1
|
Jin X, Rosenbohm J, Moghaddam AO, Kim E, Seiffert-Sinha K, Leiker M, Zhai H, Baddam SR, Minnick G, Huo Y, Safa BT, Wahl JK, Meng F, Huang C, Lim JY, Conway DE, Sinha AA, Yang R. Desmosomal Cadherin Tension Loss in Pemphigus Vulgaris Mediated by the Inhibition of Active RhoA at Cell-Cell Adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592394. [PMID: 38766211 PMCID: PMC11100601 DOI: 10.1101/2024.05.03.592394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Amir Ostadi Moghaddam
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Merced Leiker
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Haiwei Zhai
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Sindora R. Baddam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Yucheng Huo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - James K. Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Fanben Meng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210
| | - Animesh A. Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Zhai H, Jin X, Minnick G, Rosenbohm J, Hafiz MAH, Yang R, Meng F. Spatially Guided Construction of Multilayered Epidermal Models Recapturing Structural Hierarchy and Cell-Cell Junctions. SMALL SCIENCE 2022; 2:2200051. [PMID: 36590765 PMCID: PMC9799093 DOI: 10.1002/smsc.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A current challenge in three-dimensional (3D) bioprinting of skin equivalents is to recreate the distinct basal and suprabasal layers and to promote their direct interactions. Such a structural arrangement is essential to establish 3D stratified epidermis disease models, such as for the autoimmune skin disease pemphigus vulgaris (PV), which targets the cell-cell junctions at the interface of the basal and suprabasal layers. Inspired by epithelial regeneration in wound healing, we develop a method that combines 3D bioprinting and spatially guided self-reorganization of keratinocytes to recapture the fine structural hierarchy that lies in the deep layers of the epidermis. Here, keratinocyte-laden fibrin hydrogels are bioprinted to create geographical cues, guiding dynamic self-reorganization of cells through collective migration, keratinocyte differentiation and vertical expansion. This process results in a region of self-organized multilayers (SOMs) that contain the basal to suprabasal transition, marked by the expressed levels of different types of keratins that indicate differentiation. Finally, we demonstrate the reconstructed skin tissue as an in vitro platform to study the pathogenic effects of PV and observe a significant difference in cell-cell junction dissociation from PV antibodies in different epidermis layers, indicating their applications in the preclinical test of possible therapies.
Collapse
Affiliation(s)
- Haiwei Zhai
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Fanben Meng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
3
|
Bumiller-Bini Hoch V, Schneider L, Pumpe AE, Lüders E, Hundt JE, Boldt ABW. Marked to Die-Cell Death Mechanisms for Keratinocyte Acantholysis in Pemphigus Diseases. Life (Basel) 2022; 12:life12030329. [PMID: 35330080 PMCID: PMC8948972 DOI: 10.3390/life12030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Pemphigus is a group of blistering autoimmune diseases causing painful skin lesions, characterized by acantholysis and by the production of autoantibodies against, mainly, adhesion proteins. We reviewed the literature for molecules and/ or features involved in the 12 cell death pathways described by Nomenclature Committee on Cell Death, taking place in pemphigus patients, cell lines, or human skin organ cultures treated with sera or IgG from pemphigus patients or in pemphigus mouse models, and found 61 studies mentioning 97 molecules involved in cell death pathways. Among the molecules, most investigated were pleiotropic molecules such as TNF and CASP3, followed by FASL and CASP8, and then by FAS, BAX, BCL2, and TP53, all involved in more than one pathway but interpreted to function only within apoptosis. Most of these previous investigations focused only on apoptosis, but four recent studies, using TUNEL assays and/or electron microscopy, disqualified this pathway as a previous event of acantholysis. For PV, apoptolysis was suggested as a cell death mechanism based on pathogenic autoantibodies diversity, mitochondrial dysfunction, and p38 MAPK signaling. To answer those many questions that remain on cell death and pemphigus, we propose well-controlled, statistically relevant investigations on pemphigus and cell death pathways besides apoptosis, to overcome the challenges of understanding the etiopathology of pemphigus diseases.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini Hoch
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.B.-B.H.); (L.S.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Larissa Schneider
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.B.-B.H.); (L.S.)
| | - Anna Elisabeth Pumpe
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Emelie Lüders
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.B.-B.H.); (L.S.)
