1
|
Yao S, Zhang X, Jin X, Yang M, Li Y, Yang L, Xu J, Lei B. Proteomic Profiling Reveals Increased Glycolysis, Decreased Oxidoreductase Activity and Fatty Acid Degradation in Skin Derived Fibroblasts from LHON Patients Bearing m.G11778A. Biomolecules 2022; 12:1568. [PMID: 36358916 PMCID: PMC9687919 DOI: 10.3390/biom12111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 04/28/2024] Open
Abstract
LHON is a common blinding inherited optic neuropathy caused by mutations in mitochondrial genes. In this study, by using skin fibroblasts derived from LHON patients with the most common m.G11778A mutation and healthy objects, we performed proteomic analysis to document changes in molecular proteins, signaling pathways and cellular activities. Furthermore, the results were confirmed by functional studies. A total of 860 differential expression proteins were identified, containing 624 upregulated and 236 downregulated proteins. Bioinformatics analysis revealed increased glycolysis in LHON fibroblasts. A glycolysis stress test showed that ECAR (extra-cellular acidification rate) values increased, indicating an enhanced level of glycolysis in LHON fibroblasts. Downregulated proteins were mainly enriched in oxidoreductase activity. Cellular experiments verified high levels of ROS in LHON fibroblasts, indicating the presence of oxidative damage. KEGG analysis also showed the metabolic disturbance of fatty acid in LHON cells. This study provided a proteomic profile of skin fibroblasts derived from LHON patients bearing m.G11778A. Increased levels of glycolysis, decreased oxidoreductase activity and fatty acid metabolism could represent the in-depth mechanisms of mitochondrial dysfunction mediated by the mutation. The results provided further evidence that LHON fibroblast could be an alternative model for investigating the devastating disease.
Collapse
Affiliation(s)
- Shun Yao
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Xiaoli Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiuxiu Jin
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Mingzhu Yang
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ya Li
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Lin Yang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jin Xu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Lei
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2
|
Thongboonkerd V, Chaiyarit S. Gel-Based and Gel-Free Phosphoproteomics to Measure and Characterize Mitochondrial Phosphoproteins. Curr Protoc 2022; 2:e390. [PMID: 35275445 DOI: 10.1002/cpz1.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrion is a key intracellular organelle regulating metabolic processes, oxidative stress, energy production, calcium homeostasis, and cell survival. Protein phosphorylation plays an important role in regulating mitochondrial functions and cellular signaling pathways. Dysregulation of protein phosphorylation status can cause protein malfunction and abnormal signal transduction, leading to organ dysfunction and disease. Investigating the mitochondrial phosphoproteins is therefore crucial to better understand the molecular and pathogenic mechanisms of many metabolic disorders. Conventional analyses of phosphoproteins, for instance, via western blotting, can be done only for proteins for which specific antibodies to their phosphorylated forms are available. Moreover, such an approach is not suitable for large-scale study of phosphoproteins. Currently, proteomics represents an important tool for large-scale analysis of proteins and their post-translational modifications, including phosphorylation. Here, we provide step-by-step protocols for the proteomics analysis of mitochondrial phosphoproteins (the phosphoproteome), using renal tubular cells as an example. These protocols include methods to effectively isolate mitochondria and to validate the efficacy of mitochondrial enrichment as well as its purity. We also provide detailed protocols for performing both gel-based and gel-free phosphoproteome analyses. The gel-based analysis involves two-dimensional gel electrophoresis and phosphoprotein-specific staining, followed by protein identification via mass spectrometry, whereas the gel-free approach is based on in-solution mass spectrometric identification of specific phosphorylation sites and residues. In all, these approaches allow large-scale analyses of mitochondrial phosphoproteins that can be applied to other cells and tissues of interest. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Mitochondrial isolation/purification from renal tubular cells Support Protocol: Validation of enrichment efficacy and purity of mitochondrial isolation Basic Protocol 2: Gel-based phosphoproteome analysis Basic Protocol 3: Gel-free phosphoproteome analysis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Aoyama Y, Inagaki S, Aoshima K, Iwata Y, Nakamura S, Hara H, Shimazawa M. Involvement of endoplasmic reticulum stress in rotenone-induced leber hereditary optic neuropathy model and the discovery of new therapeutic agents. J Pharmacol Sci 2021; 147:200-207. [PMID: 34384568 DOI: 10.1016/j.jphs.