1
|
Valdez Capuccino L, Kleitke T, Szokol B, Svajda L, Martin F, Bonechi F, Krekó M, Azami S, Montinaro A, Wang Y, Nikolov V, Kaiser L, Bonasera D, Saggau J, Scholz T, Schmitt A, Beleggia F, Reinhardt HC, George J, Liccardi G, Walczak H, Tóvári J, Brägelmann J, Montero J, Sos ML, Őrfi L, Peltzer N. CDK9 inhibition as an effective therapy for small cell lung cancer. Cell Death Dis 2024; 15:345. [PMID: 38769311 PMCID: PMC11106072 DOI: 10.1038/s41419-024-06724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Treatment-naïve small cell lung cancer (SCLC) is typically susceptible to standard-of-care chemotherapy consisting of cisplatin and etoposide recently combined with PD-L1 inhibitors. Yet, in most cases, SCLC patients develop resistance to first-line therapy and alternative therapies are urgently required to overcome this resistance. In this study, we tested the efficacy of dinaciclib, an FDA-orphan drug and inhibitor of the cyclin-dependent kinase (CDK) 9, among other CDKs, in SCLC. Furthermore, we report on a newly developed, highly specific CDK9 inhibitor, VC-1, with tumour-killing activity in SCLC. CDK9 inhibition displayed high killing potential in a panel of mouse and human SCLC cell lines. Mechanistically, CDK9 inhibition led to a reduction in MCL-1 and cFLIP anti-apoptotic proteins and killed cells, almost exclusively, by intrinsic apoptosis. While CDK9 inhibition did not synergise with chemotherapy, it displayed high efficacy in chemotherapy-resistant cells. In vivo, CDK9 inhibition effectively reduced tumour growth and improved survival in both autochthonous and syngeneic SCLC models. Together, this study shows that CDK9 inhibition is a promising therapeutic agent against SCLC and could be applied to chemo-refractory or resistant SCLC.
Collapse
Affiliation(s)
- L Valdez Capuccino
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - T Kleitke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - B Szokol
- Vichem Chemie Research Ltd., Veszprém, Hungary
| | - L Svajda
- Department of Experimental Pharmacology, and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - F Martin
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036, Barcelona, Spain
| | - F Bonechi
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - M Krekó
- Vichem Chemie Research Ltd., Veszprém, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - S Azami
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - A Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Y Wang
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - V Nikolov
- CECAD Research Center, University of Cologne, Cologne, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - L Kaiser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
| | - D Bonasera
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - J Saggau
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - T Scholz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - A Schmitt
- University Hospital of Cologne, Medical Faculty, Department I for Internal Medicine, Cologne, Germany
| | - F Beleggia
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University Hospital of Cologne, Medical Faculty, Department I for Internal Medicine, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Mildred Scheel School of Oncology Cologne, Cologne, Germany
| | - H C Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - J George
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine and University Hospital Cologne, University Hospital of Cologne, Cologne, Germany
| | - G Liccardi
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - H Walczak
- CECAD Research Center, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - J Tóvári
- Department of Experimental Pharmacology, and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - J Brägelmann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Mildred Scheel School of Oncology Cologne, Cologne, Germany
| | - J Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036, Barcelona, Spain
| | - M L Sos
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
- Division for Translational Oncology, German Cancer Research Center (DKFZ), The German Consortium for Translational Cancer Research (DKTK), München Partner Site, Ludwig-Maximilian University München, Munich, Germany
| | - L Őrfi
- Vichem Chemie Research Ltd., Veszprém, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - N Peltzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany.
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany.
- CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Reardon AJF, Farmahin R, Williams A, Meier MJ, Addicks GC, Yauk CL, Matteo G, Atlas E, Harrill J, Everett LJ, Shah I, Judson R, Ramaiahgari S, Ferguson SS, Barton-Maclaren TS. From vision toward best practices: Evaluating in vitro transcriptomic points of departure for application in risk assessment using a uniform workflow. FRONTIERS IN TOXICOLOGY 2023; 5:1194895. [PMID: 37288009 PMCID: PMC10242042 DOI: 10.3389/ftox.2023.1194895] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.
Collapse
Affiliation(s)
- Anthony J. F. Reardon
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Reza Farmahin
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Gregory C. Addicks
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Carole L. Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Geronimo Matteo
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Imran Shah
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Richard Judson
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Sreenivasa Ramaiahgari
- Division of Translational Toxicology, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Stephen S. Ferguson
- Division of Translational Toxicology, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Tara S. Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
3
|
Wang X, Liu X, Huang J, Liu C, Li H, Wang C, Hong Q, Lei Y, Xia J, Yu Z, Dong R, Xu J, Tu Z, Duan C, Li S, Lu T, Tang W, Chen Y. Discovery of 2H-benzo[b][1,4]oxazin-3(4H)-one derivatives as potent and selective CDK9 inhibitors that enable transient target engagement for the treatment of hematologic malignancies. Eur J Med Chem 2022; 238:114461. [PMID: 35605362 DOI: 10.1016/j.ejmech.2022.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and a potential therapeutic target in hematologic malignancies. Selective and transient CDK9 inhibition reduces Mcl-1 expression and induces apoptosis in Mcl-1-dependent tumor cells for survival. Here, we describe our efforts to discover a novel series of 2H-benzo[b][1,4]oxazin-3(4H)-one as CDK9 inhibitors. Compound 32k was identified as a selective CDK9 inhibitor with short pharmacokinetic and physicochemical properties suitable for intravenous administration. Short-term treatment with 32k resulted in a rapid dose-dependent decrease in cellular p-Ser2-RNAPII, Mcl-1 and c-Myc, leading to apoptosis in the MV4-11 cell line. Correspondingly, significant in vivo antitumor efficacy was observed in xenograft models derived from multiple hematological tumors with intermittent 32k dosing. These results provide evidence that selective transient CDK9 inhibitors could be used for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Xinren Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Xiaoyue Liu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Jianhang Huang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Chenhe Liu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Cong Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Qianqian Hong
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yan Lei
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Jiawei Xia
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Ziheng Yu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Ruinan Dong
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Junyu Xu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zhenlin Tu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - ChunQi Duan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Shuwen Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Sela Y, Li J, Maheswaran S, Norgard R, Yuan S, Hubbi M, Doepner M, Xu JP, Ho E, Measaros C, Sheehan C, Croley G, Muir A, Blair IA, Shalem O, Dang CV, Stanger BZ. Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Res 2022; 82:1890-1908. [PMID: 35315913 PMCID: PMC9117449 DOI: 10.1158/0008-5472.can-22-0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While cancer cells residing in fertile regions proliferate rapidly, most cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic cancer cells. These findings provide a rationale for combining traditional cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation. SIGNIFICANCE The majority of pancreatic cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.
Collapse
Affiliation(s)
- Yogev Sela
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jinyang Li
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shivahamy Maheswaran
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Robert Norgard
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Salina Yuan
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Maimon Hubbi
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Miriam Doepner
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jimmy P. Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Elaine Ho
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Clementina Measaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Grace Croley
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ian A. Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Systems and Computational Biology Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, 19104, USA
- Ludwig Institute for Cancer Research, New York, 10016, USA
| | - Ben Z. Stanger
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
5
|
Kondic A, Bottino D, Harrold J, Kearns JD, Musante CJ, Odinecs A, Ramanujan S, Selimkhanov J, Schoeberl B. Navigating Between Right, Wrong, and Relevant: The Use of Mathematical Modeling in Preclinical Decision Making. Front Pharmacol 2022; 13:860881. [PMID: 35496315 PMCID: PMC9042116 DOI: 10.3389/fphar.2022.860881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
The goal of this mini-review is to summarize the collective experience of the authors for how modeling and simulation approaches have been used to inform various decision points from discovery to First-In-Human clinical trials. The article is divided into a high-level overview of the types of problems that are being aided by modeling and simulation approaches, followed by detailed case studies around drug design (Nektar Therapeutics, Genentech), feasibility analysis (Novartis Pharmaceuticals), improvement of preclinical drug design (Pfizer), and preclinical to clinical extrapolation (Merck, Takeda, and Amgen).
