1
|
Wang X, Li N, Liu YH, Wu J, Liu QG, Niu JB, Xu Y, Huang CZ, Zhang SY, Song J. Targeting focal adhesion kinase (FAK) in cancer therapy: A recent update on inhibitors and PROTAC degraders. Eur J Med Chem 2024; 276:116678. [PMID: 39029337 DOI: 10.1016/j.ejmech.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-He Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Zheng Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2022; 157:123-126. [PMID: 35122121 DOI: 10.1007/s00418-022-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
4
|
Focal adhesion kinase splicing and protein activation in papillary thyroid carcinoma progression. Histochem Cell Biol 2021; 157:183-194. [PMID: 34817652 DOI: 10.1007/s00418-021-02056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
Papillary thyroid carcinoma (PTC), a common endocrine malignancy, presents a challenge from a prognostic standpoint. Molecular alterations underlying PTC progression include deregulation of focal adhesion kinase (FAK) at post-transcriptional and post-translational levels. Searching for candidate markers of PTC progression, we investigated the prognostic significance of FAK alterations on mRNA/protein level. The expression levels and subcellular localisation of auto-phosphorylated FAK (pY397-FAK) were determined by western blot (WB) and immunohistochemistry. The quantity of total FAK mRNA, alternatively spliced FAK-Del26 and FAK-Del33 variants were analysed by RT-qPCR and related to pY397-FAK expression and subcellular distribution. The results were correlated with clinicopathological parameters of the patients. The expression of pY397-FAK was significantly elevated in malignant samples. Active FAK showed predominant cytoplasmic distribution with co-occurrence along the membrane, while nuclear staining was found less frequently. Expression of pY397-FAK in separate cellular compartments correlated with adverse clinicopathological parameters, but the strongest association was found when their mean scores were calculated. Alternatively spliced FAK-Del33 and total FAK transcripts positively correlated to pY397-FAK protein levels as well as to characteristics of PTC advancement. Over-expression of FAK on mRNA (total and Del-33) and activated protein (pY397-FAK) levels is a feature of PTC advanced stages. Of the analysed alterations, the mean pY397-FAK IHC score showed the best predictive performance. Correlation between mRNA FAK-Del33 and pY397-FAK expression implies a regulatory role of alternative splicing in PTC patients.
Collapse
|
5
|
Eroumé KS, Cavill R, Staňková K, de Boer J, Carlier A. Exploring the influence of cytosolic and membrane FAK activation on YAP/TAZ nuclear translocation. Biophys J 2021; 120:4360-4377. [PMID: 34509508 PMCID: PMC8553670 DOI: 10.1016/j.bpj.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Membrane binding and unbinding dynamics play a crucial role in the biological activity of several nonintegral membrane proteins, which have to be recruited to the membrane to perform their functions. By localizing to the membrane, these proteins are able to induce downstream signal amplification in their respective signaling pathways. Here, we present a 3D computational approach using reaction-diffusion equations to investigate the relation between membrane localization of focal adhesion kinase (FAK), Ras homolog family member A (RhoA), and signal amplification of the YAP/TAZ signaling pathway. Our results show that the theoretical scenarios in which FAK is membrane bound yield robust and amplified YAP/TAZ nuclear translocation signals. Moreover, we predict that the amount of YAP/TAZ nuclear translocation increases with cell spreading, confirming the experimental findings in the literature. In summary, our in silico predictions show that when the cell membrane interaction area with the underlying substrate increases, for example, through cell spreading, this leads to more encounters between membrane-bound signaling partners and downstream signal amplification. Because membrane activation is a motif common to many signaling pathways, this study has important implications for understanding the design principles of signaling networks.
