1
|
Yang N, Tang C, Azimu W, Wang H, Tuersuntuoheti T, Yalimaimaiti Y, Kelimu N, Li HS, Wumaier A, Sun XY, Hao CS, Muhatai G. Phenotypic and genetic diversity of the Anjian chicken in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1003615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Anjian chicken is a local breed in Hotan, Xinjiang, China. Herein, we studied the morphological characteristics and genetic diversity of the Anjian chicken population. The findings of this study could inform the genetic improvement strategy of this breed. Phenotypic characteristics investigated included the diversity in the general appearance, feather color, and crowing length of the Anjian cocks. The population structure of the Anjian chicken and its relationship with other chicken breeds were also assessed based on mitochondrial DNA (mtDNA) D-loop sequence analysis. Phenotypically, the feather color of the Anjian chicken varied considerably. The sequence diversity analysis revealed the following: nucleotide diversity (Pi) was 0.00618, haplotype diversity (Hd) was 0.776, the average number of nucleotide differences (k) was 7.631, and Tajima’s (D) was −0.00407, indicating that Anjian chicken is moderately genetically diverse. Further phylogenetic analysis revealed that the Anjian chicken breed has 10 haplotypes clustered into two branches. Genetic distance and median network analysis showed that the mtDNA D-loop sequence of the Anjian chicken was distributed in many different clusters of the tree. These data demonstrate that even though the Anjian chicken mainly originated from red jungle fowl, it has multiple maternal origins. In conclusion, the Anjian chicken is highly genetically diverse.
Collapse
|
2
|
Duan JE, Jiang J, He Y. Editorial: Bridging (Epi-) Genomics and Environmental Changes: The Livestock Research. Front Genet 2022; 13:961232. [PMID: 35865017 PMCID: PMC9294534 DOI: 10.3389/fgene.2022.961232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Jingyue Ellie Duan
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Jicai Jiang
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Yanghua He
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai`i at Mānoa, Honolulu, HI, United States
- *Correspondence: Yanghua He,
| |
Collapse
|
3
|
Shi L, Bai H, Li Y, Yuan J, Wang P, Wang Y, Ni A, Jiang L, Ge P, Bian S, Zong Y, Isa AM, Tesfay HH, Yang F, Ma H, Sun Y, Chen J. Analysis of DNA Methylation Profiles in Mandibular Condyle of Chicks With Crossed Beaks Using Whole-Genome Bisulfite Sequencing. Front Genet 2021; 12:680115. [PMID: 34306022 PMCID: PMC8298039 DOI: 10.3389/fgene.2021.680115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023] Open
Abstract
Crossed beaks have been observed in at least 12 chicken strains around the world, which severely impairs their growth and welfare. To explore the intrinsic factor causing crossed beaks, this study measured the length of bilateral mandibular ramus of affected birds, and investigated the genome-wide DNA methylation profiles of normal and affected sides of mandibular condyle. Results showed that the trait was caused by impaired development of unilateral mandibular ramus, which is extended through calcification of mandibular condyle. The methylation levels in the CG contexts were higher than that of CHG and CHH, with the highest methylation level of gene body region, followed by transcription termination sites and downstream. Subsequently, we identified 1,568 differentially methylated regions and 1,317 differentially methylated genes in CG contexts. Functional annotation analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed that these genes were involved in bone mineralization and bone morphogenesis. Furthermore, by combining the WGBS and previous RNA-Seq data, 11 overlapped genes were regulated by both long non-coding RNA and DNA methylation. Among them, FIGNL1 is an important gene in calcification of mandibular condyle. Generally, because the affected genes play key roles in maintaining mandibular calcification, these changes may be pivotal factors of crossed beaks.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Yunlei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panlin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanmei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aixin Ni
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingzhuang Ge
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shixiong Bian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Zong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adamu Mani Isa
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailai Hagos Tesfay
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujian Yang
- Guangxi Shenhuang Group Co., Ltd., Yulin, China
| | - Hui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jilan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Dysregulated expression of mRNA and SNP in pulmonary artery remodeling in ascites syndrome in broilers. Poult Sci 2020; 100:100877. [PMID: 33518352 PMCID: PMC7936122 DOI: 10.1016/j.psj.2020.11.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Broiler ascites syndrome (AS), also called pulmonary artery hypertension, is a metabolic disorder that has been observed worldwide in fast-growing broilers. Pulmonary arterial remodeling is a key step in the development of AS. The precise relationship between mRNA and SNP of the pulmonary artery in regulating AS progression remains unclear. In this study, we obtained pulmonary artery tissues from broilers with AS to perform pathologic section and pathologic anatomic observation. SNP, InDel, and mRNA data analysis were carried out using GATK and ANNOVAR software to study the SNP loci of 985 previously reported genes (437 upregulated and 458 downregulated). The pathology results showed that there was a lot of yellow fluid in the abdominal cavity and pericardium, that the ascites cardiac index and hematocrit changed significantly, and that the pulmonary artery had remodeled and become thicker in the disease group. Myocardial sections showed vacuolar degeneration of myocytes and rupture of muscle fibers. In addition, ALDH7A1, IRG1, GGT5, IGSF1, DHX58, USP36, TREML2, SPAG1, CD34, and PLEKHA7 were found to be closely associated with the pathogenesis of pulmonary artery remodeling in AS progression. Taken together, our present study further illuminates the molecular mechanism of pulmonary artery remodeling underlying AS progression.