Collapse
Affiliation(s)
- Anna Kondic
- Nektar Therapeutics, San Francisco, CA, United States
| | - Dean Bottino
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, United States
| | - John Harrold
- Seagen Inc., South San Francisco, CA, United States
| | - Jeffrey D. Kearns
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA, United States
| | - CJ Musante
- Pfizer Worldwide Research Development and Medical, Cambridge, MA, United States
| | | | | | - Jangir Selimkhanov
- Pfizer Worldwide Research Development and Medical, Cambridge, MA, United States
| | - Birgit Schoeberl
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA, United States
| |
Collapse
|
6
|
Karlsson S, Benson H, Cook C, Currie G, Dubiez J, Emtenäs H, Hawkins J, Meadows R, Smith PD, Varnes J. From Milligram to Kilogram Manufacture of AZD4573: Making It Possible by Application of Enzyme-, Iridium-, and Palladium-Catalyzed Key Transformations. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Helen Benson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Calum Cook
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Gordon Currie
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Jerome Dubiez
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Hans Emtenäs
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Janet Hawkins
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Meadows
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Peter D. Smith
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Jeffrey Varnes
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| |
Collapse
|
7
|
Borowczak J, Szczerbowski K, Ahmadi N, Szylberg Ł. CDK9 inhibitors in multiple myeloma: a review of progress and perspectives. Med Oncol 2022; 39:39. [PMID: 35092513 PMCID: PMC8800928 DOI: 10.1007/s12032-021-01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022]
Abstract
Currently, multiple myeloma is not yet considered a curable disease. Despite the recent advances in therapy, the average patient lifespan is still unsatisfactory. Recently, CDK9 inhibitors emerged as a suitable agent to overcome resistance and prolong survival in patients with poor diagnoses. Downregulation of c-MYC, XIAP, Mcl-1 and restoration of p53 tumor-suppressive functions seems to play a key role in achieving clinical response. The applicability of the first generation of CDK9 inhibitors was limited due to relatively high toxicity, but the introduction of novel, highly selective drugs, seems to reduce the effects of off-target inhibition. CDK9 inhibitors were able to induce dose-dependent cytotoxicity in Doxorubicin-resistant, Lenalidomide-resistant and Bortezomib-resistant cell lines. They seem to be effective in cell lines with unfavorable prognostic factors, such as p53 deletion, t(4; 14) and t(14; 16). In preclinical trials, the application of CDK9 inhibitors led to tumor cells apoptosis, tumor growth inhibition and tumor mass reduction. Synergistic effects between CDK9 inhibitors and either Venetoclax, Bortezomib, Lenalidomide or Erlotinib have been proven and are awaiting verification in clinical trials. Although conclusions should be drawn with due care, obtained reports suggest that including CDK9 inhibitors into the current drug regimen may turn out to be beneficial, especially in poor prognosis patients.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Navid Ahmadi
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge, UK
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
8
|
Barlaam B, De Savi C, Dishington A, Drew L, Ferguson AD, Ferguson D, Gu C, Hande S, Hassall L, Hawkins J, Hird AW, Holmes J, Lamb ML, Lister AS, McGuire TM, Moore JE, O'Connell N, Patel A, Pike KG, Sarkar U, Shao W, Stead D, Varnes JG, Vasbinder MM, Wang L, Wu L, Xue L, Yang B, Yao T. Discovery of a Series of 7-Azaindoles as Potent and Highly Selective CDK9 Inhibitors for Transient Target Engagement. J Med Chem 2021; 64:15189-15213. [PMID: 34647738 DOI: 10.1021/acs.jmedchem.1c01249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optimization of a series of azabenzimidazoles identified from screening hit 2 and the information gained from a co-crystal structure of the azabenzimidazole-based lead 6 bound to CDK9 led to the discovery of azaindoles as highly potent and selective CDK9 inhibitors. With the goal of discovering a highly selective and potent CDK9 inhibitor administrated intravenously that would enable transient target engagement of CDK9 for the treatment of hematological malignancies, further optimization focusing on physicochemical and pharmacokinetic properties led to azaindoles 38 and 39. These compounds are highly potent and selective CDK9 inhibitors having short half-lives in rodents, suitable physical properties for intravenous administration, and the potential to achieve profound but transient inhibition of CDK9 in vivo.
Collapse
Affiliation(s)
- Bernard Barlaam
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Chris De Savi
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Lisa Drew
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Andrew D Ferguson
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Douglas Ferguson
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Chungang Gu
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Sudhir Hande
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Janet Hawkins
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Alexander W Hird
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Jane Holmes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Michelle L Lamb
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Andrew S Lister
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | - Jane E Moore
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Nichole O'Connell
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Anil Patel
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Kurt G Pike
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Ujjal Sarkar
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Wenlin Shao
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Darren Stead
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Jeffrey G Varnes
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Lei Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Liangwei Wu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Lin Xue
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Bin Yang
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Tieguang Yao
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| |
Collapse
|
9
|
Buzzetti M, Morlando S, Solomos D, Mehmood A, Cox AWI, Chiesa M, D'Alessandra Y, Garofalo M, Topham CH, Di Leva G. Pre-therapeutic efficacy of the CDK inhibitor dinaciclib in medulloblastoma cells. Sci Rep 2021; 11:5374. [PMID: 33686114 PMCID: PMC7940474 DOI: 10.1038/s41598-021-84082-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Medulloblastoma (MB) is the most common aggressive paediatric brain tumour and, despite the recent progress in the treatments of MB patients, there is still an urgent need of complementary or alternative therapeutic options for MB infants. Cyclin Dependent Kinase inhibitors (CDKi) are at the front-line of novel targeted treatments for multiple cancers and the CDK4/6 specific inhibitor palbociclib has been pre-clinically identified as an effective option for MB cells. Herein, we identified the pan-CDKi dinaciclib as a promising alternative to palbociclib for the suppression of MB cells proliferation. We present evidence supporting dinaciclib’s ability to inhibit MB cells in vitro proliferation at considerably lower doses than palbociclib. Sequencing data and pathway analysis suggested that dinaciclib is a potent cell death inducer in MB cells. We found that dinaciclib-triggered apoptosis is triggered by CDK9 inhibition and the resultant reduction in RNA pol II phosphorylation, which leads to the downregulation of the oncogenic marker MYC, and the anti-apoptotic protein MCL-1. Specifically, we demonstrated that MCL-1 is a key apoptotic mediator for MB cells and co-treatment of dinaciclib with BH3 mimetics boosts the therapeutic efficacy of dinaciclib. Together, these findings highlight the potential of multi-CDK inhibition by dinaciclib as an alternative option to CDK4/6 specific inhibition, frequently associated with drug resistance in patients.
Collapse
Affiliation(s)
- Marta Buzzetti
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK.,Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Sonia Morlando
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Dimitrios Solomos
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Ammara Mehmood
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Alexander W I Cox
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Yuri D'Alessandra
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Caroline H Topham
- School of Science, Engineering and Environment, Biomedical Research Centre, Salford, Greater Manchester, UK
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, UK.
| |
Collapse
|
10
|
Howard D, James D, Murphy K, Garcia-Parra J, Pan-Castillo B, Rex S, Moul A, Jones E, Bilbao-Asensio M, Michue-Seijas S, Lutchman-Singh K, Margarit L, Francis LW, Rees P, Gonzalez D, Conlan RS. Dinaciclib, a Bimodal Agent Effective against Endometrial Cancer. Cancers (Basel) 2021; 13:1135. [PMID: 33800911 PMCID: PMC7962054 DOI: 10.3390/cancers13051135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is the sixth most prevalent female cancer globally and although high rates of success are achieved when diagnosed at an early stage, the 5-year survival rate for cancers diagnosed at Stages II-IV is below 50%. Improving patient outcomes will necessitate the introduction of novel therapies to the clinic. Pan-cyclin-dependent kinase inhibitors (CDKis) have been explored as therapies for a range of cancers due to their ability to simultaneously target multiple key cellular processes, such as cell cycle progression, transcription, and DNA repair. Few studies, however, have reported on their potential for the treatment of EC. Herein, we examined the effects of the pan-CDKi dinaciclib in primary cells isolated directly from tumors and EC cell lines. Dinaciclib was shown to elicit a bimodal action in EC cell lines, disrupting both cell cycle progression and phosphorylation of the RNA polymerase carboxy terminal domain, with a concomitant reduction in Bcl-2 expression. Furthermore, the therapeutic potential of combining dinaciclib and cisplatin was explored, with the drugs demonstrating synergy at specific doses in Type I and Type II EC cell lines. Together, these results highlight the potential of dinaciclib for use as an effective EC therapy.