Collapse
Affiliation(s)
- Kerbaï Saïd Eroumé
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Katerina Staňková
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Stahl E, Nott R, Koessel K, Cance W, Marlowe T. Computational‐based discovery of FAK FERM domain chemical probes that inhibit HER2‐FAK cancer signaling. Chem Biol Drug Des 2020; 95:584-599. [DOI: 10.1111/cbdd.13671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Erik Stahl
- University of Arizona Cancer Center ‐ Phoenix Phoenix AZ USA
| | - Rohini Nott
- University of Arizona Cancer Center ‐ Phoenix Phoenix AZ USA
| | - Karissa Koessel
- University of Arizona College of Pharmacy—Phoenix Phoenix AZ USA
| | - William Cance
- University of Arizona Cancer Center ‐ Phoenix Phoenix AZ USA
- Interdisciplinary Oncology University of Arizona College of Medicine—Phoenix Phoenix AZ USA
- Pharmacology and Toxicology University of Arizona College of Pharmacy Tucson AZ USA
| | - Timothy Marlowe
- University of Arizona Cancer Center ‐ Phoenix Phoenix AZ USA
- Interdisciplinary Oncology University of Arizona College of Medicine—Phoenix Phoenix AZ USA
- Pharmacology and Toxicology University of Arizona College of Pharmacy Tucson AZ USA
- Molecular Discovery Core University of Arizona College of Medicine—Phoenix Phoenix AZ USA
| |
Collapse
|
7
|
Chen J, Jiang J, Wang W, Qin J, Chen J, Chen W, Wang Y. Low intensity pulsed ultrasound promotes the migration of bone marrow- derived mesenchymal stem cells via activating FAK-ERK1/2 signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3603-3613. [PMID: 31468983 DOI: 10.1080/21691401.2019.1657878] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the promoting effects and mechanisms of low intensity pulsed ultrasound (LIPUS) on the migration of bone marrow-derived mesenchymal stem cells (BMSCs). The BMSCs migration was researched from cell and animal experiments. In the cell experiment, the BMSCs was treated using LIPUS (30 mW/cm2, 20 min/day, 2 days), and the wound healing and transwell migration were observed. In the animal experiment, the BMSCs labelled with green fluorescent protein (GFP) were injected into rats with femoral defects via the tail vein (1 × 106/mL). The healing of bone was detected using x-ray and sampled for hematoxylin & eosin (H&E) staining and fluorescence microscopy. About the mechanisms, the cellular F-actin of cytoskeleton was stained with FITC-phalloidin. The changes of BMSCs genes after LIPUS treatment were screened using microarray assay and verified using quantitative real-time polymerase chain reaction (qRT-PCR). The biological processes of those genes were predicted by KEGG analysis. The protein expression levels of FAK, ERK1/2 and myosin II related migration were detected using western blotting. The results showed LIPUS promoted the BMSCs migration (p < .05) without significant temperature changes (p > .05) in vitro and in vivo than control group (p < .05). The cytoskeletal rearrangement was carried out, and the ITGA8 gene related with cell migration was found with high expression after LIPUS treatment (p < .05). FAK inhibitor (PF-573228) and ERK1/2 inhibitor (U0126) were proved, in turn, decreased the BMSCs migration induced using LIPUS (p < .05). LIPUS can promote the BMSCs migration in vitro and in vivo, one mechanism may be related to the activation of FAK-ERK1/2 signalling pathways using LIPUS.
Collapse
Affiliation(s)
- Junlin Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Jingwei Jiang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Wei Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Juan Qin
- Guizhou Maternal and Child Health Hospital, Guizhou Medical University , Guizhou , China
| | - Jinyun Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing, the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive Medicine, Chongqing Medical University , Chongqing , China
| |
Collapse
|
8
|
Tong X, Tanino R, Sun R, Tsubata Y, Okimoto T, Takechi M, Isobe T. Protein tyrosine kinase 2: a novel therapeutic target to overcome acquired EGFR-TKI resistance in non-small cell lung cancer. Respir Res 2019; 20:270. [PMID: 31791326 PMCID: PMC6889213 DOI: 10.1186/s12931-019-1244-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Protein tyrosine kinase 2 (PTK2) expression has been reported in various types of human epithelial cancers including lung cancer; however, the role of PTK2 in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) has not been elucidated. We previously reported that pemetrexed-resistant NSCLC cell line PC-9/PEM also acquired EGFR-TKI resistance with constitutive Akt activation, but we could not find a therapeutic target. Methods Cell viability in EGFR-mutant NSCLC cell lines was measured by the WST-8 assay. Phosphorylation antibody array assay for receptor tyrosine kinases was performed in PC-9 and PC-9/PEM cell lines. We evaluated the efficacy of EGFR and PTK2 co-inhibition in EGFR-TKI-resistant NSCLC in vitro. Oral defactinib and osimertinib were administered in mice bearing subcutaneous xenografts to evaluate the efficacy of the treatment combination in vivo. Both the PTK2 phosphorylation and the treatment combination efficacy were evaluated in erlotinib-resistant EGFR-mutant NSCLC cell lines. Results PTK2 was hyperphosphorylated in PC-9/PEM. Defactinib (PTK2 