Collapse
|
5
|
Shi L, Li Y, Bai H, Li D, Wang P, Jiang L, Fan J, Ge P, Ni A, Wang Y, Bian S, Zong Y, Isa AM, Tesfay HH, Ma H, Gong Y, Sun Y, Chen J. Phenotype characterization of crossed beaks in Beijing-You chickens based on morphological observation. Poult Sci 2020; 99:5197-5205. [PMID: 33142435 PMCID: PMC7647825 DOI: 10.1016/j.psj.2020.07.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/09/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022] Open
Abstract
The prevalence of crossed beaks ranging from 0.2 to 7.4% was documented in at least 12 chicken strains. Previous studies focused largely on candidate molecules, whereas the morphological observation was missing. This study reported a detailed phenotype and prevalence of crossed beaks based on morphological observation in nine thousand nine hundred 1-day-old female Beijing-You chicks. Affected chicks were classified into 2 categories based on the direction of the mandibular deformation: left and right. Each category was selected to sacrifice for the measurement of length, width, and thickness of the bilateral mandibular ramus (MR). The normal chicks were used as controls. Paraffin section was made for the bilateral MR of a crossed beak and a normal control for histology analysis. A total of 97 out of 9,900 chickens showed beak deformity including 71 crossed beaks (0.72%) and 26 side beaks (0.26%) for which the upper and lower beak were both bent in the same direction. There was no difference in the direction of the bend of the lower beak in crossed beaks (P > 0.05). The incidence of crossed beaks increased quickly from 0 to 56 d and no new incidence after 56 d. The angle of the crossed beaks was below 5° in the first week and had grown more severe with age until 56 d. The mandible structure showed that condyle served as a growth center for the MR extension. The short-side MR of crossed beaks was thicker than normal ones (P < 0.05) and caused the mandible deviated to the same direction. Meanwhile, the short-side MR prevented the occlusion, leading the jugal arch deformity, which in turn resulted in a bent maxillary horizontally. Similarly, chicks with side beaks also had asymmetry in MR length and the deformities of the jugal arch after dissection. In summary, asymmetric growth of bilateral MR induced crossed beaks and side beaks; the mandibular condyle could be an ideal sample for the related molecular mechanism studies underlying this trait.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Dongli Li
- Beijing Bainianliyuan Ecological Agriculture Co., Ltd., Beijing 101500, China
| | - Panlin Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shixiong Bian
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adamu Mani Isa
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hailai Hagos Tesfay
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Sun Y, Fu L, Xue F, Li Y, Xu H, Chen J. Digital gene expression profiling and validation study highlight Cyclin F as an important regulator for sperm motility of chickens. Poult Sci 2019; 98:5118-5126. [PMID: 31329967 DOI: 10.3382/ps/pez212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
In poultry industry, around 5 to 12% roosters were eliminated from the breeding program because of low sperm motility. Relatively few studies have been directed toward understanding and explaining the genetics mechanisms involved in sperm motility regulation in chickens. In the present study, digital gene expression (DGE) profiling and bioinformation analysis were used to explore the globally differentially expressed genes (DEG) in the testis of low sperm motility and high sperm motility roosters. Further validation study of key candidate genes was also performed. The DGE identified 652 DEGs, including 473 up-regulated and 179 down-regulated genes in the low sperm motility testis. Those DEGs were enriched on 21 terms of biological process category, 10 terms of cellular component category, including motile cilium, and 13 terms of molecular function category including microtubule motor activity and ATP binding. The kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis indicated that these DEGs were involved in the FoxO signaling pathway and insulin resistance pathway. Quantitative real time PCR (qRT-PCR) studies of 8 DEGs were used to validate the DGE results. A key candidate gene Cyclin F (CCNF) was extremely low expressed in the low sperm motility testis (log2 ratio (low sperm motility/high sperm motility) = -5.23). The CCNF gene silencing in the chicken DF-1 cell line induced the reduced cell activity and proliferation. In summary, the present study provides insight into the potential genetic regulation of sperm motility and highlighted the underlying pathways (Insulin resistance and FoxO signaling pathways) and important candidate genes such as CCNF.