Collapse
Affiliation(s)
- David Howard
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (D.H.); (D.J.); (J.G.-P.); (B.P.-C.); (L.W.F.); (D.G.)
| | - David James
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (D.H.); (D.J.); (J.G.-P.); (B.P.-C.); (L.W.F.); (D.G.)
| | - Kate Murphy
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK; (K.M.); (S.R.); (A.M.); (E.J.)
| | - Jezabel Garcia-Parra
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (D.H.); (D.J.); (J.G.-P.); (B.P.-C.); (L.W.F.); (D.G.)
| | - Belen Pan-Castillo
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (D.H.); (D.J.); (J.G.-P.); (B.P.-C.); (L.W.F.); (D.G.)
| | - Stuart Rex
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK; (K.M.); (S.R.); (A.M.); (E.J.)
| | - Annemarie Moul
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK; (K.M.); (S.R.); (A.M.); (E.J.)
| | - Eilir Jones
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK; (K.M.); (S.R.); (A.M.); (E.J.)
| | - Marc Bilbao-Asensio
- Department of Chemistry, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (M.B.-A.); (S.M.-S.)
| | - Saul Michue-Seijas
- Department of Chemistry, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (M.B.-A.); (S.M.-S.)
| | - Kerryn Lutchman-Singh
- Department of Gynaecology Oncology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK;
| | - Lavinia Margarit
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend CF31 1RQ, UK;
| | - Lewis W. Francis
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (D.H.); (D.J.); (J.G.-P.); (B.P.-C.); (L.W.F.); (D.G.)
| | - Paul Rees
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK;
| | - Deyarina Gonzalez
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (D.H.); (D.J.); (J.G.-P.); (B.P.-C.); (L.W.F.); (D.G.)
| | - R. Steven Conlan
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (D.H.); (D.J.); (J.G.-P.); (B.P.-C.); (L.W.F.); (D.G.)
| |
Collapse
|
11
|
Barlaam B, Casella R, Cidado J, Cook C, De Savi C, Dishington A, Donald CS, Drew L, Ferguson AD, Ferguson D, Glossop S, Grebe T, Gu C, Hande S, Hawkins J, Hird AW, Holmes J, Horstick J, Jiang Y, Lamb ML, McGuire TM, Moore JE, O'Connell N, Pike A, Pike KG, Proia T, Roberts B, San Martin M, Sarkar U, Shao W, Stead D, Sumner N, Thakur K, Vasbinder MM, Varnes JG, Wang J, Wang L, Wu D, Wu L, Yang B, Yao T. Discovery of AZD4573, a Potent and Selective Inhibitor of CDK9 That Enables Short Duration of Target Engagement for the Treatment of Hematological Malignancies. J Med Chem 2020; 63:15564-15590. [PMID: 33306391 DOI: 10.1021/acs.jmedchem.0c01754] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A CDK9 inhibitor having short target engagement would enable a reduction of Mcl-1 activity, resulting in apoptosis in cancer cells dependent on Mcl-1 for survival. We report the optimization of a series of amidopyridines (from compound 2), focusing on properties suitable for achieving short target engagement after intravenous administration. By increasing potency and human metabolic clearance, we identified compound 24, a potent and selective CDK9 inhibitor with suitable predicted human pharmacokinetic properties to deliver transient inhibition of CDK9. Furthermore, the solubility of 24 was considered adequate to allow i.v. formulation at the anticipated effective dose. Short-term treatment with compound 24 led to a rapid dose- and time-dependent decrease of pSer2-RNAP2 and Mcl-1, resulting in cell apoptosis in multiple hematological cancer cell lines. Intermittent dosing of compound 24 demonstrated efficacy in xenograft models derived from multiple hematological tumors. Compound 24 is currently in clinical trials for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Bernard Barlaam
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Robert Casella
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Justin Cidado
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Calum Cook
- Oncology R&D, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Chris De Savi
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Craig S Donald
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Lisa Drew
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Andrew D Ferguson
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Douglas Ferguson
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Steve Glossop
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Tyler Grebe
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Chungang Gu
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Sudhir Hande
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Janet Hawkins
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Alexander W Hird
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Jane Holmes
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - James Horstick
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Yun Jiang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| | - Michelle L Lamb
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Jane E Moore
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Nichole O'Connell
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Andy Pike
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Kurt G Pike
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Theresa Proia
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Bryan Roberts
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | | | - Ujjal Sarkar
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Wenlin Shao
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Darren Stead
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Neil Sumner
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Kumar Thakur
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Jeffrey G Varnes
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Jianyan Wang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Lei Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| | - Dedong Wu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Liangwei Wu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| | - Bin Yang
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Tieguang Yao
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| |
Collapse
|
12
|
Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Sci Rep 2020; 10:18489. [PMID: 33116269 PMCID: PMC7595101 DOI: 10.1038/s41598-020-75578-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/13/2020] [Indexed: 01/12/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly invasive cancer, diagnosed at an advanced stage, and refractory to surgical intervention and chemotherapy. Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcriptional processes, and are considered potential therapeutic targets for cancer. Dinaciclib is a small molecule multi-CDK inhibitor targeting CDK 2/5/9. In this study, the therapeutic efficacy of dinaciclib was assessed using patient-derived xenograft cells (PDXC) and CCA cell lines. Treatment with dinaciclib significantly suppressed cell proliferation, induced caspase 3/7 levels and apoptotic activity in PDXC and CCA cell lines. Dinaciclib suppressed expression of its molecular targets CDK2/5/9, and anti-apoptotic BCL-XL and BCL2 proteins. Despite the presence of cyclin D1 amplification in the PDXC line, palbociclib treatment had no effect on cell proliferation, cell cycle or apoptosis in the PDXC as well as other CCA cell lines. Importantly, dinaciclib, in combination with gemcitabine, produced a robust and sustained inhibition of tumor progression in vivo in a PDX mouse model, greater than either of the treatments alone. Expression levels of two proliferative markers, phospho-histone H3 and Ki-67, were substantially suppressed in samples treated with the combination regimen. Our results identify dinaciclib as a novel and potent therapeutic agent alone or in combination with gemcitabine for the treatment of CCA.
Collapse
|
13
|
CDK12: a potential therapeutic target in cancer. Drug Discov Today 2020; 25:2257-2267. [PMID: 33038524 DOI: 10.1016/j.drudis.2020.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 12 engages in diversified biological functions, from transcription, post-transcriptional modification, cell cycle, and translation to cellular proliferation. Moreover, it regulates the expression of cancer-related genes involved in DNA damage response (DDR) and replication, which are responsible for maintaining genomic stability. CDK12 emerges as an oncogene or tumor suppressor in different cellular contexts, where its dysregulation results in tumorigenesis. Current CDK12 inhibitors are nonselective, which impedes the process of pharmacological target validation and drug development. Herein, we discuss the latest understanding of the biological roles of CDK12 in cancers and provide molecular analyses of CDK12 inhibitors to guide the rational design of selective inhibitors.
Collapse
|
14
|
Codelivery of HIF-1α siRNA and Dinaciclib by Carboxylated Graphene Oxide-Trimethyl Chitosan-Hyaluronate Nanoparticles Significantly Suppresses Cancer Cell Progression. Pharm Res 2020; 37:196. [PMID: 32944844 DOI: 10.1007/s11095-020-02892-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Hypoxia-inducible factor (HIF) is one of the critical components of the tumor microenvironment that is involved in tumor development. HIF-1α functionally and physically interacts with CDK1, 2, and 5 and stimulates the cell cycle progression and Cyclin-Dependent Kinase (CDK) expression. Therefore, hypoxic tumor microenvironment and CDK overexpression lead to increased cell cycle progression and tumor expansion. Therefore, we decided to suppress cancer cell expansion by blocking HIF-1α and CDK molecules. METHODS In the present study, we used the carboxylated graphene oxide (CGO) conjugated with trimethyl chitosan (TMC) and hyaluronate (HA) nanoparticles (NPs) loaded with HIF-1α-siRNA and Dinaciclib, the CDK inhibitor, for silencing HIF-1α and blockade of CDKs in CD44-expressing cancer cells and evaluated the impact of combination therapy on proliferation, metastasis, apoptosis, and tumor growth. RESULTS The results indicated that the manufactured NPs had conceivable physicochemical properties, high cellular uptake, and low toxicity. Moreover, combination therapy of cancer cells using CGO-TMC-HA NPs loaded with HIF-1α siRNA and Dinaciclib (SCH 727965) significantly suppressed the CDKs/HIF-1α and consequently, decreased the proliferation, migration, angiogenesis, and colony formation in tumor cells. CONCLUSIONS These results indicate the ability of CGO-TMC-HA NPs for dual drug/gene delivery in cancer treatment. Furthermore, the simultaneous inhibition of CDKs/HIF-1α can be considered as a novel anti-cancer treatment strategy; however, further research is needed to confirm this treatment in vivo. Graphical Abstract The suppression of HIF-1α and CDKs inhibits cancer growth. HIF-1α is overexpressed by the cells present in the tumor microenvironment. The hypoxic environment elevates mitochondrial ROS production and increases p38 MAP kinase, JAK/STAT, ERK, JNK, and Akt/PI3K signaling, resulting in cyclin accumulation and aberrant cell cycle progression. Furthermore, the overexpression of HIF-1α/CDK results in increased expression of genes such as BCL2, Bcl-xl, Ki-67, TGFβ, VEGF, FGF, MMP2, MMP9, and, HIF-1α and consequently raise the survival, proliferation, angiogenesis, metastasis, and invasion of tumor cells. In conclusion, HIF-1α-siRNA/Dinaciclib-loaded CGO-TMC-HA NPs can inhibit the tumor expansion by blockage of CDKs and HIF-1α (JAK: Janus kinase, STAT: Signal transducer and activator of transcription, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun N-terminal kinase, PI3K: phosphatidylinositol 3-kinase).
