1
|
Hookabe N, Jimi N, Furushima Y, Fujiwara Y. Discovery of deep-sea acoels from a chemosynthesis-based ecosystem. Biol Lett 2024; 20:20230573. [PMID: 39079676 PMCID: PMC11288667 DOI: 10.1098/rsbl.2023.0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Chemosynthesis-based ecosystems such as hydrothermal vents and hydrocarbon seeps harbour various endemic species, each uniquely adapted to the extreme conditions. While some species rely on obligatory relationships with bacterial symbionts for nutrient uptake, scavengers and predators also play important roles in food web dynamics in these ecosystems. Acoels, members of the phylum Xenacoelomorpha, are simple, worm-like invertebrates found in marine environments worldwide but are scarcely understood taxa. This study presents a novel genus and species of acoel from a deep-sea hydrocarbon seep off Hatsushima, Japan, Hoftherma hatsushimaensis gen. et sp. nov. Our multi-locus phylogenetic analysis revealed that the acoels are nested within Hofsteniidae, a family previously known exclusively from shallow waters. This finding suggests that at least two independent colonization events occurred in the chemosynthesis-based environments from the phylum Xenoacoelomorpha, represented by hofsteniid acoels and Xenoturbella. Previous reports of hofsteniid species from low-oxygen and sulfide-rich environments, including intertidal habitats with decomposing leaves, in addition to H. hatsushimaensis gen. et sp. nov. from a deep-sea hydrocarbon seep, imply a common ancestral adaptation to sulfide-rich ecosystems within Hofsteniidae. Moreover, the sister relationship between solenofilomorphid acoels predominating in sulfide-rich habitats indicates common ancestral adaptation to sulfide-rich ecosystems between these two families.
Collapse
Affiliation(s)
- Natsumi Hookabe
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa237-0061, Japan
| | - Naoto Jimi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Mie517-0004, Japan
- Centre for Marine & Coastal Studies, Universiti Sains Malaysia 11800 USM, Gelugor, Penang, Malaysia
| | - Yasuo Furushima
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa237-0061, Japan
| | - Yoshihiro Fujiwara
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa237-0061, Japan
| |
Collapse
|
2
|
Defourneaux É, Herranz M, Armenteros M, Sørensen MV, Norenburg JL, Park T, Worsaae K. Circumtropical distribution and cryptic species of the meiofaunal enteropneust Meioglossus (Harrimaniidae, Hemichordata). Sci Rep 2024; 14:9296. [PMID: 38654022 DOI: 10.1038/s41598-024-57591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Hemichordata has always played a central role in evolutionary studies of Chordata due to their close phylogenetic affinity and shared morphological characteristics. Hemichordates had no meiofaunal representatives until the surprising discovery of a microscopic, paedomorphic enteropneust Meioglossus psammophilus (Harrimaniidae, Hemichordata) from the Caribbean in 2012. No additional species have been described since, questioning the broader distribution and significance of this genus. However, being less than a millimeter long and superficially resembling an early juvenile acorn worm, Meioglossus may easily be overlooked in both macrofauna and meiofauna surveys. We here present the discovery of 11 additional populations of Meioglossus from shallow subtropical and tropical coralline sands of the Caribbean Sea, Red Sea, Indian Ocean, and East China Sea. These geographically separated populations show identical morphology but differ genetically. Our phylogenetic reconstructions include four gene markers and support the monophyly of Meioglossus. Species delineation analyses revealed eight new cryptic species, which we herein describe using DNA taxonomy. This study reveals a broad circumtropical distribution, supporting the validity and ecological importance of this enigmatic meiobenthic genus. The high cryptic diversity and apparent morphological stasis of Meioglossus may exemplify a potentially common evolutionary 'dead-end' scenario, where groups with highly miniaturized and simplified body plan lose their ability to diversify morphologically.