Collapse
Affiliation(s)
| | - Li Fu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuguang Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Belyaeva OV, Adams MK, Popov KM, Kedishvili NY. Generation of Retinaldehyde for Retinoic Acid Biosynthesis. Biomolecules 2019; 10:biom10010005. [PMID: 31861321 PMCID: PMC7022914 DOI: 10.3390/biom10010005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The concentration of all-trans-retinoic acid, the bioactive derivative of vitamin A, is critically important for the optimal performance of numerous physiological processes. Either too little or too much of retinoic acid in developing or adult tissues is equally harmful. All-trans-retinoic acid is produced by the irreversible oxidation of all-trans-retinaldehyde. Thus, the concentration of retinaldehyde as the immediate precursor of retinoic acid has to be tightly controlled. However, the enzymes that produce all-trans-retinaldehyde for retinoic acid biosynthesis and the mechanisms responsible for the control of retinaldehyde levels have not yet been fully defined. The goal of this review is to summarize the current state of knowledge regarding the identities of physiologically relevant retinol dehydrogenases, their enzymatic properties, and tissue distribution, and to discuss potential mechanisms for the regulation of the flux from retinol to retinaldehyde.
Collapse
Affiliation(s)
- Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.M.P.); (N.Y.K.)
- Correspondence: ; Tel.: +1-205-996-4024
| | - Mark K. Adams
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA;
| | - Kirill M. Popov
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.M.P.); (N.Y.K.)
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.M.P.); (N.Y.K.)
| |
Collapse
|
8
|
The Morphology of Cross-Beaks and BMP4 Gene Expression in Huiyang Bearded Chickens. Animals (Basel) 2019; 9:ani9121143. [PMID: 31847260 PMCID: PMC6940792 DOI: 10.3390/ani9121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Recently, the emergence of cross-beaks has been reported in several domestic chickens. Despite several candidate genes, bone morphogenetic protein 4 (BMP4) has been suggested as responsible for chicken cross-beaks. The subtypes of the morphology term, etiopathogenesis, and the relationship of the candidate BMP4 gene to cross-beaks are not yet known. The objective of this study was to describe the subtypes of cross-beaks by left or right and upper and lower jaw bones and to figure out the relationship between BMP4 and the development of craniofacial bones in Huiyang bearded chickens. Abstract Bird beaks are important for biological purposes such as food intake, removing parasites, and defining phenotypic attributes. Cross-beaks are a threat to poultry health and are harmful to productivity, wasting some units in the poultry industry. However, there is still limited research on subtypes of cross-beaks and the genetic basis of cross-beaks as well. Here, we described the subtypes of cross-beaks in terms of left or right and upper or lower jaw bones. We evaluated the impact of cross-beaks on craniofacial bones and figured out the relationship between bone morphogenetic protein 4 (BMP4) and the development of craniofacial bones in Huiyang bearded chickens. We identified five typical subtypes of cross-beaks by morphological assessment and X-ray scanning. We found that cross-beaks caused certain changes in the facial bone morphology, including changes to the length and width of the bone around the ocular area (p < 0.05). The relative expressions of BMP4 in lacrimal, mandible, premaxilla, frontal, and parietal bones were significantly higher in the severe cross-beak group, followed by that of the medium cross-beak group, weak cross-beak group, and control group (p < 0.05). Overall, we constructed a generally applicable method to classify cross-beaks in term of the angle. The skeleton around the ocular area was affected by the cross-beak. The expression levels of BMP4 in craniofacial bones may provide insight to potential role of BMP4 in the development of cross-beaks.