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is caused by mitochondrial DNA mutations and is the most common inherited mitochondrial disease. It is responsible for central vision loss in young adulthood. However, the precise mechanisms of onset are unknown. This study aimed to elucidate the mechanisms underlying LHON pathology and to discover new therapeutic agents. First, we assessed whether rotenone, a mitochondrial complex Ⅰ inhibitor, induced retinal degeneration such as that in LHON in a mouse model. Rotenone decreased the thickness of the inner retina and increased the expression levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and immunoglobulin heavy-chain binding protein (BiP). Second, we assessed whether rotenone reproduces LHON pathologies on RGC-5, a neural progenitor cell derived from the retina. Rotenone increased the cell death rate, ROS production and the expression levels of ER stress markers. During chemical compounds screening, we used anti-oxidative compounds, ER stress inhibitors and anti-inflammatory compounds in a rotenone-induced in vitro model. We found that SUN N8075, an ER stress inhibitor, reduced mitochondrial ROS production and improved the mitochondrial membrane potential. Consequently, the ER stress response is strongly related to the pathologies of LHON, and ER stress inhibitors may have a protective effect against LHON.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Animals
- Cells, Cultured
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Drug Discovery
- Drug Evaluation, Preclinical
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Endoplasmic Reticulum Stress/physiology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Mutation
- Optic Atrophy, Hereditary, Leber/chemically induced
- Optic Atrophy, Hereditary, Leber/drug therapy
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Piperazines/pharmacology
- Reactive Oxygen Species/metabolism
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Retinal Degeneration/chemically induced
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Rotenone/adverse effects
- Mice
Collapse
Affiliation(s)
- Yakumo Aoyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kota Aoshima
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Iwata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
4
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
5
|
Bocca C, Le Paih V, Chao de la Barca JM, Kouassy Nzoughet J, Amati-Bonneau P, Blanchet O, Védie B, Géromin D, Simard G, Procaccio V, Bonneau D, Lenaers G, Orssaud C, Reynier P. A plasma metabolomic signature of Leber hereditary optic neuropathy showing taurine and nicotinamide deficiencies. Hum Mol Genet 2021; 30:21-29. [PMID: 33437983 PMCID: PMC8033144 DOI: 10.1093/hmg/ddab013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common disorder due to mitochondrial DNA mutations and complex I deficiency. It is characterized by an acute vision loss, generally in young adults, with a higher penetrance in males. How complex I dysfunction induces the peculiar LHON clinical presentation remains an unanswered question. To gain an insight into this question, we carried out a non-targeted metabolomic investigation using the plasma of 18 LHON patients, during the chronic phase of the disease, comparing them to 18 healthy controls. A total of 500 metabolites were screened of which 156 were accurately detected. A supervised Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) highlighted a robust model for disease prediction with a Q2 (cum) of 55.5%, with a reliable performance during the permutation test (cross-validation analysis of variance, P-value = 5.02284e-05) and a good prediction of a test set (P = 0.05). This model highlighted 10 metabolites with variable importance in the projection (VIP) > 0.8. Univariate analyses revealed nine discriminating metabolites, six of which were the same as those found in the Orthogonal Projections to Latent Structures Discriminant Analysis model. In total, the 13 discriminating metabolites identified underlining dietary metabolites (nicotinamide, taurine, choline, 1-methylhistidine and hippurate), mitochondrial energetic substrates (acetoacetate, glutamate and fumarate) and purine metabolism (inosine). The decreased concentration of taurine and nicotinamide (vitamin B3) suggest interesting therapeutic targets, given their neuroprotective roles that have already been demonstrated for retinal ganglion cells. Our results show a reliable predictive metabolomic signature in the plasma of LHON patients and highlighted taurine and nicotinamide deficiencies.