Collapse
|
15
|
Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer. PLoS One 2020; 15:e0234103. [PMID: 32645016 PMCID: PMC7347136 DOI: 10.1371/journal.pone.0234103] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) contribute to the cancer hallmarks of uncontrolled proliferation and increased survival. As a result, over the last two decades substantial efforts have been directed towards identification and development of pharmaceutical CDK inhibitors. Insights into the biological consequences of CDK inhibition in specific tumor types have led to the successful development of CDK4/6 inhibitors as treatments for certain types of breast cancer. More recently, a new generation of pharmaceutical inhibitors of CDK enzymes that regulate the transcription of key oncogenic and pro-survival proteins, including CDK9, have entered clinical development. Here, we provide the first disclosure of the chemical structure of fadraciclib (CYC065), a CDK inhibitor and clinical candidate designed by further optimization from the aminopurine scaffold of seliciclib. We describe its synthesis and mechanistic characterization. Fadraciclib exhibits improved potency and selectivity for CDK2 and CDK9 compared to seliciclib, and also displays high selectivity across the kinome. We show that the mechanism of action of fadraciclib is consistent with potent inhibition of CDK9-mediated transcription, decreasing levels of RNA polymerase II C-terminal domain serine 2 phosphorylation, the pro-survival protein Myeloid Cell Leukemia 1 (MCL1) and MYC oncoprotein, and inducing rapid apoptosis in cancer cells. This cellular potency and mechanism of action translate to promising anti-cancer activity in human leukemia mouse xenograft models. Studies of leukemia cell line sensitivity identify mixed lineage leukemia (MLL) gene status and the level of B-cell lymphoma 2 (BCL2) family proteins as potential markers for selection of patients with greater sensitivity to fadraciclib. We show that the combination of fadraciclib with BCL2 inhibitors, including venetoclax, is synergistic in leukemic cell models, as predicted from simultaneous inhibition of MCL1 and BCL2 pro-survival pathways. Fadraciclib preclinical pharmacology data support its therapeutic potential in CDK9- or CDK2-dependent cancers and as a rational combination with BCL2 inhibitors in hematological malignancies. Fadraciclib is currently in Phase 1 clinical studies in patients with advanced solid tumors (NCT02552953) and also in combination with venetoclax in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) (NCT03739554) and relapsed refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) (NCT04017546).
Collapse
|
16
|
Phillips DC, Jin S, Gregory GP, Zhang Q, Xue J, Zhao X, Chen J, Tong Y, Zhang H, Smith M, Tahir SK, Clark RF, Penning TD, Devlin JR, Shortt J, Hsi ED, Albert DH, Konopleva M, Johnstone RW, Leverson JD, Souers AJ. A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies. Leukemia 2020; 34:1646-1657. [PMID: 31827241 PMCID: PMC7266741 DOI: 10.1038/s41375-019-0652-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 10/18/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023]
Abstract
MCL-1 is one of the most frequently amplified genes in cancer, facilitating tumor initiation and maintenance and enabling resistance to anti-tumorigenic agents including the BCL-2 selective inhibitor venetoclax. The expression of MCL-1 is maintained via P-TEFb-mediated transcription, where the kinase CDK9 is a critical component. Consequently, we developed a series of potent small-molecule inhibitors of CDK9, exemplified by the orally active A-1592668, with CDK selectivity profiles that are distinct from related molecules that have been extensively studied clinically. Short-term treatment with A-1592668 rapidly downregulates RNA pol-II (Ser 2) phosphorylation resulting in the loss of MCL-1 protein and apoptosis in MCL-1-dependent hematologic tumor cell lines. This cell death could be attenuated by either inhibiting caspases or overexpressing BCL-2 protein. Synergistic cell killing was also observed between A-1592668 or the related analog A-1467729, and venetoclax in a number of hematologic cell lines and primary NHL patient samples. Importantly, the CDK9 inhibitor plus venetoclax combination was well tolerated in vivo and demonstrated efficacy superior to either agent alone in mouse models of lymphoma and AML. These data indicate that CDK9 inhibitors could be highly efficacious in tumors that depend on MCL-1 for survival or when used in combination with venetoclax in malignancies dependent on MCL-1 and BCL-2.
Collapse
Affiliation(s)
- Darren C Phillips
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA.
| | - Sha Jin
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Gareth P Gregory
- Peter MacCallum Cancer Centre, Translational Hematology Program, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Rd, Clayton, VIC, 3168, Australia
| | - Qi Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - John Xue
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Xiaoxian Zhao
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jun Chen
- TEST, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Yunsong Tong
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Haichao Zhang
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Morey Smith
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Stephen K Tahir
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Rick F Clark
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Thomas D Penning
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Jennifer R Devlin
- Peter MacCallum Cancer Centre, Translational Hematology Program, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Grattan Street, Parkville, VIC, 3052, Australia
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Rd, Clayton, VIC, 3168, Australia
| | - Eric D Hsi
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Daniel H Albert
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Translational Hematology Program, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Grattan Street, Parkville, VIC, 3052, Australia
| | - Joel D Leverson
- Oncology-Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Andrew J Souers
- Oncology-Discovery, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| |
Collapse
|
17
|
Xu X, Eshima S, Kato S, Fisher DE, Sakurai H, Hayakawa Y, Yokoyama S. Rational Combination Therapy for Melanoma with Dinaciclib by Targeting BAK-Dependent Cell Death. Mol Cancer Ther 2019; 19:627-636. [PMID: 31744894 DOI: 10.1158/1535-7163.mct-19-0451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022]
Abstract
Mutation of the oncogene BRAF is among the most common genetic alterations in melanoma. BRAF inhibitors alone or in combination with MEK inhibitors fail to eradicate the tumor in most patients due to combinations of intrinsic or acquired resistance. Therefore, novel strategies are needed to improve the therapeutic efficacy of BRAF inhibition. We demonstrated that dinaciclib has potent antimelanoma effects by inducing BAK-dependent apoptosis through MCL1 reduction. Contrary to dinaciclib, the inhibitors of BRAF/MEK/CDK4/6 induced apoptosis dominantly through a BAX-dependent mechanism. Although the combination of BRAF and MEK inhibitors did not exhibit additive antimelanoma effects, their combination with dinaciclib synergistically inhibited melanoma growth both in vitro and in vivo Collectively, our present findings suggest dinaciclib to be an effective complementary drug of BAX-dependent antimelanoma drugs by targeting BAK-mediated apoptosis, and other such rational drug combinations can be determined by identifying complementary drugs activating either BAK or BAX.
Collapse
Affiliation(s)
- Xiaoou Xu
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shizuka Eshima
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shinichiro Kato
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Massachusetts
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Massachusetts
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan. .,Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
18
|
Cidado J, Boiko S, Proia T, Ferguson D, Criscione SW, San Martin M, Pop-Damkov P, Su N, Roamio Franklin VN, Sekhar Reddy Chilamakuri C, D'Santos CS, Shao W, Saeh JC, Koch R, Weinstock DM, Zinda M, Fawell SE, Drew L. AZD4573 Is a Highly Selective CDK9 Inhibitor That Suppresses MCL-1 and Induces Apoptosis in Hematologic Cancer Cells. Clin Cancer Res 2019; 26:922-934. [DOI: 10.1158/1078-0432.ccr-19-1853] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
19
|
Rahaman MH, Lam F, Zhong L, Teo T, Adams J, Yu M, Milne RW, Pepper C, Lokman NA, Ricciardelli C, Oehler MK, Wang S. Targeting CDK9 for treatment of colorectal cancer. Mol Oncol 2019; 13:2178-2193. [PMID: 31398271 PMCID: PMC6763784 DOI: 10.1002/1878-0261.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most lethal human malignancies, and pursuit of new therapeutic targets for treatment has been a major research focus. Cyclin-dependent kinase 9 (CDK9), which plays a crucial role in transcription, has emerged as a target for cancer treatment. CDKI-73, one of the most potent and pharmacologically superior CDK9 inhibitors, has demonstrated excellent anti-tumour efficacy against several types of cancers. In this study, we evaluated its therapeutic potential against CRC. CDKI-73 elicited high cytotoxicity against all colon cancer cell lines tested. Cell cycle and apoptosis analysis in HCT 116 and HT29 cells revealed that CDKI-73 induced cell death without accumulation of DNA at any phase of the cell cycle. Moreover, it caused depolarisation of mitochondrial membrane, leading to caspase-independent apoptosis. Knockdown by shRNA demonstrated the CDK9-targeted mechanism of CDKI-73, which also affected the Mnk/eIF4E signalling axis. In addition, RT-qPCR analysis showed that CDKI-73 down-regulated multiple pro-survival factors at the mRNA level. Its in vivo anti-tumour efficacy was further evaluated in Balb/c nude mice bearing HCT 116 xenograft tumours. CDKI-73 significantly inhibited tumour growth (***P < 0.001) without overt toxicity. Analysis of the tumour tissues collected from the xenografted animals confirmed that the in vivo anti-tumour efficacy was associated with CDK9 targeting of CDKI-73. Overall, this study provides compelling evidence that CDKI-73 is a promising drug candidate for treating colorectal cancer.