Collapse
|
9
|
Wu L, Belyaeva OV, Adams MK, Klyuyeva AV, Lee SA, Goggans KR, Kesterson RA, Popov KM, Kedishvili NY. Mice lacking the epidermal retinol dehydrogenases SDR16C5 and SDR16C6 display accelerated hair growth and enlarged meibomian glands. J Biol Chem 2019; 294:17060-17074. [PMID: 31562240 DOI: 10.1074/jbc.ra119.010835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
Retinol dehydrogenases catalyze the rate-limiting step in the biosynthesis of retinoic acid, a bioactive lipid molecule that regulates the expression of hundreds of genes by binding to nuclear transcription factors, the retinoic acid receptors. Several enzymes exhibit retinol dehydrogenase activities in vitro; however, their physiological relevance for retinoic acid biosynthesis in vivo remains unclear. Here, we present evidence that two murine epidermal retinol dehydrogenases, short-chain dehydrogenase/reductase family 16C member 5 (SDR16C5) and SDR16C6, contribute to retinoic acid biosynthesis in living cells and are also essential for the oxidation of retinol to retinaldehyde in vivo Mice with targeted knockout of the more catalytically active SDR16C6 enzyme have no obvious phenotype, possibly due to functional redundancy, because Sdr16c5 and Sdr16c6 exhibit an overlapping expression pattern during later developmental stages and in adulthood. Mice that lack both enzymes are viable and fertile but display accelerated hair growth after shaving and also enlarged meibomian glands, consistent with a nearly 80% reduction in the retinol dehydrogenase activities of skin membrane fractions from the Sdr16c5/Sdr16c6 double-knockout mice. The up-regulation of hair-follicle stem cell genes is consistent with reduced retinoic acid signaling in the skin of the double-knockout mice. These results indicate that the retinol dehydrogenase activities of murine SDR16C5 and SDR16C6 enzymes are not critical for survival but are responsible for most of the retinol dehydrogenase activity in skin, essential for the regulation of the hair-follicle cycle, and required for the maintenance of both sebaceous and meibomian glands.
Collapse
Affiliation(s)
- Lizhi Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Mark K Adams
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Seung-Ah Lee
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Robert A Kesterson
- Department of Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
10
|
Sun Y, Liu N, Bai H, Li Y, Xue F, Ye J, Ma H, En H, Chen J. Differential proteomic analysis to identify proteins associated with beak deformity in chickens. Poult Sci 2019; 98:1833-1841. [PMID: 30452707 DOI: 10.3382/ps/pey519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022] Open
Abstract
The beak is the dominant avian facial feature, and beak deformity occurs in 0.5 to 2.5% of some indigenous chicken breeds, resulting in difficulties when eating, drinking, and performing natural behaviors. Previous studies on beak deformity focused largely on candidate molecules associated with skeletogenic development, providing insight into the molecular and genetic underpinnings of beak deformity. The present study was performed to identify candidate proteins related to this malformation in chickens. Three 12-day-old Beijing-You roosters with deformed beaks (D1, D2, and D3) and 3 with normal beaks (N1, N2, and N3) were used, and total beak proteins were isolated and subjected to standard iTRAQ labeling, strong cation-exchange chromatography, and liquid chromatography-tandem mass spectrometry. Mascot 2.3.02 was used to identify and quantitatively analyze proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to identify functions and metabolic pathways of differentially expressed proteins, and key proteins were further validated using western blot. A total of 2,370, 2,401, and 2,378 proteins were reliably quantified in 3 biological replicates, among which, 2,345 were common to all, and 92 were differentially expressed between the 2 groups. These included 37 upregulated and 55 downregulated proteins in deformed beaks. Pentraxin-related protein 3, hemopexin, lipoprotein lipase, retinoid-binding protein 7, and biliverdin reductase A were downregulated in all 3 sets, while parvalbumin, peptidyl-prolyl cis-trans isomerase, and ubiquitin-fold modifier 1 were upregulated. Pathway analysis returned no enriched pathways, and western blot validated the iTRAQ results. Parvalbumin and lipoprotein lipase could be firstly selected as key proteins in view of their known functions in regulating the buffering of intracellular free Ca2+ in both cartilage and bone cells and bone mass, respectively. Their potential roles in beak deformity, however, deserve further studies. In summary, the onset of beak deformity could be very complex, and this study will be helpful for future investigation of mechanistic explanation for beak deformity.