- Correspondence:
| |
Collapse
|
4
|
Jin X, Rosenbohm J, Kim E, Esfahani AM, Seiffert-Sinha K, Wahl JK, Lim JY, Sinha AA, Yang R. Modulation of Mechanical Stress Mitigates Anti-Dsg3 Antibody-Induced Dissociation of Cell-Cell Adhesion. Adv Biol (Weinh) 2021; 5:e2000159. [PMID: 33724731 PMCID: PMC7993752 DOI: 10.1002/adbi.202000159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly clear that mechanical stress in adhesive junctions plays a significant role in dictating the fate of cell-cell attachment under physiological conditions. Targeted disruption of cell-cell junctions leads to multiple pathological conditions, among them the life-threatening autoimmune blistering disease pemphigus vulgaris (PV). The dissociation of cell-cell junctions by autoantibodies is the hallmark of PV, however, the detailed mechanisms that result in tissue destruction remain unclear. Thus far, research and therapy in PV have focused primarily on immune mechanisms upstream of autoantibody binding, while the biophysical aspects of the cell-cell dissociation process leading to acantholysis are less well studied. In work aimed at illuminating the cellular consequences of autoantibody attachment, it is reported that externally applied mechanical stress mitigates antibody-induced monolayer fragmentation and inhibits p38 MAPK phosphorylation activated by anti-Dsg3 antibody. Further, it is demonstrated that mechanical stress applied externally to cell monolayers enhances cell contractility via RhoA activation and promotes the strengthening of cortical actin, which ultimately mitigates antibody-induced cell-cell dissociation. The study elevates understanding of the mechanism of acantholysis in PV and shifts the paradigm of PV disease development from a focus solely on immune pathways to highlight the key role of physical transformations at the target cell.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
5
|
Stevens NE, Cowin AJ, Kopecki Z. Skin Barrier and Autoimmunity-Mechanisms and Novel Therapeutic Approaches for Autoimmune Blistering Diseases of the Skin. Front Immunol 2019; 10:1089. [PMID: 31156638 PMCID: PMC6530337 DOI: 10.3389/fimmu.2019.01089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
One of the most important functions of the skin besides regulating internal body temperature includes formation of the barrier between the organism and the external environment, hence protecting against pathogen invasion, chemical and physical assaults and unregulated loss of water and solutes. Disruption of the protective barrier is observed clinically in blisters and erosions of the skin that form in autoimmune blistering diseases where the body produces autoantibodies against structural proteins of the epidermis or the epidermal-dermal junction. Although there is no cure for autoimmune skin blistering diseases, immune suppressive therapies currently available offer opportunities for disease management. In cases where no treatment is sought, these disorders can lead to life threatening complications and current research efforts have focused on developing therapies that target autoantibodies which contribute to disease symptoms. This review will outline the involvement of the skin barrier in main skin-specific autoimmune blistering diseases by describing the mechanisms underpinning skin autoimmunity and review current progress in development of novel therapeutic approaches targeting the underlying causes of autoimmune skin blistering diseases.
Collapse
Affiliation(s)
- Natalie E Stevens
- Regenerative Medicine Laboratory, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine Laboratory, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Zlatko Kopecki
- Regenerative Medicine Laboratory, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
6
|
Yang# Y, Yu# J, Esfahani AM, Seiffert-Sinha K, Xi N, Lee I, Sinha AA, Chen L, Sun Z, Yang R, Dong L. Single-cell membrane drug delivery using porous pen nanodeposition. NANOSCALE 2018; 10:12704-12712. [PMID: 29946596 PMCID: PMC6528655 DOI: 10.1039/c8nr02600a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Delivering molecules onto the plasma membrane of single cells is still a challenging task in profiling cell signaling pathways with single cell resolution. We demonstrated that a large quantity of molecules could be targeted and released onto the membrane of individual cells to trigger signaling responses. This is achieved by a porous pen nanodeposition (PPN) method, in which a multilayer porous structure, serving as a reservoir for a large amount of molecules, is formed on an atomic force microscope (AFM) tip using layer-by-layer assembly and post processing. To demonstrate its capability for single cell membrane drug delivery, PPN was employed to induce a calcium flux triggered by the binding of released antibodies to membrane antigens in an autoimmune skin disease model. This calcium signal propagates from the target cell to its neighbors in a matter of seconds, proving the theory of intercellular communication through cell-cell junctions. Collectively, these results demonstrated the effectiveness of PPN in membrane drug delivery for single cells; to the best of our knowledge, this is the first technique that can perform the targeted transport and delivery in single cell resolution, paving the way for probing complex signaling interactions in multicellular settings.