inhibitor) and PD173074 (FGFR inhibitor) inhibited PTK2 phosphorylation. Combination of PTK2 inhibitor and EGFR-TKI inhibited Akt and induced apoptosis in PC-9/PEM. The combination treatment showed improved in vivo therapeutic efficacy compared to the single-agent treatments. Furthermore, erlotinib-resistant NSCLC cell lines showed PTK2 hyperphosphorylation. PTK2 inhibition in the PTK2 hyperphosphorylated erlotinib-resistant cell lines also recovered EGFR-TKI sensitivity. Conclusion PTK2 hyperphosphorylation occurs in various EGFR-TKI-resistant NSCLCs. Combination of PTK2 inhibitor and EGFR-TKI (defactinib and osimertinib) recovered EGFR-TKI sensitivity in the EGFR-TKI-resistant NSCLC. Our study result suggests that this combination therapy may be a viable option to overcome EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Xuexia Tong
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ryosuke Tanino
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Rong Sun
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Tamio Okimoto
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Mayumi Takechi
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane, Japan
| | - Takeshi Isobe
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
9
|
Jiang H, Yang XY, Zhu WJ. Networks of E-cadherin, β1 integrin, and focal adhesion kinase in the pathogenesis of tubal pregnancy. Gynecol Endocrinol 2019; 35:346-350. [PMID: 30430889 DOI: 10.1080/09513590.2018.1528578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
E-cadherin, β1 integrin, and focal adhesion kinase (FAK) are reported to involved in eutopic implantation by mediating cell adhesion. However, less is documented about their roles in ectopic implantation. This study was undertaken to evaluate the roles and networks of E-cadherin, β1 integrin, and FAK in tubal pregnancy. A total of 31 Fallopian tube specimens were obtained from tubal pregnant women. Immunohistochemistry and western blot were used to analyze the distributions and levels of E-cadherin, β1 integrin and phosphorylated-FAK (Pho-FAK) in the Fallopian tube epithelium. Normal Fallopian tube samples derived from non-pregnant women with benign genital diseases were used for comparison. E-cadherin presented in the cytomembrane of tubal epithelial cells and β1 integrin mainly expressed in the cytoplasm. A lowest-level of E-cadherin was detected in the implantation site (0.63 ± 0.29) when compared with the non-implantation site (0.95 ± 0.37) and the controls (0.89 ± 0.33) (P < 0.05). β1 integrin, as well as Pho-FAK in the implantation site (0.81 ± 0.35; 0.72 ± 0.24), showed a higher-level than that in the non-implantation site (0.59 ± 0.26; 0.48 ± 0.27) or the control group (0.38 ± 0.19; 0.36 ± 0.25) (p < .05). The decreased E-cadherin and increased β1 integrin are implicated in tubal pregnancy. The involvement of β1 integrin maybe depends on β1 integrin/FAK signaling.
Collapse
Affiliation(s)
- Huan Jiang
- a Department of Reproductive Endocrinology , Longgang District Maternal and Child Healthcare Hospital , Shenzhen , People's Republic of China
| | - Xiao-Yi Yang
- b Institute of Reproductive Immunology, College of Life Science and Technology , Jinan University , Guangzhou , People's Republic of China
| | - Wei-Jie Zhu
- b Institute of Reproductive Immunology, College of Life Science and Technology , Jinan University , Guangzhou , People's Republic of China
| |
Collapse
|
10
|
Song G, Chen L, Zhang B, Song Q, Yu Y, Moore C, Wang TL, Shih IM, Zhang H, Chan DW, Zhang Z, Zhu H. Proteome-wide Tyrosine Phosphorylation Analysis Reveals Dysregulated Signaling Pathways in Ovarian Tumors. Mol Cell Proteomics 2019; 18:448-460. [PMID: 30523211 PMCID: PMC6398206 DOI: 10.1074/mcp.ra118.000851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/20/2018] [Indexed: 11/06/2022] Open
Abstract
The recent accomplishment of comprehensive proteogenomic analysis of high-grade serous ovarian carcinoma (HGSOC) tissues reveals cancer associated molecular alterations were not limited to variations among DNA, and mRNA/protein expression, but are a result of complex reprogramming of signaling pathways/networks mediated by the protein and post-translational modification (PTM) interactomes. A systematic, multiplexed approach interrogating enzyme-substrate relationships in the context of PTMs is fundamental in understanding the dynamics of these pathways, regulation of cellular processes, and their roles in disease processes. Here, as part of Clinical Proteomic Tumor Analysis Consortium (CPTAC) project, we established a multiplexed PTM assay (tyrosine phosphorylation, and lysine acetylation, ubiquitylation and SUMOylation) method to identify protein probes' PTMs on the human proteome array. Further, we focused on the tyrosine phosphorylation and identified 19 kinases are potentially responsible for the dysregulated signaling pathways observed in HGSOC. Additionally, elevated kinase activity was observed when 14 ovarian cancer cell lines or tumor tissues were subjected to test the autophosphorylation status of PTK2 (pY397) and PTK2B (pY402) as a proxy for kinase activity. Taken together, this report demonstrates that PTM signatures based on lysate reactions on human proteome array is a powerful, unbiased approach to identify dysregulated PTM pathways in tumors.