Collapse
Affiliation(s)
- Yanyan Sun
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nian Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Bai
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuguang Xue
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianhua Ye
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - He En
- Chifeng Agriculture and Animal Husbandry Science Academy, Chifeng 024031, Inner Mongolia, China
| | - Jilan Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Bai H, Sun Y, Liu N, Xue F, Li Y, Xu S, Ye J, Zhang L, Chen Y, Chen J. Single SNP- and pathway-based genome-wide association studies for beak deformity in chickens using high-density 600K SNP arrays. BMC Genomics 2018; 19:501. [PMID: 29954329 PMCID: PMC6022433 DOI: 10.1186/s12864-018-4882-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Beak deformity, typically expressed as the crossing of upper and lower mandibles, is found in several indigenous chicken breeds, including the Beijing-You chickens studied here. Beak deformity severely impairs the birds’ growth and welfare. Although previous studies shed some light on the genetic regulation of this complex trait, the genetic basis of this malformation remains incompletely understood. Results In this study, single SNP- and pathway-based genome-wide association studies (GWASs) were performed using ROADTRIPS and SNP ratio test (SRT), respectively. A total of 48 birds with deformed beaks (case) and 48 normal birds (control) were genotyped using Affymetrix 600 K HD genotyping arrays. As a result, 95 individuals and 429,539 SNPs were obtained after quality control. The P-value was corrected by a Bonferroni adjustment based on linkage disequilibrium pruning. The single SNP-based association study identified one associated SNP with 5% genome-wide significance and seven suggestively associated SNPs. Four high-confidence genes, LOC421892, TDRD3, RET, and STMN1, were identified as the most promising candidate genes underlying this complex trait in view of their positions, functions, and overlaps with previous studies. The pathway-based association study highlighted the association of six pathways with beak deformity, including the calcium signaling pathway. Conclusions Potentially useful candidate genes and pathways for beak deformity were identified, which should be the subject of further functional characterization. Electronic supplementary material The online version of this article (10.1186/s12864-018-4882-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Bai
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nian Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguang Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Songshan Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianhua Ye
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhang
- CapitalBio Corporation, Beijing, 102206, China
| | - Yu Chen
- Beijing General Station of Animal Husbandry Service, Beijing, 102200, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Bai H, Sun Y, Liu N, Liu Y, Xue F, Li Y, Xu S, Ni A, Ye J, Chen Y, Chen J. Genome-wide detection of CNVs associated with beak deformity in chickens using high-density 600K SNP arrays. Anim Genet 2018; 49:226-236. [PMID: 29642269 DOI: 10.1111/age.12652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing-You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome-wide CNV detection using Affymetrix chicken high-density 600K data on 48 deformed-beak and 48 normal birds using penncnv. As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed-beak and normal birds respectively. Further RT-qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed-beak and normal birds (P < 0.01). Within these six regions, three and 21 known genes were identified in deformed-beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT-qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (P < 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens.
Collapse
Affiliation(s)
- H Bai
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Sun
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - N Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F Xue
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Li
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - S Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - A Ni
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - J Ye
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Chen
- Beijing General Station of Animal Husbandry Service, Beijing, 102200, China
| | - J Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
13
|
Joller S, Bertschinger F, Kump E, Spiri A, von Rotz A, Schweizer-Gorgas D, Drögemüller C, Flury C. Crossed beaks in a local Swiss chicken breed. BMC Vet Res 2018; 14:68. [PMID: 29506524 PMCID: PMC5838925 DOI: 10.1186/s12917-018-1398-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Crossed beaks have been reported to occur in Appenzeller Barthuhn, a local Swiss chicken breed. The assumed causes for this beak deformity which are also seen in other bird species including domestic chickens, range from environmental influences to genetic factors. The aim of this project was to characterize the prevalence, the phenotype, and the underlying genetics of crossed beaks in Appenzeller Barthuhn chickens. RESULTS The estimated prevalence of 7% crossed beaks in Appenzeller Barthuhn was significantly higher compared to two other local Swiss chicken breeds. A breeding trial showed significantly higher prevalence of offspring with deformed beaks from mating of affected parents compared to mating of non-affected parents. Examination of 77 Appenzeller Barthuhn chickens with crossed beaks showed a variable phenotype presentation. The deviation of the beak from the median plane through the head ranged from 1° to 61°. In more than 60% of the cases, the upper and lower beak were bent in the same direction, whereas the remaining cases showed different forms of crossed beaks. Computed tomographic scans and bone maceration of the head of two chickens with crossed beaks revealed that the maxilla and the mandibula were affected, while other parts of the skull appeared to be normal. The gene LOC426217, a member of the keratin family, was postulated as a candidate gene for beak deformity in domestic chickens. Sequencing of the coding region revealed two significantly associated synonymous variants for crossed beaks in Appenzeller Barthuhn chickens. A genome-wide association study and a comparative analysis of runs of homozygosity based on high-density SNP array genotyping data of 53 cases and 102 controls showed no evidence of association. CONCLUSIONS The findings suggest a hereditary cause of crossed beaks in Appenzeller Barthuhn chickens. However, the observed variation in the phenotype, together with the inconclusive molecular genetic results indicates the need for additional research to unravel the genetic architecture of this beak deformity.
