1
|
Al-Sabri MH, Behare N, Alsehli AM, Berkins S, Arora A, Antoniou E, Moysiadou EI, Anantha-Krishnan S, Cosmen PD, Vikner J, Moulin TC, Ammar N, Boukhatmi H, Clemensson LE, Rask-Andersen M, Mwinyi J, Williams MJ, Fredriksson R, Schiöth HB. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes. Cells 2022; 11:3528. [PMID: 36428957 PMCID: PMC9688544 DOI: 10.3390/cells11223528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
Collapse
Affiliation(s)
- Mohamed H. Al-Sabri
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Neha Behare
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ahmed M. Alsehli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Samuel Berkins
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Aadeya Arora
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eirini Antoniou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eleni I. Moysiadou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Sowmya Anantha-Krishnan
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Patricia D. Cosmen
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Johanna Vikner
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC F10, 221 84 Lund, Sweden
| | - Nourhene Ammar
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Laura E. Clemensson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Peppriell AE, Gunderson JT, Vorojeikina D, Rand MD. Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology 2020; 443:152561. [PMID: 32800841 PMCID: PMC7530093 DOI: 10.1016/j.tox.2020.152561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant and developmental toxicant known to cause a variety of persistent motor and cognitive deficits. While previous research has focused predominantly on neurotoxic MeHg effects, emerging evidence points to a myotoxic role whereby MeHg induces defects in muscle development and maintenance. A genome wide association study for developmental sensitivity to MeHg in Drosophila has revealed several conserved muscle morphogenesis candidate genes that function in an array of processes from myoblast migration and fusion to myotendinous junction (MTJ) formation and myofibrillogenesis. Here, we investigated candidates for a role in mediating MeHg disruption of muscle development by evaluating morphological and functional phenotypes of the indirect flight muscles (IFMs) in pupal and adult flies following 0, 5, 10, and 15 μM MeHg exposure via feeding at the larval stage. Developmental MeHg exposure induced a dose-dependent increase in muscle detachments (myospheres) within dorsal bundles of the IFMs, which paralleled reductions eclosion and adult flight behaviors. These effects were selectively phenocopied by altered expression of kon-tiki (kon), a chondroitin sulfate proteoglycan 4/NG2 homologue and a central component of MTJ formation. MeHg elevated kon transcript expression at a crucial window of IFM development and transgene overexpression of kon could also phenocopy myosphere phenotypes and eclosion and flight deficits. Finally, the myosphere phenotype resulting from 10 μM MeHg was partially rescued in a background of reduced kon expression using a targeted RNAi approach. Our findings implicate a component of the MTJ as a MeHg toxicity target which broaden the understanding of how motor deficits can emerge from early life MeHg exposure.
Collapse
Affiliation(s)
- Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
4
|
Di Giorgio E, Hancock WW, Brancolini C. MEF2 and the tumorigenic process, hic sunt leones. Biochim Biophys Acta Rev Cancer 2018; 1870:261-273. [PMID: 29879430 DOI: 10.1016/j.bbcan.2018.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022]
Abstract
While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses during development and adult life, additional studies over the last decade have identified a wide spectrum of genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of MEF2 transcription factors in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
5
|
Chen X, Gao B, Ponnusamy M, Lin Z, Liu J. MEF2 signaling and human diseases. Oncotarget 2017; 8:112152-112165. [PMID: 29340119 PMCID: PMC5762387 DOI: 10.18632/oncotarget.22899] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023] Open
Abstract
The members of myocyte Enhancer Factor 2 (MEF2) protein family was previously believed to function in the development of heart and muscle. Recent reports indicate that they are also closely associated with development and progression of many human diseases. Although their role in cancer biology is well established, the molecular mechanisms underlying their action is yet largely unknown. MEF2 family is closely associated with various signaling pathways, including Ca2+ signaling, MAP kinase signaling, Wnt signaling, PI3K/Akt signaling, etc. microRNAs also contribute to regulate the activities of MEF2. In this review, we summarize the known molecular mechanism by which MEF2 family contribute to human diseases.
Collapse
Affiliation(s)
- Xiao Chen
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Gao
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
7
|
Simon E, Faucheux C, Zider A, Thézé N, Thiébaud P. From vestigial to vestigial-like: the Drosophila gene that has taken wing. Dev Genes Evol 2016; 226:297-315. [PMID: 27116603 DOI: 10.1007/s00427-016-0546-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/10/2016] [Indexed: 12/16/2022]
Abstract
The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.
Collapse
Affiliation(s)
- Emilie Simon
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, F-75205, Paris, France
| | - Nadine Thézé
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Pierre Thiébaud
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France.
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France.
- Univ. Bordeaux, INSERM U1035, 146 rue Léo Saignat, 33076, Bordeaux CEDEX, France.
| |
Collapse
|