Collapse
Affiliation(s)
- Guang Song
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Li Chen
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Bai Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Qifeng Song
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Yu Yu
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Cedric Moore
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Tian-Li Wang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
- ¶Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Ie-Ming Shih
- ¶Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Hui Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Daniel W Chan
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Zhen Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231;
| | - Heng Zhu
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
11
|
da Costa Fernandes CJ, Ferreira MR, Bezerra FJB, Zambuzzi WF. Zirconia stimulates ECM-remodeling as a prerequisite to pre-osteoblast adhesion/proliferation by possible interference with cellular anchorage. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:41. [PMID: 29582191 DOI: 10.1007/s10856-018-6041-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
The biological response to zirconia (ZrO2) is not completely understood, which prompted us to address its effect on pre-osteoblastic cells in both direct and indirect manner. Our results showed that zirconia triggers important intracellular signaling mainly by governing survival signals which leads to cell adhesion and proliferation by modulating signaling cascade responsible for dynamic cytoskeleton rearrangement, as observed by fluorescence microscopy. The phosphorylations of Focal Adhesion Kinase (FAK) and Rac1 decreased in response to ZrO2 enriched medium. This corroborates the result of the crystal violet assay, which indicated a significant decrease of pre-osteoblast adhesion in responding to ZrO2 enriched medium. However, we credit this decrease on pre-osteoblast adhesion to the need to govern intracellular repertory of intracellular pathways involved with cell cycle progression, because we found a significant up-phosphorylation of Mitogen-Activated Protein Kinase (MAPK)-p38 and Cyclin-dependent kinase 2 (CDK2), while p15 (a cell cycle suppressor) decreased. Importantly, Protein phosphatase 2 A (PP2A) activity decreased, guaranteeing the significant up-phosphorylation of MAPK -p38 in response to ZrO2 enriched medium. Complementarily, there was a regulation of Matrix Metalloproteinases (MMPs) in response to Zirconia and this remodeling could affect cell phenotype by interfering on cell anchorage. Altogether, our results show a repertory of signaling molecules, which suggests that ECM remodel as a pre-requisite to pre-osteoblast phenotype by affecting their anchoring in responding to zirconia.