Collapse
Affiliation(s)
- Muhammed H Rahaman
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Frankie Lam
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Longjin Zhong
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Julian Adams
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Chris Pepper
- School of Medicine, Cardiff University, Health Park, UK
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| |
Collapse
|
20
|
Tyran M, Carbuccia N, Garnier S, Guille A, Adelaïde J, Finetti P, Toulzian J, Viens P, Tallet A, Goncalves A, Metellus P, Birnbaum D, Chaffanet M, Bertucci F. A Comparison of DNA Mutation and Copy Number Profiles of Primary Breast Cancers and Paired Brain Metastases for Identifying Clinically Relevant Genetic Alterations in Brain Metastases. Cancers (Basel) 2019; 11:cancers11050665. [PMID: 31086113 PMCID: PMC6562582 DOI: 10.3390/cancers11050665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022] Open
Abstract
Improving the systemic treatment of brain metastases (BM) in primary breast cancer (PBC) is impaired by the lack of genomic characterization of BM. To estimate the concordance of DNA copy-number-alterations (CNAs), mutations, and actionable genetic alterations (AGAs) between paired samples, we performed whole-genome array-comparative-genomic-hybridization, and targeted-next-generation-sequencing on 14 clinical PBC–BM pairs. We found more CNAs, more mutations, and higher tumor mutational burden, and more AGAs in BM than in PBC; 92% of the pairs harbored at least one AGA in the BM not observed in the paired PBC. This concerned various therapeutic classes, including tyrosine-kinase-receptor-inhibitors, phosphatidylinositol 3-kinase/AKT/ mammalian Target of Rapamycin (PI3K/AKT/MTOR)-inhibitors, poly ADP ribose polymerase (PARP)-inhibitors, or cyclin-dependent kinase (CDK)-inhibitors. With regards to the PARP-inhibitors, the homologous recombination defect score was positive in 79% of BM, compared to 43% of PBC, discordant in 7 out of 14 pairs, and positive in the BM in 5 out of 14 cases. CDK-inhibitors were associated with the largest percentage of discordant AGA appearing in the BM. When considering the AGA with the highest clinical-evidence level, for each sample, 50% of the pairs harbored an AGA in the BM not detected or not retained from the analysis of the paired PBC. Thus, the profiling of BM provided a more reliable opportunity, than that of PBC, for diagnostic decision-making based on genomic analysis. Patients with BM deserve an investigation of several targeted therapies.
Collapse
Affiliation(s)
- Marguerite Tyran
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Séverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - José Adelaïde
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Julien Toulzian
- Département d'Anatomopathologie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Patrice Viens
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Agnès Tallet
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Anthony Goncalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Philippe Metellus
- Département de Neurochirurgie et de Neuro-oncologie, Hôpital Privé Clairval, Ramsay-Générale de Santé and Institut de Neurophysiopathologie Equipe 10, UMR0751, CNRS, 13009 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| |
Collapse
|
21
|
Rello-Varona S, Fuentes-Guirado M, López-Alemany R, Contreras-Pérez A, Mulet-Margalef N, García-Monclús S, Tirado OM, García Del Muro X. Bcl-x L inhibition enhances Dinaciclib-induced cell death in soft-tissue sarcomas. Sci Rep 2019; 9:3816. [PMID: 30846724 PMCID: PMC6405759 DOI: 10.1038/s41598-019-40106-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Soft-tissue sarcomas (STS) are an uncommon and heterogeneous group of malignancies that result in high mortality. Metastatic STS have very bad prognosis due to the lack of effective treatments. Dinaciclib is a model drug for the family of CDK inhibitors. Its main targets are cell cycle regulator CDK1 and protein synthesis controller CDK9. We present data supporting Dinaciclib ability to inactivate in vitro different STS models at nanomolar concentrations. Moreover, the different rhythms of cell death induction allow us to further study into the mechanism of action of the drug. Cell death was found to respond to the mitochondrial pathway of apoptosis. Anti-apoptotic Bcl-xL was identified as the key regulator of this process. Already natural low levels of pro-apoptotic proteins BIM and PUMA in tolerant cell lines were insufficient to inhibit Bcl-xL as this anti-apoptotic protein showed a slow decay curve after Dinaciclib-induced protein synthesis disruption. Combination of Dinaciclib with BH3-mimetics led to quick and massive apoptosis induction in vitro, but in vivo assessment was prevented due to liver toxicity. Additionally, Bcl-xL inhibitor A-1331852 also synergized with conventional chemotherapy drugs as Gemcitabine. Thus, Bcl-xL targeted therapy arises as a major opportunity to the treatment of STS.
Collapse
Affiliation(s)
- Santi Rello-Varona
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Miriam Fuentes-Guirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roser López-Alemany
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Aida Contreras-Pérez
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Núria Mulet-Margalef
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Sarcoma Multidisciplinary Unit, Institut Català d'Oncologia-ICO, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia García-Monclús
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. .,Sarcoma Multidisciplinary Unit, Institut Català d'Oncologia-ICO, L'Hospitalet de Llobregat, Barcelona, Spain. .,CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain.
| | - Xavier García Del Muro
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. .,Sarcoma Multidisciplinary Unit, Institut Català d'Oncologia-ICO, L'Hospitalet de Llobregat, Barcelona, Spain. .,Clinical Sciences Department, School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
CDKI-73: an orally bioavailable and highly efficacious CDK9 inhibitor against acute myeloid leukemia. Invest New Drugs 2018; 37:625-635. [PMID: 30194564 DOI: 10.1007/s10637-018-0661-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia with dismal long-term prognosis with age. The most aggressive subtype of AML is MLL-AML that is characterized by translocations of the mixed-lineage leukemia gene (MLL) and resistance to conventional chemotherapy. Cyclin dependent kinase 9 (CDK9) plays a crucial role in the MLL-driven oncogenic transcription, and hence, inhibiting activity of CDK9 has been proposed as a promising strategy for treatment of AML. We investigated the therapeutic potential of CDKI-73, one of the most potent CDK9 inhibitors, against a panel of AML cell lines and samples derived from 97 patients. CDKI-73 induced cancer cells undergoing apoptosis through transcriptional downregulation of anti-apoptotic proteins Bcl-2, Mcl-1 and XIAP by majorly targeting CDK9. Contrastively, it was relatively low toxic to the bone marrow cells of healthy donors. In MV4-11 xenograft mouse models, oral administration of CDKI-73 resulted in a marked inhibition of tumor growth (p < 0.0001) and prolongation of animal life span (P < 0.001) without causing body weight loss and other overt toxicities. The study suggests that CDKI-73 can be developed as a highly efficacious and orally deliverable therapeutic agent for treatment of AML.
Collapse
|
23
|
Piegols HJ, Takada M, Parys M, Dexheimer T, Yuzbasiyan-Gurkan V. Investigation of novel chemotherapeutics for feline oral squamous cell carcinoma. Oncotarget 2018; 9:33098-33109. [PMID: 30237854 PMCID: PMC6145701 DOI: 10.18632/oncotarget.26006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023] Open
Abstract
Feline oral squamous cell carcinomas (FOSCC) are highly aggressive neoplasms with short survival times despite multimodal treatment. FOSCC are similar to squamous cell carcinomas of the head and neck (SCCHN) in humans, which also present therapeutic challenges. The current study was undertaken to identify novel chemotherapeutics using FOSCC cell lines. A high throughput drug screen using 1,952 drugs was performed to identify chemotherapeutics for further investigation. Two of the drugs identified in the drug screen, actinomycin D and methotrexate, and two drugs with similar molecular targets to drugs found to be efficacious in the screening, dinaciclib and flavopiridol, were selected for further investigation. Drug inhibition profiles were generated for each drug and cell line using an MTS assay. In addition, the effects of the drugs of interest on cell cycle progression were analyzed via a propidium iodide DNA labeling assay. Changes in caspase-3/7 activity after treatment with each drug were also determined. The findings demonstrated effectiveness of the drugs at nanomolar concentrations with sensitivity varying across cell lines. With all of the drugs except for actinomycin D, evidence for G1 arrest was found. Dinaciclib and flavopiridol were demonstrated to induce apoptosis. The results of the study suggest that the selected drugs are potential candidates for developing novel chemotherapeutic approaches to FOSCC. Through these studies, novel therapeutic strategies for the treatment of FOSCC can be developed to provide better care for affected cats which can also serve as proof of concept studies to inform translational studies in SCCHN in humans.