Collapse
Affiliation(s)
- Sara Joller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Flurina Bertschinger
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | | | - Astrid Spiri
- Züchterverein für ursprüngliches Nutzgeflügel, Neukirch an der Thur, Switzerland
| | - Alois von Rotz
- Divison of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christine Flury
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| |
Collapse
|
14
|
Xue P, Zhao X, Qin M, Shi Z, Zhang M, Gu W. Transcriptome Analysis of Male Drosophila melanogaster Exposed to Ethylparaben Using Digital Gene Expression Profiling. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3966733. [PMID: 28973488 PMCID: PMC5510984 DOI: 10.1093/jisesa/iex050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 05/30/2023]
Abstract
Ethylparaben (EP) has been shown to have estrogenic effects and can affect the normal development, longevity, and reproductive system of some animals. In this study, we investigated the effects of EP in male Drosophila melanogaster using transcriptome analysis or digital gene expression profiling. We then screened differentially expressed genes (DEGs) between the two groups (EP-treated and control group) of Drosophila, and performed clustering analysis, gene ontology (GO) function annotation, kyoto encyclopedia of gene and genomes metabolic pathway analysis. We found that EP enriched GO in three processes: cellular component, molecular function, and biological process. Consequently, we detected 13,959 genes and among them, 18 genes were identified to be significantly expressed between the EP-treated and control samples. Of these, seven genes were down-regulated, and eleven genes were up-regulated in EP-treated samples. Furthermore, four DEGs including two down-regulated genes (CG9465, CG9468) and two up-regulated genes (TotA, Sqz) were verified by real-time quantitative PCR. This study revealed the impact of EP on gene expression in fruit fly and provided new insight into the mechanisms of this response, which is helpful for understanding EP toxicity to humans.
Collapse
Affiliation(s)
- Peiqin Xue
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Xiaojun Zhao
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Mengbei Qin
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Zhanghuan Shi
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China (; ; ; ; ; )
| |
Collapse
|
15
|
Amoroso G, Ventura T, Cobcroft JM, Adams MB, Elizur A, Carter CG. Multigenic Delineation of Lower Jaw Deformity in Triploid Atlantic Salmon (Salmo salar L.). PLoS One 2016; 11:e0168454. [PMID: 27977809 PMCID: PMC5158070 DOI: 10.1371/journal.pone.0168454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 12/01/2016] [Indexed: 01/25/2023] Open
Abstract
Lower jaw deformity (LJD) is a skeletal anomaly affecting farmed triploid Atlantic salmon (Salmo salar L.) which leads to considerable economic losses for industry and has animal welfare implications. The present study employed transcriptome analysis in parallel with real-time qPCR techniques to characterise for the first time the LJD condition in triploid Atlantic salmon juveniles using two independent sample sets: experimentally-sourced salmon (60 g) and commercially produced salmon (100 g). A total of eleven genes, some detected/identified through the transcriptome analysis (fbn2, gal and gphb5) and others previously determined to be related to skeletal physiology (alp, bmp4, col1a1, col2a1, fgf23, igf1, mmp13, ocn), were tested in the two independent sample sets. Gphb5, a recently discovered hormone, was significantly (P < 0.05) down-regulated in LJD affected fish in both sample sets, suggesting a possible hormonal involvement. In-situ hybridization detected gphb5 expression in oral epithelium, teeth and skin of the lower jaw. Col2a1 showed the same consistent significant (P < 0.05) down-regulation in LJD suggesting a possible cartilaginous impairment as a distinctive feature of the condition. Significant (P < 0.05) differential expression of other genes found in either one or the other sample set highlighted the possible effect of stage of development or condition progression on transcription and showed that anomalous bone development, likely driven by cartilage impairment, is more evident at larger fish sizes. The present study improved our understanding of LJD suggesting that a cartilage impairment likely underlies the condition and col2a1 may be a marker. In addition, the involvement of gphb5 urges further investigation of a hormonal role in LJD and skeletal physiology in general.
Collapse
Affiliation(s)
- Gianluca Amoroso
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania, Australia
| | - Tomer Ventura
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, Australia
| | - Jennifer M. Cobcroft
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania, Australia
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, Australia
| | - Mark B. Adams
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania, Australia
| | - Abigail Elizur
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, Australia
| | - Chris G. Carter
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania, Australia
| |
Collapse
|
16
|
Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10. Chem Biol Interact 2016; 276:88-94. [PMID: 27793605 DOI: 10.1016/j.cbi.2016.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/22/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
Abstract
All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with specific physiological conditions.