Collapse
Affiliation(s)
- Éloïse Defourneaux
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, DK-2100, Copenhagen, Denmark
| | - Maria Herranz
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, DK-2100, Copenhagen, Denmark
- Area of Biodiversity and Conservation, Superior School of Experimental Science and Technology (ESCET), Rey Juan Carlos University, C/ Tulipán S/N, 28933, Mostoles, Madrid, Spain
| | - Maickel Armenteros
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, 82040, Mazatlán, México
| | - Martin V Sørensen
- Natural History Museum Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Jon L Norenburg
- Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Taeseo Park
- Species Diversity Research Division, National Institute of Biological Resources, Hwangyeong-Ro 42, Incheon, 22689, South Korea
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Abstract
Members of the following marine annelid families are found almost exclusively in the interstitial environment and are highly adapted to move between sand grains, relying mostly on ciliary locomotion: Apharyngtidae n. fam., Dinophilidae, Diurodrilidae, Nerillidae, Lobatocerebridae, Parergodrilidae, Polygordiidae, Protodrilidae, Protodriloididae, Psammodrilidae and Saccocirridae. This article provides a review of the evolution, systematics, and diversity of these families, with the exception of Parergodrilidae, which was detailed in the review of Orbiniida by Meca, Zhadan, and Struck within this Special Issue. While several of the discussed families have previously only been known by a few described species, recent surveys inclusive of molecular approaches have increased the number of species, showing that all of the aforementioned families exhibit a high degree of cryptic diversity shadowed by a limited number of recognizable morphological traits. This is a challenge for studies of the evolution, taxonomy, and diversity of interstitial families as well as for their identification and incorporation into ecological surveys. By compiling a comprehensive and updated review on these interstitial families, we hope to promote new studies on their intriguing evolutionary histories, adapted life forms and high and hidden diversity.
Collapse
|
4
|
Egger C, Neusser TP, Norenburg J, Leasi F, Buge B, Vannozzi A, Cunha RL, Cox CJ, Jörger KM. Uncovering the shell game with barcodes: diversity of meiofaunal Caecidae snails (Truncatelloidea, Caenogastropoda) from Central America. Zookeys 2020; 968:1-42. [PMID: 33005079 PMCID: PMC7511454 DOI: 10.3897/zookeys.968.52986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/05/2020] [Indexed: 11/27/2022] Open
Abstract
Caecidae is a species-rich family of microsnails with a worldwide distribution. Typical for many groups of gastropods, caecid taxonomy is largely based on overt shell characters. However, identification of species using shell characteristics is problematic due to their rather uniform, tubular shells, the presence of different growth stages, and a high degree of intraspecific variability. In the present study, a first integrative approach to caecid taxonomy is provided using light-microscopic investigation with microsculptural analyses and multi-marker barcoding, in conjunction with molecular species delineation analyses (ABGD, haplotype networks, GMYC, and bPTP). In total 132 specimens of Caecum and Meioceras collected during several sampling trips to Central America were analyzed and delineated into a minimum of 19 species to discuss putative synonyms, and supplement the original descriptions. Molecular phylogenetic analyses suggest Meiocerasnitidum and M.cubitatum should be reclassified as Caecum, and the genus Meioceras might present a junior synonym of Caecum. Meiofaunal caecids morphologically resembling C.glabrum from the Northeast Atlantic are a complex of cryptic species with independent evolutionary origins, likely associated with multiple habitat shifts to the mesopsammic environment. Caecuminvisibile Egger & Jörger, sp. nov. is formally described based on molecular diagnostic characters. This first integrative approach towards the taxonomy of Caecidae increases the known diversity, reveals the need for a reclassification of the genus Caecum and serves as a starting point for a barcoding library of the family, thereby enabling further reliable identifications of these taxonomically challenging microsnails in future studies.