Collapse
Affiliation(s)
- Hunter John Piegols
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Marilia Takada
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Maciej Parys
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- Current Affiliation: The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Roslin, Midlothian, United Kingdom
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Song KA, Hosono Y, Turner C, Jacob S, Lochmann TL, Murakami Y, Patel NU, Ham J, Hu B, Powell KM, Coon CM, Windle BE, Oya Y, Koblinski JE, Harada H, Leverson JD, Souers AJ, Hata AN, Boikos S, Yatabe Y, Ebi H, Faber AC. Increased Synthesis of MCL-1 Protein Underlies Initial Survival of EGFR-Mutant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug Target. Clin Cancer Res 2018; 24:5658-5672. [PMID: 30087143 DOI: 10.1158/1078-0432.ccr-18-0304] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022]
Abstract
Purpose: EGFR inhibitors (EGFRi) are effective against EGFR-mutant lung cancers. The efficacy of these drugs, however, is mitigated by the outgrowth of resistant cells, most often driven by a secondary acquired mutation in EGFR, T790M We recently demonstrated that T790M can arise de novo during treatment; it follows that one potential therapeutic strategy to thwart resistance would be identifying and eliminating these cells [referred to as drug-tolerant cells (DTC)] prior to acquiring secondary mutations like T790M Experimental Design: We have developed DTCs to EGFRi in EGFR-mutant lung cancer cell lines. Subsequent analyses of DTCs included RNA-seq, high-content microscopy, and protein translational assays. Based on these results, we tested the ability of MCL-1 BH3 mimetics to combine with EGFR inhibitors to eliminate DTCs and shrink EGFR-mutant lung cancer tumors in vivo Results: We demonstrate surviving EGFR-mutant lung cancer cells upregulate the antiapoptotic protein MCL-1 in response to short-term EGFRi treatment. Mechanistically, DTCs undergo a protein biosynthesis enrichment resulting in increased mTORC1-mediated mRNA translation of MCL-1, revealing a novel mechanism in which lung cancer cells adapt to short-term pressures of apoptosis-inducing kinase inhibitors. Moreover, MCL-1 is a key molecule governing the emergence of early EGFR-mutant DTCs to EGFRi, and we demonstrate it can be effectively cotargeted with clinically emerging MCL-1 inhibitors both in vitro and in vivo Conclusions: Altogether, these data reveal that this novel therapeutic combination may delay the acquisition of secondary mutations, therefore prolonging therapy efficacy. Clin Cancer Res; 24(22); 5658-72. ©2018 AACR.
Collapse
Affiliation(s)
- Kyung-A Song
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Yasuyuki Hosono
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Crystal Turner
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Sheeba Jacob
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Timothy L Lochmann
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Yoshiko Murakami
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Neha U Patel
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Jungoh Ham
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Bin Hu
- Department of Pathology, VCU School of Medicine, Richmond, Virginia
| | - Krista M Powell
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Colin M Coon
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Brad E Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Yuko Oya
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | | | | | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sosipatros Boikos
- Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Massey Cancer Center, Richmond, Virginia
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Precision Medicine Center, Aichi Cancer Center, Nagoya, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan. .,Precision Medicine Center, Aichi Cancer Center, Nagoya, Japan
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia.
| |
Collapse
|
25
|
Dzobo K, Hassen N, Senthebane DA, Thomford NE, Rowe A, Shipanga H, Wonkam A, Parker MI, Mowla S, Dandara C. Chemoresistance to Cancer Treatment: Benzo-α-Pyrene as Friend or Foe? Molecules 2018; 23:E930. [PMID: 29673198 PMCID: PMC6017867 DOI: 10.3390/molecules23040930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might occur. Method: We report here on the effects of benzo-α-pyrene on esophageal cancer cells in vitro, alone, or in combination with chemotherapeutic drugs cisplatin, 5-flurouracil, or paclitaxel. As the study endpoints, we employed expression of proteins involved in cell proliferation, drug metabolism, apoptosis, cell cycle analysis, colony formation, migration, and signaling cascades in the WHCO1 esophageal cancer cell line after 24 h of treatment. Results: Benzo-α-pyrene had no significant effect on WHCO1 cancer cell proliferation but reversed the effect of chemotherapeutic drugs by reducing drug-induced cell death and apoptosis by 30−40% compared to drug-treated cells. The three drugs significantly reduced WHCO1 cell migration by 40−50% compared to control and BaP-treated cells. Combined exposure to drugs was associated with significantly increased apoptosis and reduced colony formation. Evaluation of survival signaling cascades showed that although the MEK-ERK and Akt pathways were activated in the presence of drugs, BaP was a stronger activator of the MEK-ERK and Akt pathways than the drugs. Conclusion: The present study suggest that BaP can reverse the effects of drugs on cancer cells via the activation of survival signaling pathways and upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Our data show that BaP contribute to the development of chemoresistant cancer cells.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Naseeha Hassen
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Hendrina Shipanga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Ambroise Wonkam
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - M Iqbal Parker
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Shaheen Mowla
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
26
|
Lim SM, Kim EY, Kim HR, Ali SM, Greenbowe JR, Shim HS, Chang H, Lim S, Paik S, Cho BC. Genomic profiling of lung adenocarcinoma patients reveals therapeutic targets and confers clinical benefit when standard molecular testing is negative. Oncotarget 2018; 7:24172-8. [PMID: 26992220 PMCID: PMC5029692 DOI: 10.18632/oncotarget.8138] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 01/22/2023] Open
Abstract
Background: Identification of clinically relevant oncogenic drivers in advanced cancer is critical in selecting appropriate targeted therapy. Using next-generation sequencing (NGS)-based clinical cancer gene assay, we performed comprehensive genomic profiling (CGP) of advanced cases of lung adenocarcinoma. Methods: Formalin-fixed paraffin-embedded tumors from 51 lung adenocarcinoma patients whose tumors previously tested negative for EGFR/KRAS/ALK by conventional methods were collected, and CGP was performed via hybridization capture of 4,557 exons from 287 cancer-related genes and 47 introns from 19 genes frequently rearranged in cancer. Results: Genomic profiles of all 51 cases were obtained, with a median coverage of 564x and a total of 190 individual genomic alterations (GAs). GAs per specimen was a mean of 3.7 (range 0-10).Cancer genomes are characterized by 50% (80/190) non-synonymous base substitutions, 15% (29/190) insertions or deletion, and 3% (5/190) splice site mutation. TP53 mutation was the most common GAs (15%, n=29/190), followed by CDKN2A homozygous loss (5%, n=10/190), KRAS mutation (4%, n=8/190), EGFR mutation (4%, n=8/190) and MDM2 amplification (2%, n=5/190). As per NCCN guidelines, targetable GAs were identified in 16 patients (31%) (BRAF mutation [n=1], EGFR mutation [n=8], ERBB2 mutation [n=4], MET amplification [n=1], KIF5B-RET rearrangement [n=2], CCDC6-RET rearrangement [n=1], CD74-ROS1 rearrangement [n=1], EZR-ROS1 rearrangement [n=5], and SLC34A2-ROS1 rearrangement [n=1]). Conclusion: Fifty eight percent of patients wild type by standard testing for EGFR/KRAS/ALK have GAs identifiable by CGP that suggest benefit from target therapy. CGP used when standard molecular testing for NSCLC is negative can reveal additional avenues of benefit from targeted therapy.
Collapse
Affiliation(s)
- Sun Min Lim
- Department of Internal Medicine, Division of Medical Oncology, CHA Bundang Hospital, CHA University, Seoul, Korea.,Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Young Kim
- Department of Pulmonology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Siraj M Ali
- Clinical Development, Foundation Medicine, Inc, Cambridge, MA, USA
| | - Joel R Greenbowe
- Clinical Development, Foundation Medicine, Inc, Cambridge, MA, USA
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Chang
- Hematology and Medical Oncology, International St Mary's Hospital, Catholic Kwandong University, College of Medicine, Incheon, Korea
| | - Seungtaek Lim
- Hematology and Medical Oncology, Wonju Severance Christianity Hospital, Wonju, Korea
| | - Soonmyung Paik
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Hossain DMS, Javaid S, Cai M, Zhang C, Sawant A, Hinton M, Sathe M, Grein J, Blumenschein W, Pinheiro EM, Chackerian A. Dinaciclib induces immunogenic cell death and enhances anti-PD1-mediated tumor suppression. J Clin Invest 2018; 128:644-654. [PMID: 29337311 DOI: 10.1172/jci94586] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Blockade of the checkpoint inhibitor programmed death 1 (PD1) has demonstrated remarkable success in the clinic for the treatment of cancer; however, a majority of tumors are resistant to anti-PD1 monotherapy. Numerous ongoing clinical combination therapy studies will likely reveal additional therapeutics that complement anti-PD1 blockade. Recent studies found that immunogenic cell death (ICD) improves T cell responses against different tumors, thus indicating that ICD may further augment antitumor immunity elicited by anti-PD1. Here, we observed antitumor activity following combinatorial therapy with anti-PD1 Ab and the cyclin-dependent kinase inhibitor dinaciclib in immunocompetent mouse tumor models. Dinaciclib induced a type I IFN gene signature within the tumor, leading us to hypothesize that dinaciclib potentiates the effects of anti-PD1 by eliciting ICD. Indeed, tumor cells treated with dinaciclib showed the hallmarks of ICD including surface calreticulin expression and release of high mobility group box 1 (HMGB1) and ATP. Mice treated with both anti-PD1 and dinaciclib showed increased T cell infiltration and DC activation within the tumor, indicating that this combination improves the overall quality of the immune response generated. These findings identify a potential mechanism for the observed benefit of combining dinaciclib and anti-PD1, in which dinaciclib induces ICD, thereby converting the tumor cell into an endogenous vaccine and boosting the effects of anti-PD1.