Collapse
|
17
|
Yang F, Cao H, Xiao Q, Guo X, Zhuang Y, Zhang C, Wang T, Lin H, Song Y, Hu G, Liu P. Transcriptome Analysis and Gene Identification in the Pulmonary Artery of Broilers with Ascites Syndrome. PLoS One 2016; 11:e0156045. [PMID: 27275925 PMCID: PMC4898705 DOI: 10.1371/journal.pone.0156045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension, also known as Ascites syndrome (AS), remains a clinically challenging disease with a large impact on both humans and broiler chickens. Pulmonary arterial remodeling presents a key step in the development of AS. The precise molecular mechanism of pulmonary artery remodeling regulating AS progression remains unclear. METHODOLOGY/PRINCIPAL FINDINGS We obtained pulmonary arteries from two positive AS and two normal broilers for RNA sequencing (RNA-seq) analysis and pathological observation. RNA-seq analysis revealed a total of 895 significantly differentially expressed genes (DEGs) with 437 up-regulated and 458 down-regulated genes, which were significantly enriched to 12 GO (Gene Ontology) terms and 4 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (Padj<0.05) regulating pulmonary artery remodeling and consequently occurrence of AS. These GO terms and pathways include ribosome, Jak-STAT and NOD-like receptor signaling pathways which regulate pulmonary artery remodeling through vascular smooth cell proliferation, inflammation and vascular smooth cell proliferation together. Some notable DEGs within these pathways included downregulation of genes like RPL 5, 7, 8, 9, 14; upregulation of genes such as IL-6, K60, STAT3, STAT5 Pim1 and SOCS3; IKKα, IkB, P38, five cytokines IL-6, IL8, IL-1β, IL-18, and MIP-1β. Six important regulators of pulmonary artery vascular remodeling and construction like CYP1B1, ALDH7A1, MYLK, CAMK4, BMP7 and INOS were upregulated in the pulmonary artery of AS broilers. The pathology results showed that the pulmonary artery had remodeled and become thicker in the disease group. CONCLUSIONS/SIGNIFICANCE Our present data suggested some specific components of the complex molecular circuitry regulating pulmonary arterial remodeling underlying AS progression in broilers. We revealed some valuable candidate genes and pathways that involved in pulmonary artery remodeling further contributing to the AS progression.
Collapse
Affiliation(s)
- Fei Yang
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Huabin Cao
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Qingyang Xiao
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Xiaoquan Guo
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Yu Zhuang
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Caiying Zhang
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Tiancheng Wang
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Huayuan Lin
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Yalu Song
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
| | - Guoliang Hu
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
- * E-mail: (GH); (PL)
| | - Ping Liu
- Institute of Animal Population Health, College of Animal Science and Technology, JiangXi Agriculture University, N.O. 1101, Zhimin Avenue, Nanchang Economic and Technological Development District Nanchang, 330045, P. R. China
- * E-mail: (GH); (PL)
| |
Collapse
|
18
|
Bai H, Sun Y, Zhu J, Liu N, Li D, Xue F, Li Y, Chen J. Study on LOC426217 as a candidate gene for beak deformity in chicken. BMC Genet 2016; 17:44. [PMID: 26891797 PMCID: PMC4758156 DOI: 10.1186/s12863-016-0353-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background The beak deformity (crossed beaks) was found in some indigenous chickens of China, such as Beijing-You (BJY), Qingyuan Partridge, and Huxu Chickens. Birds with deformed beaks have reduced feed intake and drinking, impeded growth rate, and poor production performance. Beak deformity reduces the economy of poultry industry and affects animal welfare as well. The genetic basis of this malformation remains incompletely understood. LOC426217, also named claw keratin-like, was the most up-regulated gene in the deformed beaks from a previous digital gene expression (DGE) analysis and was selected as an important candidate gene for further analysis. Results In the present study, quantitative real-time PCR (qRT-PCR) was firstly performed to determine the expression pattern of LOC426217 gene in deformed and normal beaks to verify the DGE results. Tissue-specific expression profile of this gene in 14 tissues was also determined using qRT-PCR. The LOC426217 was amplified from the genomic DNA of 171 deformed and 164 normal beaks, and sequenced to detect the single nucleotide polymorphisms (SNPs). The results showed that LOC426217 was significantly high-expressed in the deformed beaks, which was in good agreement with the DGE results. This gene was specifically high-expressed in beaks than other tissues. Eight SNPs were detected in LOC426217: -62G > T, 24 T > C, 36G > C, 192A > T, 204C > T, 222 T > C, 285G > T, and 363 T > C. Genotype frequency of G-62 T, T24C, G36C, T222C, and T363C loci was significant different between deformed and normal beaks. Haplotype analysis revealed one block with SNPs T24C and G36C, and one block with SNPs A192T, C204T, T222C, and G285T in normal birds, while the block with SNPs G36C and A192T in deformed ones. Conclusions It was concluded from these results that the over-expression of LOC426217 in the beak maybe related to the malformation. The polymorphisms of LOC426217 gene were associated with the beak deformity trait where the SNPs of G-62 T, T24C, G36C, T222C, and T363C loci maybe used as markers. The specific haplotype block in deformed birds may be a potential linkage marker for this trait. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0353-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Bai