Collapse
Affiliation(s)
- Christina Egger
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 Munich, Germany SNSB-Zoologische Staatssammlung München Munich Germany.,CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal Universidade do Algarve Faro Portugal
| | - Timea P Neusser
- LMU Munich, Biocenter, Dept. II, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany LMU Munich Munich Germany
| | - Jon Norenburg
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA National Museum of Natural History Washington, DC United States of America
| | - Francesca Leasi
- Department of Biology, Geology and Environmental Science. University of Tennessee at Chattanooga. 615 McCallie Ave. Chattanooga, TN 37403, USA University of Tennessee at Chattanooga Chattanooga United States of America
| | - Barbara Buge
- Muséum national d'Histoire naturelle, 55 Rue Buffon, 75231 Paris, France Muséum national d'Histoire naturelle Paris France
| | - Angelo Vannozzi
- Independent researcher, Via M.L. Longo 8, Rome, Italy Unaffiliated Rome Italy
| | - Regina L Cunha
- CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal Universidade do Algarve Faro Portugal
| | - Cymon J Cox
- CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal Universidade do Algarve Faro Portugal
| | - Katharina M Jörger
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 Munich, Germany SNSB-Zoologische Staatssammlung München Munich Germany
| |
Collapse
|
5
|
Curini-Galletti M, Artois T, Di Domenico M, Fontaneto D, Jondelius U, Jörger KM, Leasi F, Martínez A, Norenburg JL, Sterrer W, Todaro MA. Contribution of soft-bodied meiofaunal taxa to Italian marine biodiversity. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1786607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- M. Curini-Galletti
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - T. Artois
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - M. Di Domenico
- Center for Marine Studies, Universidade Federal do Paraná, Curitiba, Brazil
| | - D. Fontaneto
- Molecular Ecology Group, Water Research Institute - CNR, Verbania, Italy
| | - U. Jondelius
- Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - K. M. Jörger
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
| | - F. Leasi
- Department of Biology, Geology and Environmental Science, University of Tennessee, Chattanooga, TN, USA
| | - A. Martínez
- Molecular Ecology Group, Water Research Institute - CNR, Verbania, Italy
| | - J. L. Norenburg
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution (USA), Washington, DC, USA
| | | | - M. A. Todaro
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Cerca J, Meyer C, Purschke G, Struck TH. Delimitation of cryptic species drastically reduces the geographical ranges of marine interstitial ghost-worms (Stygocapitella; Annelida, Sedentaria). Mol Phylogenet Evol 2020; 143:106663. [DOI: 10.1016/j.ympev.2019.106663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
|
7
|
Titus BM, Blischak PD, Daly M. Genomic signatures of sympatric speciation with historical and contemporary gene flow in a tropical anthozoan (Hexacorallia: Actiniaria). Mol Ecol 2019; 28:3572-3586. [PMID: 31233641 DOI: 10.1111/mec.15157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 12/23/2022]
Abstract
Sympatric diversification is recognized to have played an important role in the evolution of biodiversity. However, an in situ sympatric origin for codistributed taxa is difficult to demonstrate because different evolutionary processes can lead to similar biogeographic outcomes, especially in ecosystems that can readily facilitate secondary contact due to a lack of hard barriers to dispersal. Here we use a genomic (ddRADseq), model-based approach to delimit a species complex of tropical sea anemones that are codistributed on coral reefs throughout the Tropical Western Atlantic. We use coalescent simulations in fastsimcoal2 and ordinary differential equations in Moments to test competing diversification scenarios that span the allopatric-sympatric continuum. Our results suggest that the corkscrew sea anemone Bartholomea annulata is a cryptic species complex whose members are codistributed throughout their range. Simulation and model selection analyses from both approaches suggest these lineages experienced historical and contemporary gene flow, supporting a sympatric origin, but an alternative secondary contact model receives appreciable model support in fastsimcoal2. Leveraging the genome of the closely related Exaiptasia diaphana, we identify five loci under divergent selection between cryptic B. annulata lineages that fall within mRNA transcripts or CDS regions. Our study provides a rare empirical, genomic example of sympatric speciation in a tropical anthozoan and the first range-wide molecular study of a tropical sea anemone, underscoring that anemone diversity is under-described in the tropics, and highlighting the need for additional systematic studies into these ecologically and economically important species.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Paul D Blischak