Collapse
Affiliation(s)
- Cinzia Bocca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Victor Le Paih
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Juan Manuel Chao de la Barca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | | | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Benoit Védie
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France.,Hôpital Européen Georges Pompidou, Département de Biochimie, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, Paris, France
| | - Daniela Géromin
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Vincent Procaccio
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Dominique Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Christophe Orssaud
- Unité Fonctionnelle d'Ophtalmologie, CRMR Ophtara, Hôpital Européen Georges Pompidou (HEGP), GH Paris Centre, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Service d'Ophtalmologie, Ophtara Hôpital Necker-Enfants Malades, GH Paris Centre, AP-HP, 149, rue de Sèvres, 75015 Paris, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| |
Collapse
|
6
|
Zhou L, Chan JCY, Chupin S, Gueguen N, Desquiret-Dumas V, Koh SK, Li J, Gao Y, Deng L, Verma C, Beuerman RW, Chan ECY, Milea D, Reynier P. Increased Protein S-Glutathionylation in Leber's Hereditary Optic Neuropathy (LHON). Int J Mol Sci 2020; 21:ijms21083027. [PMID: 32344771 PMCID: PMC7215361 DOI: 10.3390/ijms21083027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.
Collapse
Affiliation(s)
- Lei Zhou
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Correspondence: (L.Z.); (D.M.); (P.R.)
| | - James Chun Yip Chan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (J.C.Y.C.); (E.C.Y.C.)
| | - Stephanie Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
| | - Naïg Gueguen
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d’Angers, 49933 Angers, France
| | - Valérie Desquiret-Dumas
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d’Angers, 49933 Angers, France
| | - Siew Kwan Koh
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
| | - Jianguo Li
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Atomistic Simulations and Design in Biology, Bioinformatics Institute, 30 Biopolis Street, #07–01 Matrix, Singapore 138671, Singapore;
| | - Yan Gao
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
| | - Lu Deng
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore 117546, Singapore;
| | - Chandra Verma
- Atomistic Simulations and Design in Biology, Bioinformatics Institute, 30 Biopolis Street, #07–01 Matrix, Singapore 138671, Singapore;
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singpaore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Roger W Beuerman
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (J.C.Y.C.); (E.C.Y.C.)
- Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - Dan Milea
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Département d’Ophtalmologie, Centre Hospitalier Universitaire, 49933 Angers, France
- Neuro-Ophthalmology Department, Singapore National Eye Centre, Singapore 168751, Singpaore
- Correspondence: (L.Z.); (D.M.); (P.R.)
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d’Angers, 49933 Angers, France
- Correspondence: (L.Z.); (D.M.); (P.R.)
| |
Collapse
|
7
|
Bons J, Macron C, Aude-Garcia C, Vaca-Jacome SA, Rompais M, Cianférani S, Carapito C, Rabilloud T. A Combined N-terminomics and Shotgun Proteomics Approach to Investigate the Responses of Human Cells to Rapamycin and Zinc at the Mitochondrial Level. Mol Cell Proteomics 2019; 18:1085-1095. [PMID: 31154437 PMCID: PMC6553941 DOI: 10.1074/mcp.ra118.001269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
All but thirteen mammalian mitochondrial proteins are encoded by the nuclear genome, translated in the cytosol and then imported into the mitochondria. For a significant proportion of the mitochondrial proteins, import is coupled with the cleavage of a presequence called the transit peptide, and the formation of a new N-terminus. Determination of the neo N-termini has been investigated by proteomic approaches in several systems, but generally in a static way to compile as many N-termini as possible. In the present study, we have investigated how the mitochondrial proteome and N-terminome react to chemical stimuli that alter mitochondrial metabolism, namely zinc ions and rapamycin. To this end, we have used a strategy that analyzes both internal and N-terminal peptides in a single run, the dN-TOP approach. We used these two very different stressors to sort out what could be a generic response to stress and what is specific to each of these stressors. Rapamycin and zinc induced different changes in the mitochondrial proteome. However, convergent changes to key mitochondrial enzymatic activities such as pyruvate dehydrogenase, succinate dehydrogenase and citrate synthase were observed for both treatments. Other convergent changes were seen in components of the N-terminal processing system and mitochondrial proteases. Investigations into the generation of neo-N-termini in mitochondria showed that the processing system is robust, as indicated by the lack of change in neo N-termini under the conditions tested. Detailed analysis of the data revealed that zinc caused a slight reduction in the efficiency of the N-terminal trimming system and that both treatments increased the degradation of mitochondrial proteins. In conclusion, the use of this combined strategy allowed a detailed analysis of the dynamics of the mitochondrial N-terminome in response to treatments which impact the mitochondria.
