogfr.2019.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
6
|
Waldner M, Zhang W, James IB, Allbright K, Havis E, Bliley JM, Almadori A, Schweizer R, Plock JA, Washington KM, Gorantla VS, Solari MG, Marra KG, Rubin JP. Characteristics and Immunomodulating Functions of Adipose-Derived and Bone Marrow-Derived Mesenchymal Stem Cells Across Defined Human Leukocyte Antigen Barriers. Front Immunol 2018; 9:1642. [PMID: 30087676 PMCID: PMC6066508 DOI: 10.3389/fimmu.2018.01642] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Vascularized composite allotransplantation opens new possibilities in reconstructive transplantation such as hand or face transplants. Lifelong immunosuppression and its side-effects are the main drawbacks of this procedure. Mesenchymal stem cells (MSCs) have clinically useful immunomodulatory effects and may be able to reduce the burden of chronic immunosuppression. Herein, we assess and compare characteristics and immunomodulatory capacities of bone marrow- and adipose tissue-derived MSCs isolated from the same human individual across defined human leukocyte antigen (HLA) barriers. Materials and methods Samples of omental (o.) adipose tissue, subcutaneous (s.c.) adipose tissue, and bone marrow aspirate from 10 human organ donors were retrieved and MSCs isolated. Cells were characterized by flow cytometry and differentiated in three lineages: adipogenic, osteogenic, and chondrogenic. In mixed lymphocyte reactions, the ability of adipose-derived mesenchymal stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs) to suppress the immune response was assessed and compared within individual donors. HLA mismatched or mitogen stimulations were analyzed in co-culture with different MSC concentrations. Supernatants were analyzed for cytokine contents. Results All cell types, s.c.ASC, o.ASC, and BMSC demonstrated individual differentiation potential and cell surface markers. Immunomodulating effects were dependent on dose and cell passage. Proliferation of responder cells was most effectively suppressed by s.c.ASCs and combination with BMSC resulted in highly efficient immunomodulation. Immunomodulation was not cell contact-dependent and cells demonstrated a specific cytokine secretion. Conclusion When human ASCs and BMSCs are isolated from the same individual, both show effective immunomodulation across defined HLA barriers in vitro. We demonstrate a synergistic effect when cells from the same biologic system were combined. This cell contact-independent function underlines the potential of clinical systemic application of MSCs.
Collapse
Affiliation(s)
- Matthias Waldner
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Zurich, Switzerland
| | - Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Isaac B James
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kassandra Allbright
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emmanuelle Havis
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacqueline M Bliley
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aurora Almadori
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Riccardo Schweizer
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Zurich, Switzerland
| | - Jan A Plock
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Zurich, Switzerland
| | - Kia M Washington
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vijay S Gorantla
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Le Burel S, Thepenier C, Boutin L, Lataillade JJ, Peltzer J. Effect of Mesenchymal Stromal Cells on T Cells in a Septic Context: Immunosuppression or Immunostimulation? Stem Cells Dev 2017; 26:1477-1489. [PMID: 28747098 DOI: 10.1089/scd.2016.0184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a complex process, including a first wave of damage partially due to the body's response to pathogens, followed by a phase of immune cell dysfunction. The efficacy of a pharmacological approach facing a rapidly evolving system implies a perfect timing of administration-this difficulty could explain the recent failure of clinical trials. Mesenchymal stromal cells (MSCs) are usually defined as immunosuppressive and their beneficial effects in preclinical models of acute sepsis have been shown to rely partly on such ability. If nonregulated, this phenotype could be harmful in the immunosuppressed context arising hours after sepsis onset. However, MSCs being environment sensitive, we hypothesized that they could reverse their immunosuppressive properties when confronted with suffering immune cells. Our objective was to evaluate the effect of human MSCs on activated human lymphocytes in an in vitro endotoxemia model. Peripheral blood mononuclear cells (PBMCs) underwent a 24-h lipopolysaccharide (LPS) intoxication and were stimulated with phytohemagglutinin (PHA) in contact with MSCs. MSCs induced a differential effect on lymphocytes depending on PBMC intoxication with LPS. Unintoxicated lymphocytes were highly proliferative with PHA and were inhibited by MSCs, whereas LPS-intoxicated lymphocytes showed a low proliferation rate, but were supported by MSCs, even when monocytes were depleted. These data, highlighting MSC plasticity in their immunomodulatory activity, pave the way for further studies investigating the mechanisms of mutual interactions between MSCs and immune cells in sepsis. Thus, MSCs might be able to fight against both early sepsis-induced hyperinflammatory response and later time points of immune dysfunction.