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Gavilán B, Sprecher SG, Hartenstein V, Martinez P. The digestive system of xenacoelomorphs. Cell Tissue Res 2019; 377:369-382. [PMID: 31093756 DOI: 10.1007/s00441-019-03038-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
Abstract
Interest in the study of Xenacoelomorpha has recently been revived due to realization of its key phylogenetic position as the putative sister group of the remaining Bilateria. Phylogenomic studies have attracted the attention of researchers interested in the evolution of animals and the origin of novelties. However, it is clear that a proper understanding of novelties can only be gained in the context of thorough descriptions of the anatomy of the different members of this phylum. A considerable literature, based mainly on conventional histological techniques, describes different aspects of xenacoelomorphs' tissue architecture. However, the focus has been somewhat uneven; some tissues, such as the neuro-muscular system, are relatively well described in most groups, whereas others, including the digestive system, are only poorly understood. Our lack of knowledge of the xenacoelomorph digestive system is exacerbated by the assumption that, at least in Acoela, which possess a syncytial gut, the digestive system is a derived and specialized tissue with little bearing on what is observed in other bilaterian animals. Here, we try to remedy this lack of attention by revisiting the different studies of the xenacoelomorph digestive system, and we discuss the diversity present in the light of new evolutionary knowledge.
Collapse
Affiliation(s)
- B Gavilán
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - S G Sprecher
- Department of Biology, University of Fribourg, 10, ch. Du Musée, 1700, Fribourg, Switzerland
| | - V Hartenstein
- Department of Biology, University of California, Los Angeles, CA, USA.
| | - P Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Flammensbeck CK, Haszprunar G, Korshunova T, Martynov AV, Neusser TP, Jörger KM. Pseudovermis paradoxus 2.0—3D microanatomy and ultrastructure of a vermiform, meiofaunal nudibranch (Gastropoda, Heterobranchia). ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-018-0386-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Chenuil A, Cahill AE, Délémontey N, Du Salliant du Luc E, Fanton H. Problems and Questions Posed by Cryptic Species. A Framework to Guide Future Studies. HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-10991-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractSpecies are the currency of biology and important units of biodiversity, thus errors in species delimitations potentially have important consequences. During the last decades, owing to the use of genetic markers, many nominal species appeared to consist of several reproductively isolated entities called cryptic species (hereafter CS). In this chapter we explain why CS are important for practical reasons related to community and ecosystem monitoring, and for biological knowledge, particularly for understanding ecological and evolutionary processes. To find solutions to practical problems and to correct biological errors, a thorough analysis of the distinct types of CS reported in the literature is necessary and some general rules have to be identified. Here we explain how to identify CS, and we propose a rational and practical classification of CS (and putative CS), based on the crossing of distinct levels of genetic isolation with distinct levels of morphological differentiation. We also explain how to identify likely explanations for a given CS (either inherent to taxonomic processes or related to taxon biology, ecology and geography) and how to build a comprehensive database aimed at answering these practical and theoretical questions. Our pilot review of the literature in marine animals established that half of the reported cases are not CS sensu stricto (i.e. where morphology cannot distinguish the entities) and just need taxonomic revision. It also revealed significant associations between CS features, such as a higher proportion of diagnostic morphological differences in sympatric than in allopatric CS and more frequent ecological differentiation between sympatric than allopatric CS, both observations supporting the competitive exclusion theory, thus suggesting that ignoring CS causes not only species diversity but also functional diversity underestimation.