Collapse
|
28
|
Barksdale SK. Advances in Merkel cell carcinoma from a pathologist's perspective. Pathology 2017; 49:568-574. [DOI: 10.1016/j.pathol.2017.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/28/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
|
29
|
Mita MM, Mita AC, Moseley JL, Poon J, Small KA, Jou YM, Kirschmeier P, Zhang D, Zhu Y, Statkevich P, Sankhala KK, Sarantopoulos J, Cleary JM, Chirieac LR, Rodig SJ, Bannerji R, Shapiro GI. Phase 1 safety, pharmacokinetic and pharmacodynamic study of the cyclin-dependent kinase inhibitor dinaciclib administered every three weeks in patients with advanced malignancies. Br J Cancer 2017; 117:1258-1268. [PMID: 28859059 PMCID: PMC5672931 DOI: 10.1038/bjc.2017.288] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Dinaciclib is a potent inhibitor of cell cycle and transcriptional cyclin-dependent kinases. This Phase 1 study evaluated the safety, tolerability and pharmacokinetics of various dosing schedules of dinaciclib in advanced solid tumour patients and assessed pharmacodynamic and preliminary anti-tumour activity. Methods: In part 1, patients were enrolled in escalating cohorts of 2-h infusions administered once every 3 weeks, utilising an accelerated titration design until a recommended phase 2 dose (RP2D) was defined. In part 2, 8- and 24-h infusions were evaluated. Pharmacokinetic parameters were determined for all schedules. Pharmacodynamic effects were assessed with an ex vivo stimulated lymphocyte proliferation assay performed in whole blood. Effects of dinaciclib on retinoblastoma (Rb) phosphorylation and other CDK targets were evaluated in skin and tumour biopsies. In addition to tumour size, metabolic response was evaluated by 18F-fluorodeoxyglucose-positron emission tomography. Results: Sixty-one patients were enrolled to parts 1 and 2. The RP2Ds were 50, 7.4 and 10.4 mg m−2 as 2- 8- and 24-hour infusions, respectively. Dose-limiting toxicities included pancytopenia, neutropenic fever, elevated transaminases, hyperuricemia and hypotension. Pharmacokinetics demonstrated rapid distribution and a short plasma half-life. Dinaciclib suppressed proliferation of stimulated lymphocytes. In skin and tumour biopsies, dinaciclib reduced Rb phosphorylation at CDK2 phospho-sites and modulated expression of cyclin D1 and p53, suggestive of CDK9 inhibition. Although there were no RECIST responses, eight patients had prolonged stable disease and received between 6 and 30 cycles. Early metabolic responses occurred. Conclusions: Dinaciclib is tolerable at doses demonstrating target engagement in surrogate and tumour tissue.
Collapse
Affiliation(s)
- Monica M Mita
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Alain C Mita
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jennifer L Moseley
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | - Da Zhang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yali Zhu
- Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - Kamelesh K Sankhala
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - John Sarantopoulos
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - James M Cleary
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | | | - Geoffrey I Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
30
|
Zhang Y, Zhou L, Leng Y, Dai Y, Orlowski RZ, Grant S. Positive transcription elongation factor b (P-TEFb) is a therapeutic target in human multiple myeloma. Oncotarget 2017; 8:59476-59491. [PMID: 28938651 PMCID: PMC5601747 DOI: 10.18632/oncotarget.19761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/03/2017] [Indexed: 02/05/2023] Open
Abstract
The role of the positive RNA Pol II regulator, P-TEFb (positive transcription elongation factor b), in maintenance of the anti-apoptotic protein Mcl-1 and bortezomib (btz) resistance was investigated in human multiple myeloma (MM) cells. Mcl-1 was up-regulated in all MM lines tested, including bortezomib-resistant lines, human MM xenograft mouse models, and primary CD138+ MM cells. Mcl-1 over-expression significantly reduced bortezomib lethality, indicating a functional role for Mcl-1 in bortezomib resistance. MM cell lines, primary MM specimens, and murine xenografts exhibited constitutive P-TEFb activation, manifested by high CTD (carboxy-terminal domain) S2 phosphorylation, associated with a) P-TEFb subunit up-regulation i.e., CDK9 (42 and 55 kDa isoforms) and cyclin T1; and b) marked CDK9 (42 kDa) T186 phosphorylation. In marked contrast, normal hematopoietic cells failed to exhibit up-regulation of p-CTD, CDK9, cyclin T1, or Mcl-1. CDK9 or cyclin T1 shRNA knock-down dramatically inhibited CTD S2 phosphorylation and down-regulated Mcl-1. Moreover, CRISPR-Cas CDK9 knock-out triggered apoptosis in MM cells and dramatically diminished cell growth. Pan-CDK e.g., dinaciclib or alvocidib and selective CDK9 inhibitors (CDK9i) recapitulated the effects of genetic P-TEFb disruption. CDK9 shRNA or CDK9 inhibitors significantly potentiated the susceptibility of MM cells, including bortezomib-resistant cells, to proteasome inhibitors. Analogously, CDK9 or cyclin T1 knock-down or CDK9 inhibitors markedly increased BH3-mimetic lethality in bortezomib-resistant cells. Finally, pan-CDK inhibition reduced human drug-naïve or bortezomib-resistant CD138+ cells and restored bone marrow architecture in vivo. Collectively, these findings implicate constitutive P-TEFb activation in high Mcl-1 maintenance in MM, and validate targeting the P-TEFb complex to circumvent bortezomib-resistance.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA
| | - Yun Leng
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA.,Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Yun Dai
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Robert Z Orlowski
- Department of Myeloma and Lymphoma, MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA.,Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pharmacology Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
Lin SF, Lin JD, Hsueh C, Chou TC, Wong RJ. A cyclin-dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. PLoS One 2017; 12:e0172315. [PMID: 28207834 PMCID: PMC5312924 DOI: 10.1371/journal.pone.0172315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
Background We explored the therapeutic effects of dinaciclib, a cyclin-dependent kinase (CDK) inhibitor, in the treatment of thyroid cancer. Materials and methods Seven cell lines originating from three pathologic types of thyroid cancer (papillary, follicular and anaplastic) were studied. The cytotoxicity of dinaciclib was measured using a lactate dehydrogenase assay. The expression of proteins associated with cell cycle and apoptosis was assessed using Western blot analysis and immunofluorescence microscopy. Cell cycle distribution was measured by flow cytometry and immunofluorescence microscopy. Apoptosis and caspase-3 activity were measured by flow cytometry and fluorometric assay. Mice bearing flank anaplastic thyroid cancer (ATC) were treated with intraperitoneal injections of dinaciclib. Results Dinaciclib inhibited thyroid cancer cell proliferation in a dose-dependent manner. Dinaciclib had a low median-effect dose (≤ 16.0 nM) to inhibit cell proliferation in seven thyroid cancer cell lines. Dinaciclib decreased CDK1, cyclin B1, and Aurora A expression, induced cell cycle arrest in the G2/M phase, and induced accumulation of prophase mitotic cells. Dinaciclib decreased Mcl-1, Bcl-xL and survivin expression, activated caspase-3 and induced apoptosis. In vivo, the growth of ATC xenograft tumors was retarded in a dose-dependent fashion with daily dinaciclib treatment. Higher-dose dinaciclib (50 mg/kg) caused slight, but significant weight loss, which was absent with lower-dose dinaciclib (40 mg/kg) treatment. Conclusions Dinaciclib inhibited thyroid cancer proliferation both in vitro and in vivo. These findings support dinaciclib as a potential drug for further studies in clinical trials for the treatment of patients with refractory thyroid cancer.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/drug therapy
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Carcinoma/drug therapy
- Carcinoma/metabolism
- Carcinoma/pathology
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cyclic N-Oxides
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Female
- Flow Cytometry
- Humans
- Indolizines
- Mice
- Mice, Nude
- Protein Kinase Inhibitors/pharmacology
- Pyridinium Compounds/pharmacology
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shu-Fu Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| | - Jen-Der Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chuen Hsueh
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Chao Chou
- Laboratory of Preclinical Pharmacology Core, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
32
|
Rahaman MH, Kumarasiri M, Mekonnen LB, Yu M, Diab S, Albrecht H, Milne RW, Wang S. Targeting CDK9: a promising therapeutic opportunity in prostate cancer. Endocr Relat Cancer 2016; 23:T211-T226. [PMID: 27582311 DOI: 10.1530/erc-16-0299] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a key transcriptional regulator and a lucrative target for cancer treatment. Targeting CDK9 can effectively confine the hyperactivity of androgen receptor and the constitutive expression of anti-apoptotic proteins; both being main causes of prostate cancer (PCa) development and progression. In castrate-resistant PCa, traditional therapies that only target androgen receptor (AR) have become obsolete due to reprograming in AR activity to make the cells independent of androgen. CDK9 inhibitors may provide a new and better therapeutic opportunity over traditional treatment options by targeting both androgen receptor activity and anti-apoptotic proteins, improving the chances of positive outcomes, especially in patients with the advanced disease. This review focuses on biological functions of CDK9, its involvement with AR and the potential for therapeutic opportunities in PCa treatment.