Collapse
Affiliation(s)
- Sébastien Le Burel
- Unité de Thérapie Tissulaire et Traumatologie de Guerre (T3G), Centre de Transfusion Sanguine des Armées "Jean Julliard" Hôpital Percy , Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Cédric Thepenier
- Unité de Thérapie Tissulaire et Traumatologie de Guerre (T3G), Centre de Transfusion Sanguine des Armées "Jean Julliard" Hôpital Percy , Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Laetitia Boutin
- Unité de Thérapie Tissulaire et Traumatologie de Guerre (T3G), Centre de Transfusion Sanguine des Armées "Jean Julliard" Hôpital Percy , Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Jean-Jacques Lataillade
- Unité de Thérapie Tissulaire et Traumatologie de Guerre (T3G), Centre de Transfusion Sanguine des Armées "Jean Julliard" Hôpital Percy , Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Juliette Peltzer
- Unité de Thérapie Tissulaire et Traumatologie de Guerre (T3G), Centre de Transfusion Sanguine des Armées "Jean Julliard" Hôpital Percy , Institut de Recherche Biomédicale des Armées, Clamart, France
| |
Collapse
|
8
|
Severino P, Palomino DT, Alvarenga H, Almeida CB, Pasqualim DC, Cury A, Salvalaggio PR, De Vasconcelos Macedo AL, Andrade MC, Aloia T, Bromberg S, Rizzo LV, Rocha FA, Marti LC. Human Lymph Node-Derived Fibroblastic and Double-Negative Reticular Cells Alter Their Chemokines and Cytokines Expression Profile Following Inflammatory Stimuli. Front Immunol 2017; 8:141. [PMID: 28261205 PMCID: PMC5307266 DOI: 10.3389/fimmu.2017.00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
Lymph node (LN) is a secondary lymphoid organ with highly organized and compartmentalized structure. LNs harbor B, T, and other cells among fibroblastic reticular cells (FRCs). FRCs are characterized by both podoplanin (PDPN/gp38) expression and by the lack of CD31 expression. FRCs are involved in several immune response processes but mechanisms underlying their function are still under investigation. Double-negative cells (DNCs), another cell population within LNs, are even less understood. They do not express PDPN or CD31, their localization within the LN is unknown, and their phenotype and function remain to be elucidated. This study evaluates the gene expression and cytokines and chemokines profile of human LN-derived FRCs and DNCs during homeostasis and following inflammatory stimuli. Cytokines and chemokines secreted by human FRCs and DNCs partially diverged from those identified in murine models that used similar stimulation. Cytokine and chemokine secretion and their receptors expression levels differed between stimulated DNCs and FRCs, with FRCs expressing a broader range of chemokines. Additionally, dendritic cells demonstrated increased migration toward FRCs, possibly due to chemokine-induced chemotaxis since migration was significantly decreased upon neutralization of secreted CCL2 and CCL20. Our study contributes to the understanding of the biology and functions of FRCs and DNCs and, accordingly, of the mechanisms involving them in immune cells activation and migration.