Collapse
Affiliation(s)
- Joanna Bons
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Charlotte Macron
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Catherine Aude-Garcia
- §Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, BIG-LCBM, 38000 Grenoble, France
| | - Sebastian Alvaro Vaca-Jacome
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Magali Rompais
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Sarah Cianférani
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Christine Carapito
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France;
| | - Thierry Rabilloud
- §Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, BIG-LCBM, 38000 Grenoble, France
| |
Collapse
|
8
|
Uittenbogaard M, Brantner CA, Fang Z, Wong LJ, Gropman A, Chiaramello A. The m.11778 A > G variant associated with the coexistence of Leber's hereditary optic neuropathy and multiple sclerosis-like illness dysregulates the metabolic interplay between mitochondrial oxidative phosphorylation and glycolysis. Mitochondrion 2018; 46:187-194. [PMID: 29890302 DOI: 10.1016/j.mito.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 06/07/2018] [Indexed: 01/07/2023]
Abstract
Little is known about the molecular mechanism of the rare coexistence of Leber's Hereditary Optic Neuropathy (LHON) and multiple sclerosis (MS), also known as the Harding's syndrome. In this study, we provide novel evidence that the m.11778A > G variant causes a defective metabolic interplay between mitochondrial oxidative phosphorylation and glycolysis. We used dermal fibroblasts derived from a female proband exhibiting clinical symptoms compatible with LHON-MS due to the presence of the pathogenic m.11778A > G variant at near homoplasmic levels. Our mitochondrial morphometric analysis reveals abnormal cristae architecture. Live-cell respiratory studies show stunted metabolic potential and spare respiratory capacity, vital for cell survival upon a sudden energy demand. The m.11778 A > G variant also alters glycolytic activities with a diminished compensatory glycolysis, thereby preventing an efficient metabolic reprogramming during a mitochondrial ATP crisis. Our collective results provide evidence of limited bioenergetic flexibility in the presence of the m.11778 A > G variant. Our study sheds light on the potential pathophysiologic mechanism of the m.11778 A > G variant leading to energy crisis in this patient with the LHON-MS disease.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Christine A Brantner
- GW Nanofabrication and Imaging Center, Office of the Vice President for Research, George Washington University, Washington, DC 20052, USA
| | - ZiShui Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Gropman
- Children's National Medical Center, Division of Neurogenetics and Developmental Pediatrics, Washington, DC 20010, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
9
|
Chao de la Barca JM, Simard G, Amati-Bonneau P, Safiedeen Z, Prunier-Mirebeau D, Chupin S, Gadras C, Tessier L, Gueguen N, Chevrollier A, Desquiret-Dumas V, Ferré M, Bris C, Kouassi Nzoughet J, Bocca C, Leruez S, Verny C, Miléa D, Bonneau D, Lenaers G, Martinez MC, Procaccio V, Reynier P. The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress. Brain 2017; 139:2864-2876. [PMID: 27633772 DOI: 10.1093/brain/aww222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/24/2016] [Indexed: 12/27/2022] Open
Abstract
Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as the greater expression of C/EBP homologous protein and the increased XBP1 splicing, in fibroblasts from affected patients, all these changes being reversed by the endoplasmic reticulum stress inhibitor, TUDCA (tauroursodeoxycholic acid). Thus, our metabolomic analysis reveals a pharmacologically-reversible endoplasmic reticulum stress in complex I-related Leber's hereditary optic neuropathy fibroblasts, a finding that may open up new therapeutic perspectives for the treatment of Leber's hereditary optic neuropathy with endoplasmic reticulum-targeting drugs.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,INSERM U 1063, Université d'Angers, Angers, France
| | - Patrizia Amati-Bonneau
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | | | - Delphine Prunier-Mirebeau
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Stéphanie Chupin
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Cédric Gadras
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Lydie Tessier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Naïg Gueguen
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Arnaud Chevrollier