Collapse
Affiliation(s)
- Yongliang Yang#
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA,
| | - Jing Yu#
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska -Lincoln, Lincoln, NE 68588, USA
| | | | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Ilsoon Lee
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Animesh A. Sinha
- Department of Dermatology, University at Buffalo, Buffalo, New York 14203, USA
| | - Liangliang Chen
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Sun
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska -Lincoln, Lincoln, NE 68588, USA,
| | - Lixin Dong
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA,
| |
Collapse
|
7
|
Sajda T, Sinha AA. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model. Front Immunol 2018; 9:692. [PMID: 29755451 PMCID: PMC5932349 DOI: 10.3389/fimmu.2018.00692] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV.
Collapse
Affiliation(s)
- Thomas Sajda
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Yang R, Broussard JA, Green KJ, Espinosa HD. Techniques to stimulate and interrogate cell-cell adhesion mechanics. EXTREME MECHANICS LETTERS 2018; 20:125-139. [PMID: 30320194 PMCID: PMC6181239 DOI: 10.1016/j.eml.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell-cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell-extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell-cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell-cell adhesive junctions. This review covers established experimental techniques for stimulation and interrogation of cell-cell adhesion from cell pairs to monolayers.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Kathleen J. Green
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, United States
- Institute for Cellular Engineering Technologies, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
9
|
Vielmuth F, Spindler V, Waschke J. Atomic Force Microscopy Provides New Mechanistic Insights into the Pathogenesis of Pemphigus. Front Immunol 2018; 9:485. [PMID: 29643851 PMCID: PMC5883869 DOI: 10.3389/fimmu.2018.00485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/23/2018] [Indexed: 12/19/2022] Open
Abstract
Autoantibodies binding to the extracellular domains of desmoglein (Dsg) 3 and 1 are critical in the pathogenesis of pemphigus by mechanisms leading to impaired function of desmosomes and blister formation in the epidermis and mucous membranes. Desmosomes are highly organized protein complexes which provide strong intercellular adhesion. Desmosomal cadherins such as Dsgs, proteins of the cadherin superfamily which interact via their extracellular domains in Ca2+-dependent manner, are the transmembrane adhesion molecules clustered within desmosomes. Investigations on pemphigus cover a wide range of experimental approaches including biophysical methods. Especially atomic force microscopy (AFM) has recently been applied increasingly because it allows the analysis of native materials such as cultured cells and tissues under near-physiological conditions. AFM provides information about the mechanical properties of the sample together with detailed interaction analyses of adhesion molecules. With AFM, it was recently demonstrated that autoantibodies directly inhibit Dsg interactions on the surface of living keratinocytes, a phenomenon which has long been considered the main mechanism causing loss of cell cohesion in pemphigus. In addition, AFM allows to study how signaling pathways altered in pemphigus control binding properties of Dsgs. More general, AFM and other biophysical studies recently revealed the importance of keratin filaments for regulation of Dsg binding and keratinocyte mechanical properties. In this mini-review, we reevaluate AFM studies in pemphigus and keratinocyte research, recapitulate what is known about the interaction mechanisms of desmosomal cadherins and discuss the advantages and limitations of AFM in these regards.