Collapse
|
11
|
New insights into the genital musculature of Macrostomum johni (Platyhelminthes, Macrostomorpha), revealed with CLSM. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Atherton S, Jondelius U. Wide distributions and cryptic diversity within a Microstomum
(Platyhelminthes) species complex. ZOOL SCR 2018. [DOI: 10.1111/zsc.12290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Atherton
- Department of Zoology; Naturhistoriska riksmuseet; Stockholm Sweden
| | - Ulf Jondelius
- Department of Zoology; Naturhistoriska riksmuseet; Stockholm Sweden
| |
Collapse
|
13
|
Species diversity in the marine microturbellarian Astrotorhynchus bifidus sensu lato (Platyhelminthes: Rhabdocoela) from the Northeast Pacific Ocean. Mol Phylogenet Evol 2017; 120:259-273. [PMID: 29248627 DOI: 10.1016/j.ympev.2017.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/26/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that many widespread species of meiofauna are in fact regional complexes of (pseudo-)cryptic species. This knowledge has challenged the 'Everything is Everywhere' hypothesis and also partly explains the meiofauna paradox of widespread nominal species with limited dispersal abilities. Here, we investigated species diversity within the marine microturbellarian Astrotorhynchus bifidus sensu lato in the Northeast Pacific Ocean. We used a multiple-evidence approach combining multi-gene (18S, 28S, COI) phylogenetic analyses, several single-gene and multi-gene species delimitation methods, haplotype networks and conventional taxonomy to designate Primary Species Hypotheses (PSHs). This included the development of rhabdocoel-specific COI barcode primers, which also have the potential to aid in species identification and delimitation in other rhabdocoels. Secondary Species Hypotheses (SSHs) corresponding to morphospecies and pseudo-cryptic species were then proposed based on the minimum consensus of different PSHs. Our results showed that (a) there are at least five species in the A. bifidus complex in the Northeast Pacific Ocean, four of which can be diagnosed based on stylet morphology, (b) the A. bifidus complex is a mixture of sympatric and allopatric species with regional and/or subglobal distributions, (c) sympatry occurs on local (sample sites), regional (Northeastern Pacific) and subglobal (Northern Atlantic, Arctic, Northeastern Pacific) scales. Mechanisms for this co-occurrence are still poorly understood, but we hypothesize they could include habitat differentiation (spatial and/or seasonal) and life history characteristics such as sexual selection and dispersal abilities. Our results also suggest the need for improved sampling and exploration of molecular markers to accurately map gene flow and broaden our understanding of species diversity and distribution of microturbellarians in particular and meiofauna in general.
Collapse
|
14
|
Lee MR, Canales-Aguirre CB, Nuñez D, Pérez K, Hernández CE, Brante A. The identification of sympatric cryptic free-living nematode species in the Antarctic intertidal. PLoS One 2017; 12:e0186140. [PMID: 28982192 PMCID: PMC5629031 DOI: 10.1371/journal.pone.0186140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022] Open
Abstract
The diversity of free-living nematodes in the beaches of two Antarctic islands, King George and Deception islands was investigated. We used morphological and molecular (LSU, and two fragments of SSU sequences) approaches to evaluate 236 nematodes. Specimens were assigned to at least genera using morphology and were assessed for the presence of cryptic speciation. The following genera were identified: Halomonhystera, Litoditis, Enoploides, Chromadorita, Theristus, Oncholaimus, Viscosia, Gammanema, Bathylaimus, Choanolaimus, and Paracanthonchus; along with specimens from the families Anticomidae and Linhomoeidae. Cryptic speciation was identified within the genera Halomonhystera and Litoditis. All of the cryptic species identified live sympatrically. The two cryptic species of Halomonhystera exhibited no significant morphological differences. However, Litoditis species 2 was significantly larger than Litoditis species 1. The utility of molecular data in confirming the identifications of some of the morphologically more challenging families of nematodes was demonstrated. In terms of which molecular sequences to use for the identification of free-living nematodes, the SSU sequences were more variable than the LSU sequences, and thus provided more resolution in the identification of cryptic speciation. Finally, despite the considerable amount of time and effort required to put together genetic and morphological data, the resulting advance in our understanding of diversity and ecology of free-living marine nematodes, makes that effort worthwhile.