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Valérie Desquiret-Dumas
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Marc Ferré
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Céline Bris
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Judith Kouassi Nzoughet
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Cinzia Bocca
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Stéphanie Leruez
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département d'Ophtalmologie, Centre Hospitalier Universitaire, Angers, France
| | - Christophe Verny
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Neurologie, Centre Hospitalier Universitaire, Angers, France
| | - Dan Miléa
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département d'Ophtalmologie, Centre Hospitalier Universitaire, Angers, France.,Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS, Singapore
| | - Dominique Bonneau
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Guy Lenaers
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | | | - Vincent Procaccio
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Pascal Reynier
- PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
10
|
Caporali L, Maresca A, Capristo M, Del Dotto V, Tagliavini F, Valentino ML, La Morgia C, Carelli V. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion 2017; 36:130-137. [PMID: 28716668 DOI: 10.1016/j.mito.2017.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
Incomplete penetrance characterizes the two most frequent inherited optic neuropathies, Leber's Hereditary Optic Neuropathy (LHON) and dominant optic atrophy (DOA), due to genetic errors in the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA), respectively. For LHON, compelling evidence has accumulated on the complex interplay of mtDNA haplogroups and environmental interacting factors, whereas the nDNA remains essentially non informative. However, a compensatory mechanism of activated mitochondrial biogenesis and increased mtDNA copy number, possibly driven by a permissive nDNA background, is documented in LHON; when successful it maintains unaffected the mutation carriers, but in some individuals it might be hampered by tobacco smoking or other environmental factors, resulting in disease onset. In females, mitochondrial biogenesis is promoted and maintained within the compensatory range by estrogens, partially explaining the gender bias in LHON. Concerning DOA, none of the above mechanisms has been fully explored, thus mtDNA haplogroups, environmental factors such as tobacco and alcohol, and further nDNA variants may all participate as protective factors or, on the contrary, favor disease expression and severity. Next generation sequencing, complemented by transcriptomics and proteomics, may provide some answers in the next future, even if the multifactorial model that seems to apply to incomplete penetrance in mitochondrial optic neuropathies remains problematic, and careful stratification of patients will play a key role for data interpretation. The deep understanding of which factors impinge on incomplete penetrance may shed light on the pathogenic mechanisms leading to optic nerve atrophy, on their possible compensation and, thus, on development of therapeutic strategies.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | | | - Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
11
|
Garlid AO, Polson JS, Garlid KD, Hermjakob H, Ping P. Equipping Physiologists with an Informatics Tool Chest: Toward an Integerated Mitochondrial Phenome. Handb Exp Pharmacol 2017; 240:377-401. [PMID: 27995389 DOI: 10.1007/164_2016_93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the complex involvement of mitochondrial biology in disease development often requires the acquisition, analysis, and integration of large-scale molecular and phenotypic data. An increasing number of bioinformatics tools are currently employed to aid in mitochondrial investigations, most notably in predicting or corroborating the spatial and temporal dynamics of mitochondrial molecules, in retrieving structural data of mitochondrial components, and in aggregating as well as transforming mitochondrial centric biomedical knowledge. With the increasing prevalence of complex Big Data from omics experiments and clinical cohorts, informatics tools have become indispensable in our quest to understand mitochondrial physiology and pathology. Here we present an overview of the various informatics resources that are helping researchers explore this vital organelle and gain insights into its form, function, and dynamics.