Collapse
Affiliation(s)
| | | | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
10
|
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, Kowalczyk AP, Müller EJ, Payne AS, Pincelli C, Sinha AA, Sprecher E, Zillikens D, Hertl M, Waschke J. Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol 2017; 138:32-37. [PMID: 29037765 DOI: 10.1016/j.jid.2017.06.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
The autoimmune blistering skin disease pemphigus is caused by IgG autoantibodies against desmosomal cadherins, but the precise mechanisms are in part a matter of controversial discussions. This review focuses on the currently existing models of the disease and highlights the relevance of desmoglein-specific versus nondesmoglein autoantibodies, the contribution of nonautoantibody factors, and the mechanisms leading to cell dissociation and blister formation in response to autoantibody binding. As the review brings together the majority of laboratories currently working on pemphigus pathogenesis, it aims to serve as a solid basis for further investigations for the entire field.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Rüdiger Eming
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Sergei Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, California, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew P Kowalczyk
- Departments of Cell Biology and Dermatology, Emory University, Atlanta, Georgia, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Bern, Switzerland; Vetsuisse Faculty, DermFocus, Bern, Switzerland; Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, University of Modena and Reggio Emilia, Modena, Italy
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
11
|
Di Zenzo G, Amber KT, Sayar BS, Müller EJ, Borradori L. Immune response in pemphigus and beyond: progresses and emerging concepts. Semin Immunopathol 2015; 38:57-74. [DOI: 10.1007/s00281-015-0541-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
12
|
|
13
|
Chen Y, Chernyavsky A, Webber RJ, Grando SA, Wang PH. Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris. J Biol Chem 2015; 290:23826-37. [PMID: 26260795 DOI: 10.1074/jbc.m115.668061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 01/23/2023] Open
Abstract
Pemphigus vulgaris (PV) is a life-long, potentially fatal IgG autoantibody-mediated blistering disease targeting mucocutaneous keratinocytes (KCs). PV patients develop pathogenic anti-desmoglein (Dsg) 3 ± 1 and antimitochondrial antibodies (AMA), but it remained unknown whether and how AMA enter KCs and why other cell types are not affected in PV. Therefore, we sought to elucidate mechanisms of cell entry, trafficking, and pathogenic action of AMA in PV. We found that PVIgGs associated with neonatal Fc receptor (FcRn) on the cell membrane, and the PVIgG-FcRn complexes entered KCs and reached mitochondria where they dissociated. The liberated AMA altered mitochondrial membrane potential, respiration, and ATP production and induced cytochrome c release, although the lack or inactivation of FcRn abolished the ability of PVIgG to reach and damage mitochondria and to cause detachment of KCs. The assays of mitochondrial functions and keratinocyte adhesion demonstrated that although the pathobiological effects of AMA on KCs are reversible, they become irreversible, leading to epidermal blistering (acantholysis), when AMA synergize with anti-Dsg antibodies. Thus, it appears that AMA enter a keratinocyte in a complex with FcRn, become liberated from the endosome in the cytosol, and are trafficked to the mitochondria, wherein they trigger pro-apoptotic events leading to shrinkage of basal KCs uniquely expressing FcRn in epidermis. During recovery, KCs extend their cytoplasmic aprons toward neighboring cells, but anti-Dsg antibodies prevent assembly of nascent desmosomes due to steric hindrance, thus rendering acantholysis irreversible. In conclusion, FcRn is a common acceptor protein for internalization of AMA and, perhaps, for PV autoantibodies to other intracellular antigens, and PV is a novel disease paradigm for investigating and elucidating the role of FcRn in this autoimmune disease and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Yumay Chen
- From the Irvine Diabetes Center, Department of Medicine, and
| | | | | | - Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and the Institute for Immunology, University of California at Irvine, Irvine, California 92967 and
| | - Ping H Wang
- From the Irvine Diabetes Center, Department of Medicine, and Biological Chemistry, and
| |
Collapse
|
14
|
Luyet C, Schulze K, Sayar BS, Howald D, Müller EJ, Galichet A. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris. PLoS One 2015; 10:e0119809. [PMID: 25748204 PMCID: PMC4352034 DOI: 10.1371/journal.pone.0119809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including cancer.
Collapse
Affiliation(s)
- Camille Luyet
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katja Schulze
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beyza S. Sayar
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Denise Howald
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J. Müller
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Arnaud Galichet
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Vielmuth F, Hartlieb E, Kugelmann D, Waschke J, Spindler V. Atomic force microscopy identifies regions of distinct desmoglein 3 adhesive properties on living keratinocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:511-20. [PMID: 25510735 DOI: 10.1016/j.nano.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/30/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
Abstract
Desmosomes provide strong cell-cell adhesion which is crucial for the integrity of tissues such as the epidermis. However, nothing is known about the distribution and binding properties of desmosomal adhesion molecules on keratinocytes. Here we used atomic force microscopy (AFM) to simultaneously visualize the topography of living human keratinocytes and the distribution and binding properties of the desmosomal adhesion molecule desmoglein 3 (Dsg3). Using recombinant Dsg3 as sensor, binding events were detectable diffusely and in clusters on the cell surface and at areas of cell-cell contact. This was blocked by removing Ca(2+) and by addition of Dsg3-specific antibodies indicating homophilic Dsg3 binding. Binding forces of Dsg3 molecules were lower on the cell surface compared to areas of cell-cell contact. Our data for the first time directly demonstrate the occurrence of Dsg3 molecules outside of desmosomes and show that Dsg3 adhesive properties differ depending on their localization. From the clinical editor: Using atomic force microscopy in the study of keratinocytes, this study directly demonstrates the occurrence of desmoglein 3 molecules outside of desmosomes and reveales that the adhesive properties of these molecules do differ depending on their localization.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Eva Hartlieb
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|