Collapse
Affiliation(s)
- Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | | | - Daniela Nuñez
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Karla Pérez
- Departamento de Ecología, Universidad Católica de la Santísima de Concepción, Concepción, Chile
| | - Crisitan E. Hernández
- Laboratorio de Ecología Evolutiva and Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Antonio Brante
- Departamento de Ecología, Universidad Católica de la Santísima de Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima de Concepción, Concepción, Chile
| |
Collapse
|
15
|
Molecular and morphometric data suggest the presence of a neglected species in the marine gastropod family Conidae. Mol Phylogenet Evol 2017; 109:421-429. [DOI: 10.1016/j.ympev.2017.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/12/2017] [Accepted: 02/15/2017] [Indexed: 11/15/2022]
|
16
|
Arroyo AS, López-Escardó D, de Vargas C, Ruiz-Trillo I. Hidden diversity of Acoelomorpha revealed through metabarcoding. Biol Lett 2016; 12:rsbl.2016.0674. [PMID: 27677819 PMCID: PMC5046940 DOI: 10.1098/rsbl.2016.0674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/06/2016] [Indexed: 01/29/2023] Open
Abstract
Animals with bilateral symmetry comprise the majority of the described species within Metazoa. However, the nature of the first bilaterian animal remains unknown. As most recent molecular phylogenies point to Xenacoelomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria). To date, sampling efforts have focused mainly on coastal areas, leaving potential gaps in our understanding of the full diversity of xenacoelomorphs. We therefore analysed 18S rDNA metabarcoding data from three marine projects covering benthic and pelagic habitats worldwide. Our results show that acoels have a greater richness in planktonic environments than previously described. Interestingly, we also identified a putative novel clade of acoels in the deep benthos that branches as sister group to the rest of Acoela, thus representing the earliest-branching acoel clade. Our data highlight deep-sea environments as an ideal habitat to sample acoels with key phylogenetic positions, which might be useful for reconstructing the early evolution of Bilateria.
Collapse
Affiliation(s)
- Alicia S Arroyo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Colomban de Vargas
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
17
|
A Return to Linnaeus’s Focus on Diagnosis, Not Description: The Use of DNA Characters in the Formal Naming of Species. Syst Biol 2016; 65:1085-1095. [DOI: 10.1093/sysbio/syw032] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 04/05/2016] [Indexed: 11/14/2022] Open
|
18
|
Kajihara H, Ikoma M, Yamasaki H, Hiruta SF. Trilobodrilus itoi sp. nov., with a Re-Description of T. nipponicus (Annelida: Dinophilidae) and a Molecular Phylogeny of the Genus. Zoolog Sci 2015; 32:405-17. [PMID: 26245229 DOI: 10.2108/zs140251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The marine interstitial annelid Trilobodrilus itoi sp. nov., the sixth member of the genus, is described on the basis of specimens collected intertidally at Ishikari Beach, Hokkaido, Japan; this is the second species in the genus described from the Pacific Rim. In addition, T. nipponicus Uchida and Okuda, 1943 is re-described based on fresh topotypic material from Akkeshi, Hokkaido, Japan. From both species, we determined sequences of the nuclear 18S and 28S rRNA genes, and the mitochondrial cytochrome c oxidase subunit I (COI) gene. Molecular phylogenetic trees based on concatenated sequences of the three genes showed that T. itoi and T. nipponicus form a clade, which was the sister group to a clade containing the two European congeners T. axi Westheide, 1967 and T. heideri Remane, 1925. The Kimura two-parameter distance for COI was 22.5-22.7% between T. itoi and T. nipponicus, comparable with interspecific values in other polychaete genera. We assessed the taxonomic utility of epidermal inclusions and found that the known six species can be classified into three groups.
Collapse
Affiliation(s)
- Hiroshi Kajihara
- 1 Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Maho Ikoma
- 1 Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroshi Yamasaki
- 2 Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Nakagami, Okinawa 903-0213, Japan
| | - Shimpei F Hiruta
- 1 Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
19
|
Haszprunar G. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0249-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Raikova OI, Meyer-Wachsmuth I, Jondelius U. The plastic nervous system of Nemertodermatida. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0248-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
|