Collapse
Affiliation(s)
- Celio J da Costa Fernandes
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil
| | - Fábio J B Bezerra
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil
| | - Willian F Zambuzzi
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Solanki HS, Raja R, Zhavoronkov A, Ozerov IV, Artemov AV, Advani J, Radhakrishnan A, Babu N, Puttamallesh VN, Syed N, Nanjappa V, Subbannayya T, Sahasrabuddhe NA, Patil AH, Prasad TSK, Gaykalova D, Chang X, Sathyendran R, Mathur PP, Rangarajan A, Sidransky D, Pandey A, Izumchenko E, Gowda H, Chatterjee A. Targeting focal adhesion kinase overcomes erlotinib resistance in smoke induced lung cancer by altering phosphorylation of epidermal growth factor receptor. Oncoscience 2018; 5:21-38. [PMID: 29556515 PMCID: PMC5854290 DOI: 10.18632/oncoscience.395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
EGFR-based targeted therapies have shown limited success in smokers. Identification of alternate signaling mechanism(s) leading to TKI resistance in smokers is critically important. We observed increased resistance to erlotinib in H358 NSCLC (non-small cell lung carcinoma) cells chronically exposed to cigarette smoke (H358-S) compared to parental cells. SILAC-based mass-spectrometry approach was used to study altered signaling in H358-S cell line. Importantly, among the top phosphosites in H358-S cells we observed hyperphosphorylation of EGFR (Y1197) and non-receptor tyrosine kinase FAK (Y576/577). Supporting these observations, a transcriptomic-based pathway activation analysis of TCGA NSCLC datasets revealed that FAK and EGFR internalization pathways were significantly upregulated in smoking patients, compared to the never-smokers and were associated with elevated PI3K signaling and lower level of caspase cascade and E-cadherin pathways activation. We show that inhibition of FAK led to decreased cellular proliferation and invasive ability of the smoke-exposed cells, and restored their dependency on EGFR signaling. Our data suggests that activation of focal adhesion pathway significantly contributes to erlotinib resistance, and that FAK is a potential therapeutic target for management of erlotinib resistance in smoke-induced NSCLC.
Collapse
Affiliation(s)
- Hitendra S Solanki
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Alex Zhavoronkov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD 21218, USA
| | - Ivan V Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD 21218, USA
| | - Artem V Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD 21218, USA
| | - Jayshree Advani
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,School of Biotechnology, Amrita University, Kollam 690525, India
| | - Nazia Syed
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | | | | | - Arun H Patil
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Daria Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rachana Sathyendran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Premendu Prakash Mathur
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
13
|
Tehrani S, Davis L, Cepurna WO, Choe TE, Lozano DC, Monfared A, Cooper L, Cheng J, Johnson EC, Morrison JC. Astrocyte Structural and Molecular Response to Elevated Intraocular Pressure Occurs Rapidly and Precedes Axonal Tubulin Rearrangement within the Optic Nerve Head in a Rat Model. PLoS One 2016; 11:e0167364. [PMID: 27893827 PMCID: PMC5125687 DOI: 10.1371/journal.pone.0167364] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/12/2016] [Indexed: 02/01/2023] Open
Abstract
Glaucomatous axon injury occurs at the level of the optic nerve head (ONH) in response to uncontrolled intraocular pressure (IOP). The temporal response of ONH astrocytes (glial cells responsible for axonal support) to elevated IOP remains unknown. Here, we evaluate the response of actin-based astrocyte extensions and integrin-based signaling within the ONH to 8 hours of IOP elevation in a rat model. IOP elevation of 60 mm Hg was achieved under isoflurane anesthesia using anterior chamber cannulation connected to a saline reservoir. ONH astrocytic extension orientation was significantly and regionally rearranged immediately after IOP elevation (inferior ONH, 43.2° ± 13.3° with respect to the anterior-posterior axis versus 84.1° ± 1.3° in controls, p<0.05), and re-orientated back to baseline orientation 1 day post IOP normalization. ONH axonal microtubule filament label intensity was significantly reduced 1 and 3 days post IOP normalization, and returned to control levels on day 5. Phosphorylated focal adhesion kinase (FAK) levels steadily decreased after IOP normalization, while levels of phosphorylated paxillin (a downstream target of FAK involved in focal adhesion dynamics) were significantly elevated 5 days post IOP normalization. The levels of phosphorylated cortactin (a downstream target of Src kinase involved in actin polymerization) were significantly elevated 1 and 3 days post IOP normalization and returned to control levels by day 5. No significant axon degeneration was noted by morphologic assessment up to 5 days post IOP normalization. Actin-based astrocyte structure and signaling within the ONH are significantly altered within hours after IOP elevation and prior to axonal cytoskeletal rearrangement, producing some responses that recover rapidly and others that persist for days despite IOP normalization.
Collapse
Affiliation(s)
- Shandiz Tehrani
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Lauren Davis
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - William O. Cepurna
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Tiffany E. Choe
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Diana C. Lozano
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ashley Monfared
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lauren Cooper
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joshua Cheng
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Elaine C. Johnson
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John C. Morrison
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
14
|
Bikis C, Moris D, Vasileiou I, Patsouris E, Theocharis S. FAK/Src family of kinases: protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Targets 2014; 19:539-49. [PMID: 25474489 DOI: 10.1517/14728222.2014.990374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|