1
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
2
|
Epithelial Cell Adhesion Molecule in Primary Sjögren's Syndrome Patients: Characterization and Evaluation of a Potential Biomarker. J Immunol Res 2019; 2019:3269475. [PMID: 31886299 PMCID: PMC6915146 DOI: 10.1155/2019/3269475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Objective To determine the subcellular localization of epithelial cell adhesion molecule (EpCAM) in labial salivary gland (LSG) and evaluate the diagnostic use of the extracellular domain of EpCAM (EpEX) and intracellular domain (EpICD) for primary Sjögren's syndrome (pSS). Methods Immunohistochemical (IHC) analysis was conducted using EpEX and EpICD domain-specific antibodies on labial salivary gland biopsy (LSGB) from participants. Chi-square or Fisher's exact analysis, Mann-Whitney U-test, and Kruskal-Wallis test compared differences among groups. Independent risk factors of pSS were determined by multiple logistic regression analysis. Receiver-operator characteristic curves (ROC) were carried out to estimate the diagnostic value. Results Compared to non-SS controls, loss of membranous EpEX and EpICD expression was observed in LSGB of pSS patients, which occurred in parallel with increased accumulation of cytoplastic and nuclear EpICD. The subcellular EpEX/EpICD expressions were associated with various features of pSS patients, especially histopathological grade of LSGB. Furthermore, high IHC scores of membranous EpEX were independent risk factors for pSS, even for the pSS patients at early stage. The IHC scores of subcellular EpEX/EpICD were of great diagnostic value for pSS with high sensitivity (70-80%) and specificity (85-95%). Conclusion This study first found the aberrant expression pattern of EpCAM in LSG of pSS patients. The IHC scores of subcellular EpEX/EpICD were demonstrated to have the potential to act as diagnostic biomarkers for pSS.
Collapse
|
3
|
Somasundaram RT, Kaur J, Leong I, MacMillan C, Witterick IJ, Walfish PG, Ralhan R. Subcellular differential expression of Ep-ICD in oral dysplasia and cancer is associated with disease progression and prognosis. BMC Cancer 2016; 16:486. [PMID: 27421772 PMCID: PMC4947324 DOI: 10.1186/s12885-016-2507-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/20/2016] [Indexed: 01/25/2023] Open
Abstract
Background Identification of patients with oral dysplasia at high risk of cancer development and oral squamous cell carcinoma (OSCC) at increased risk of disease recurrence will enable rigorous personalized treatment. Regulated intramembranous proteolysis of Epithelial cell adhesion molecule (EpCAM) resulting in release of its intracellular domain Ep-ICD into cytoplasm and nucleus triggers oncogenic signaling. We analyzed the expression of Ep-ICD in oral dysplasia and cancer and determined its clinical significance in disease progression and prognosis. Methods In a retrospective study, immunohistochemical analysis of nuclear and cytoplasmic Ep-ICD and EpEx (extracellular domain of EpCAM), was carried out in 115 OSCC, 97 oral dysplasia and 105 normal oral tissues, correlated with clinicopathological parameters and disease outcome over 60 months for oral dysplasia and OSCC patients. Disease-free survival (DFS) was determined by Kaplan-Meier method and multivariate Cox regression analysis. Results In comparison with normal oral tissues, significant increase in nuclear Ep-ICD and membrane EpEx was observed in dysplasia, and OSCC (p = 0.013 and < 0.001 respectively). Oral dysplasia patients with increased overall Ep-ICD developed cancer in short time period (mean = 47 months; p = 0.044). OSCC patients with increased nuclear Ep-ICD and membrane EpEx had significantly reduced mean DFS of 33.7 months (p = 0.018). Conclusions Our study provided clinical evidence for Ep-ICD as a predictor of cancer development in patients with oral dysplasia and recurrence in OSCC patients, suggesting its potential utility in enhanced management of those patients detected to have increased risk of progression to cancer and recurrence in OSCC patients.
Collapse
Affiliation(s)
- Raj Thani Somasundaram
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jatinder Kaur
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Iona Leong
- Department of Otolaryngology, Head and Neck Surgery, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ian J Witterick
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Otolaryngology - Head and Neck Surgery, Alex and Simona Shnaider Laboratory in Molecular Oncology, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada
| | - Paul G Walfish
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada. .,Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Joseph & Wolf Lebovic Health Complex, Room 413-7, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
| | - Ranju Ralhan
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, Alex and Simona Shnaider Laboratory in Molecular Oncology, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|