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yanyan Sun
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jing Zhu
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Nian Liu
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Dongli Li
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Fuguang Xue
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yunlei Li
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jilan Chen
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
Wang J, Li T, Zhou M, Hu Z, Zhou X, Zhou S, Wang N, Huang L, Zhao L, Cao Y, Xiao M, Ma D, Zhou P, Shang Z, Zhou J. TALENs-mediated gene disruption of FLT3 in leukemia cells: Using genome-editing approach for exploring the molecular basis of gene abnormality. Sci Rep 2015; 5:18454. [PMID: 26669855 PMCID: PMC4680874 DOI: 10.1038/srep18454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022] Open
Abstract
Novel analytic tools are needed to elucidate the molecular basis of leukemia-relevant gene mutations in the post-genome era. We generated isogenic leukemia cell clones in which the FLT3 gene was disrupted in a single allele using TALENs. Isogenic clones with mono-allelic disrupted FLT3 were compared to an isogenic wild-type control clone and parental leukemia cells for transcriptional expression, downstream FLT3 signaling and proliferation capacity. The global gene expression profiles of mutant K562 clones and corresponding wild-type controls were compared using RNA-seq. The transcriptional levels and the ligand-dependent autophosphorylation of FLT3 were decreased in the mutant clones. TALENs-mediated FLT3 haplo-insufficiency impaired cell proliferation and colony formation in vitro. These inhibitory effects were maintained in vivo, improving the survival of NOD/SCID mice transplanted with mutant K562 clones. Cluster analysis revealed that the gene expression pattern of isogenic clones was determined by the FLT3 mutant status rather than the deviation among individual isogenic clones. Differentially expressed genes between the mutant and wild-type clones revealed an activation of nonsense-mediated decay pathway in mutant K562 clones as well as an inhibited FLT3 signaling. Our data support that this genome-editing approach is a robust and generally applicable platform to explore the molecular bases of gene mutations.
Collapse
Affiliation(s)
- Jue Wang
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongjuan Li
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mi Zhou
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Hu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoxi Zhou
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiqiu Zhou
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Wang
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Cao
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Xiao
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengfei Zhou
- Wuhan YZY Bio-Pharma Co., Ltd., Wuhan, Hubei, China
| | - Zhen Shang
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Zhou
- Department of hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs. BMC Genomics 2015; 16:377. [PMID: 25962502 PMCID: PMC4437458 DOI: 10.1186/s12864-015-1580-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/24/2015] [Indexed: 12/18/2022] Open
Abstract
Background The growth and development of skeletal muscle directly impacts the quantity and quality of pork production. Chinese indigenous pig breeds and exotic species vary greatly in terms of muscle production and performance traits. We present transcriptome profiles of 110 skeletal muscle samples from Tongcheng (TC) and Yorkshire (YK) pigs at 11 developmental periods (30, 40, 55, 63, 70, 90, and 105 days of gestation, and 0, 1, 3, and 5 weeks of age) using digital gene expression on Solexa/Illumina’s Genome Analyzer platform to investigate the differences in prenatal and postnatal skeletal muscle between the two breeds. Results Muscle morphological changes indicate the importance of primary fiber formation from 30 to 40 dpc (days post coitus), and secondary fiber formation from 55 to 70 dpc. We screened 4,331 differentially expressed genes in TC and 2,259 in YK (log2 ratio >1 and probability >0.7). Cluster analysis showed different gene expression patterns between TC and YK pigs. The transcripts were annotated in terms of Gene Ontology related to muscle development. We found that the genes CXCL10, EIF2B5, PSMA6, FBXO32, and LOC100622249 played vital roles in the muscle regulatory networks in the TC breed, whereas the genes SGCD, ENG, THBD, AQP4, and BTG2 played dominant roles in the YK breed. These genes showed breed-specific and development-dependent differential expression patterns. Furthermore, 984 genes were identified in myogenesis. A heat map showed that significantly enriched pathways (FDR <0.05) had stage-specific functional regulatory mechanisms. Finally, the differentially expressed genes from our sequencing results were confirmed by real-time quantitative polymerase chain reaction. Conclusions This study detected many functional genes and showed differences in the molecular mechanisms of skeletal muscle development between TC and YK pigs. TC pigs showed slower muscle growth and more complicated genetic regulation than YK pigs. Many differentially expressed genes showed breed-specific expression patterns. Our data provide a better understanding of skeletal muscle developmental differences and valuable information for improving pork quality. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1580-7) contains supplementary material, which is available to authorized users.
Collapse
|