Collapse
Affiliation(s)
- Anders Olav Garlid
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA.
| | - Jennifer S Polson
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA.
| | - Keith D Garlid
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Henning Hermjakob
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA
- Molecular Systems Cluster, European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Peipei Ping
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Departments of Physiology, Medicine, and Bioinformatics, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
12
|
Bi R, Logan I, Yao YG. Leber Hereditary Optic Neuropathy: A Mitochondrial Disease Unique in Many Ways. Handb Exp Pharmacol 2017; 240:309-336. [PMID: 27787713 DOI: 10.1007/164_2016_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Leber hereditary optic neuropathy (LHON) was the first mitochondrial disease to be identified as being caused by mutations in the mitochondrial DNA (mtDNA). This disease has been studied extensively in the past two decades, particularly in Brazilian, Chinese and European populations; and many primary mutations have been reported. However, the disease is enigmatic with many unique features, and there still are several important questions to be resolved. The incomplete penetrance, the male-biased disease expression and the prevalence in young adults all defy a proper explanation. It has been reported that the development of LHON is affected by the interaction between mtDNA mutations, mtDNA haplogroup background, nuclear genes, environmental factors and epigenetics. Furthermore, with the help of new animal models for LHON that have been created in recent years, we are continuing to learn more about the mechanism of this disease. The stage has now been reached at which there is a good understanding of both the genetic basis of the disease and its epidemiology, but just how the blindness that follows from the death of cells in the optic nerve can be prevented remains to be a pharmacological challenge. In this chapter, we summarize the progress that has been made in various recent studies on LHON, focusing on the molecular pathogenic mechanisms, clinical features, biochemical effects, the pharmacology and its treatment.
Collapse
Affiliation(s)
- Rui Bi
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Yong-Gang Yao
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
13
|
A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol 2016; 132:789-806. [PMID: 27696015 PMCID: PMC5106504 DOI: 10.1007/s00401-016-1625-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial optic neuropathies constitute an important cause of chronic visual morbidity and registrable blindness in both the paediatric and adult population. It is a genetically heterogeneous group of disorders caused by both mitochondrial DNA (mtDNA) mutations and a growing list of nuclear genetic defects that invariably affect a critical component of the mitochondrial machinery. The two classical paradigms are Leber hereditary optic neuropathy (LHON), which is a primary mtDNA disorder, and autosomal dominant optic atrophy (DOA) secondary to pathogenic mutations within the nuclear gene OPA1 that encodes for a mitochondrial inner membrane protein. The defining neuropathological feature is the preferential loss of retinal ganglion cells (RGCs) within the inner retina but, rather strikingly, the smaller calibre RGCs that constitute the papillomacular bundle are particularly vulnerable, whereas melanopsin-containing RGCs are relatively spared. Although the majority of patients with LHON and DOA will present with isolated optic nerve involvement, some individuals will also develop additional neurological complications pointing towards a greater vulnerability of the central nervous system (CNS) in susceptible mutation carriers. These so-called “plus” phenotypes are mechanistically important as they put the loss of RGCs within the broader perspective of neuronal loss and mitochondrial dysfunction, highlighting common pathways that could be modulated to halt progressive neurodegeneration in other related CNS disorders. The management of patients with mitochondrial optic neuropathies still remains largely supportive, but the development of effective disease-modifying treatments is now within tantalising reach helped by major advances in drug discovery and delivery, and targeted genetic manipulation.
Collapse
|
14
|
Investigating Leber's hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion 2016; 32:19-26. [PMID: 27847334 DOI: 10.1016/j.mito.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) was the first human disease found to be associated with a mitochondrial DNA (mtDNA) point mutation. The most common LHON mutations are 11778G>A, 3460G>A or 14484T>C. The most common clinical features of LHON are optic nerve and retina atrophy. The affected tissue is not available for studies, therefore a variety of other cell types are used. However, all models face difficulties and limitations in mitochondrial disease research. The advantages and disadvantages of different cell models used to study LHON, recent advances in animal model generation and novel approaches in this field are discussed.
Collapse
|
15
|
Chmilewsky F, Ayaz W, Appiah J, About I, Chung SH. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth. Sci Rep 2016; 6:31799. [PMID: 27539194 PMCID: PMC4990934 DOI: 10.1038/srep31799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation.
Collapse
Affiliation(s)
- Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Warda Ayaz
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - James Appiah
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Imad About
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France
| | - Seung-Hyuk Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|