Collapse
Affiliation(s)
- Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Diana Torres Palomino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil; Programa de Alergia e Imunopatologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Heliene Alvarenga
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil; Programa de Alergia e Imunopatologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Camila Bononi Almeida
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein , São Paulo , Brazil
| | | | - Adriano Cury
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Endocrinology Department, Santa Casa de Misericórdia de Sao Paulo, São Paulo, Brazil
| | - Paolo Rogério Salvalaggio
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Maria Claudina Andrade
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Thiago Aloia
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein , São Paulo , Brazil
| | | | - Luiz Vicente Rizzo
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Fernanda Agostini Rocha
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Luciana C Marti
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein , São Paulo , Brazil
| |
Collapse
|
9
|
Hajkova M, Hermankova B, Javorkova E, Bohacova P, Zajicova A, Holan V, Krulova M. Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations. Stem Cell Rev Rep 2016; 13:104-115. [DOI: 10.1007/s12015-016-9703-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Fischer C, Mamillapalli R, Goetz LG, Jorgenson E, Ilagan Y, Taylor HS. Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine Dysregulation in the Mouse Mammary Gland: A Potential Mechanism Programming Breast Cancer Risk. HORMONES & CANCER 2016; 7:241-51. [PMID: 26911702 PMCID: PMC10726733 DOI: 10.1007/s12672-016-0254-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022]
Abstract
Bisphenol-A (BPA) is a ubiquitous estrogen-like endocrine disrupting compound (EDC). BPA exposure in utero has been linked to breast cancer and abnormal mammary gland development in mice. The recent rise in incidence of human breast cancer and decreased age of first detection suggests a possible environmental etiology. We hypothesized that developmental programming of carcinogenesis may involve an aberrant immune response. Both innate and adaptive immunity play a role in tumor suppression through cytolytic CD8, NK, and Th1 T-cells. We hypothesized that BPA exposure in utero would lead to dysregulation of both innate and adaptive immunity in the mammary gland. CD1 mice were exposed to BPA in utero during gestation (days 9-21) via osmotic minipump. At 6 weeks, the female offspring were ovariectomized and estradiol was given at 8 weeks. RNA and protein were extracted from the posterior mammary glands, and the mRNA and protein levels were measured by PCR array, qRT-PCR, and western blot. In mouse mammary tissue, BPA exposure in utero significantly decreased the expression of members of the chemokine CXC family (Cxcl2, Cxcl4, Cxcl14, and Ccl20), interleukin 1 (Il1) gene family (Il1β and Il1rn), interleukin 2 gene family (Il7 receptor), and interferon gene family (interferon regulatory factor 9 (Irf9), as well as immune response gene 1 (Irg1). Additionally, BPA exposure in utero decreased Esr1 receptor gene expression and increased Esr2 receptor gene expression. In utero exposure of BPA resulted in significant changes to inflammatory modulators within mammary tissue. We suggest that dysregulation of inflammatory cytokines, both pro-inflammatory and anti-inflammatory, leads to a microenvironment that may promote disordered cell growth through inhibition of the immune response that targets cancer cells.
Collapse
Affiliation(s)
- Catha Fischer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, CT, 06510, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, CT, 06510, USA.
| | - Laura G Goetz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, CT, 06510, USA
| | - Elisa Jorgenson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, CT, 06510, USA
| | - Ysabel Ilagan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, CT, 06510, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
11
|
Pavon LF, Sibov TT, de Oliveira DM, Marti LC, Cabral FR, de Souza JG, Boufleur P, Malheiros SM, de Paiva Neto MA, da Cruz EF, Chudzinski-Tavassi AM, Cavalheiro S. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells. Oncotarget 2016; 7:40546-40557. [PMID: 27244897 PMCID: PMC5130027 DOI: 10.18632/oncotarget.9658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/16/2016] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.
Collapse
Affiliation(s)
- Lorena Favaro Pavon
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
| | - Tatiana Tais Sibov
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | | | - Luciana C. Marti
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
- Allergy and Immunopathology Graduate Program, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Francisco Romero Cabral
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
- Faculdade de Ciências Médicas da São Casa de São Paulo, São Paulo, Brazil
| | - Jean Gabriel de Souza
- Biochemistry and Biophysics Laboratory, Butantan Institute, Neuro-Oncology Program, São Paulo, Brazil
| | - Pamela Boufleur
- Biochemistry and Biophysics Laboratory, Butantan Institute, Neuro-Oncology Program, São Paulo, Brazil
| | - Suzana M.F. Malheiros
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Hospital Israelita Albert Einstein (HIAE), Neuro-Oncology Program, São Paulo, Brazil
| | - Manuel A. de Paiva Neto
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Edgard Ferreira da Cruz
- Discipline of Nephrology, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | | | - Sérgio Cavalheiro
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| |
Collapse
|
12
|
Sheikh V, Porter BO, DerSimonian R, Kovacs SB, Thompson WL, Perez-Diez A, Freeman AF, Roby G, Mican J, Pau A, Rupert A, Adelsberger J, Higgins J, Bourgeois JS, Jensen SMR, Morcock DR, Burbelo PD, Osnos L, Maric I, Natarajan V, Croughs T, Yao MD, Estes JD, Sereti I. Administration of interleukin-7 increases CD4 T cells in idiopathic CD4 lymphocytopenia. Blood 2016; 127:977-88. [PMID: 26675348 PMCID: PMC4768432 DOI: 10.1182/blood-2015-05-645077] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Idiopathic CD4 lymphopenia (ICL) is a rare syndrome defined by low CD4 T-cell counts (<300/µL) without evidence of HIV infection or other known cause of immunodeficiency. ICL confers an increased risk of opportunistic infections and has no established treatment. Interleukin-7 (IL-7) is fundamental for thymopoiesis, T-cell homeostasis, and survival of mature T cells, which provides a rationale for its potential use as an immunotherapeutic agent for ICL. We performed an open-label phase 1/2A dose-escalation trial of 3 subcutaneous doses of recombinant human IL-7 (rhIL-7) per week in patients with ICL who were at risk of disease progression. The primary objectives of the study were to assess safety and the immunomodulatory effects of rhIL-7 in ICL patients. Injection site reactions were the most frequently reported adverse events. One patient experienced a hypersensitivity reaction and developed non-neutralizing anti-IL-7 antibodies. Patients with autoimmune diseases that required systemic therapy at screening were excluded from the study; however, 1 participant developed systemic lupus erythematosus while on study and was excluded from further rhIL-7 dosing. Quantitatively, rhIL-7 led to an increase in the number of circulating CD4 and CD8 T cells and tissue-resident CD3 T cells in the gut mucosa and bone marrow. Functionally, these T cells were capable of producing cytokines after mitogenic stimulation. rhIL-7 was well tolerated at biologically active doses and may represent a promising therapeutic intervention in ICL. This trial was registered at www.clinicaltrials.gov as #NCT00839436.
Collapse
Affiliation(s)
- Virginia Sheikh
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Brian O Porter
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Rebecca DerSimonian
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Stephen B Kovacs
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - William L Thompson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Ainhoa Perez-Diez
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Gregg Roby
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - JoAnn Mican
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Alice Pau
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Adam Rupert
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Joseph Adelsberger
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeanette Higgins
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey S Bourgeois
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Stig M R Jensen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - David R Morcock
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD
| | - Leah Osnos
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Irina Maric
- Hematology Section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD; and
| | - Ven Natarajan
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Therese Croughs
- Cytheris Inc., Subsidiary of Cytheris S.A., Issy les Moulineaux, France
| | - Michael D Yao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
13
|
de Witte SFH, Franquesa M, Baan CC, Hoogduijn MJ. Toward Development of iMesenchymal Stem Cells for Immunomodulatory Therapy. Front Immunol 2016; 6:648. [PMID: 26779185 PMCID: PMC4701910 DOI: 10.3389/fimmu.2015.00648] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSC) are under development as an immunomodulatory therapy. The anticipated immunomodulatory effects of MSC are broad, from direct inhibition of lymphocyte proliferation, induction of regulatory T and B cells, to resetting the immune system via a hit-and-run principle. There are endless flavors of MSC. Differences between MSC are originating from donors variation, differences in tissue of origin, the effects of culture conditions, and expansion time. Even standard culture conditions change the properties of MSC dramatically and generate MSC that only remotely resemble their in vivo counterparts. Adjustments in culture protocols can further emphasize properties of interest in MSC, thereby generating cells fitted for specific purposes. Culture improved immunomodulatory MSC can be designed to target particular immune disorders. In this review, we describe the observed and the desired immunomodulatory effects of MSC and propose approaches how MSC with optimal immunomodulatory properties can be developed.
Collapse
Affiliation(s)
- Samantha F H de Witte
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Marcella Franquesa
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Carla C Baan
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| |
Collapse
|