Collapse
Affiliation(s)
| | | | - Laychiluh B Mekonnen
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Diab
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert W Milne
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Shudong Wang
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat Chem Biol 2016; 12:931-936. [DOI: 10.1038/nchembio.2174] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/23/2016] [Indexed: 01/06/2023]
|
34
|
Choudhary GS, Tat TT, Misra S, Hill BT, Smith MR, Almasan A, Mazumder S. Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics. Oncotarget 2016. [PMID: 26219338 PMCID: PMC4627281 DOI: 10.18632/oncotarget.4857] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cyclin E/Cdk2 kinase activity is frequently deregulated in human cancers, resulting in impaired apoptosis. Here, we show that cyclin E/Cdk2 phosphorylates and stabilizes the pro-survival Bcl-2 family protein Mcl-1, a key cell death resistance determinant to the small molecule Bcl-2 family inhibitors ABT-199 and ABT-737, mimetics of the Bcl-2 homology domain 3 (BH3). Cyclin E levels were elevated and there was increased association of cyclin E/Cdk2 with Mcl-1 in ABT-737-resistant compared to parental cells. Cyclin E depletion in various human tumor cell-lines and cyclin E-/- mouse embryo fibroblasts showed decreased levels of Mcl-1 protein, with no change in Mcl-1 mRNA levels. In the absence of cyclin E, Mcl-1 ubiquitination was enhanced, leading to decreased protein stability. Studies with Mcl-1 phosphorylation mutants show that cyclin E/Cdk2-dependent phosphorylation of Mcl-1 residues on its PEST domain resulted in increased Mcl-1 stability (Thr92, and Thr163) and Bim binding (Ser64). Cyclin E knock-down restored ABT-737 sensitivity to acquired and inherently resistant Mcl-1-dependent tumor cells. CDK inhibition by dinaciclib resulted in Bim release from Mcl-1 in ABT-737-resistant cells. Dinaciclib in combination with ABT-737 and ABT-199 resulted in robust synergistic cell death in leukemic cells and primary chronic lymphocytic leukemia patient samples. Collectively, our findings identify a novel mechanism of cyclin E-mediated Mcl-1 regulation that provides a rationale for clinical use of Bcl-2 family and Cdk inhibitors for Mcl-1-dependent tumors.
Collapse
Affiliation(s)
- Gaurav S Choudhary
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Trinh T Tat
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Saurav Misra
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian T Hill
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mitchell R Smith
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Suparna Mazumder
- Department of Immunology, Lerner Research Institute, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
35
|
Chen XX, Xie FF, Zhu XJ, Lin F, Pan SS, Gong LH, Qiu JG, Zhang WJ, Jiang QW, Mei XL, Xue YQ, Qin WM, Shi Z, Yan XJ. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer. Oncotarget 2016; 6:14926-39. [PMID: 25962959 PMCID: PMC4558126 DOI: 10.18632/oncotarget.3717] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the most lethal of woman cancers, and its clinical therapeutic outcome currently is unsatisfied. Dinaciclib, a novel small molecule inhibitor of CDK1, CDK2, CDK5 and CDK9, is assessed in clinical trials for the treatment of several types of cancers. In this study, we investigated the anticancer effects and mechanisms of dinaciclib alone or combined with cisplatin in ovarian cancer. Dinaciclib alone actively induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular ROS levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins, Mcl-1, XIAP and survivin. Pretreatment with N-acety-L-cysteine significantly blocked ROS generation but only partially rescued apoptosis triggered by dinaciclib. Moreover, the combination of dinaciclib with cisplatin synergistically promoted cell cycle arrest and apoptosis, and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Altogether, dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer, indicating this beneficial combinational therapy may be a promising strategy for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiu-Xiu Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng-Feng Xie
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Jie Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi-Shi Pan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Hua Gong
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ge Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Long Mei
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - You-Qiu Xue
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Wu-Ming Qin
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Jian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
36
|
Blachly JS, Byrd JC, Grever M. Cyclin-dependent kinase inhibitors for the treatment of chronic lymphocytic leukemia. Semin Oncol 2016; 43:265-73. [DOI: 10.1053/j.seminoncol.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Varadarajan S, Poornima P, Milani M, Gowda K, Amin S, Wang HG, Cohen GM. Maritoclax and dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent manner. Oncotarget 2016; 6:12668-81. [PMID: 26059440 PMCID: PMC4494965 DOI: 10.18632/oncotarget.3706] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
The anti-apoptotic BCL-2 family proteins are important targets for cancer chemotherapy. Specific and potent inhibitors of the BCL-2 family, such as ABT-263 (navitoclax) and ABT-199, are only effective against some members of the BCL-2 family but do not target MCL-1, which is commonly amplified in tumors and associated with chemoresistance. In this report, the selectivity and potency of two putative MCL-1 inhibitors, dinaciclib and maritoclax, were assessed. Although both compounds induced Bax/Bak- and caspase-9-dependent apoptosis, dinaciclib was more potent than maritoclax in downregulating MCL-1 and also in inducing apoptosis. However, the compounds induced apoptosis, even in cells lacking MCL-1, suggesting multiple mechanisms of cell death. Furthermore, maritoclax induced extensive mitochondrial fragmentation, and a Bax/Bak- but MCL-1-independent accumulation of mitochondrial reactive oxygen species (ROS), with an accompanying loss of complexes I and III of the electron transport chain. ROS scavengers, such as MitoQ, could not salvage maritoclax-mediated effects on mitochondrial structure and function. Taken together, our data demonstrate that neither dinaciclib nor maritoclax exclusively target MCL-1. Although dinaciclib is clearly not a specific MCL-1 inhibitor, its ability to rapidly downregulate MCL-1 may be beneficial in many clinical settings, where it may reverse chemoresistance or sensitize to other chemotherapeutic agents.
Collapse
Affiliation(s)
- Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paramasivan Poornima
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Mateus Milani
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Hong-Gang Wang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA.,Department of Pediatrics, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
38
|
Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, Van Allen EM, Lawrence MS, Horowitz PM, Cibulskis K, Ligon KL, Tabernero J, Seoane J, Martinez-Saez E, Curry WT, Dunn IF, Paek SH, Park SH, McKenna A, Chevalier A, Rosenberg M, Barker FG, Gill CM, Van Hummelen P, Thorner AR, Johnson BE, Hoang MP, Choueiri TK, Signoretti S, Sougnez C, Rabin MS, Lin NU, Winer EP, Stemmer-Rachamimov A, Meyerson M, Garraway L, Gabriel S, Lander ES, Beroukhim R, Batchelor TT, Baselga J, Louis DN, Getz G, Hahn WC. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov 2015; 5:1164-1177. [PMID: 26410082 PMCID: PMC4916970 DOI: 10.1158/2159-8290.cd-15-0369] [Citation(s) in RCA: 739] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors, and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. SIGNIFICANCE Decisions for individualized therapies in patients with brain metastasis are often made from primary-tumor biopsies. We demonstrate that clinically actionable alterations present in brain metastases are frequently not detected in primary biopsies, suggesting that sequencing of primary biopsies alone may miss a substantial number of opportunities for targeted therapy.
Collapse
Affiliation(s)
- Priscilla K. Brastianos
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, all in Boston
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, all in Boston
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, all in Boston
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Scott L. Carter
- Joint Center for Cancer Precision Medicine, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Sandro Santagata
- Department of Cancer Biology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Daniel P. Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Amaro Taylor-Weiner
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Robert T. Jones
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Michael S. Lawrence
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Peleg M. Horowitz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Kristian Cibulskis
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Keith L. Ligon
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Josep Tabernero
- Department of Medical Oncology, Department of Pathology, Barcelona - all in Spain
| | - Joan Seoane
- Department of Medical Oncology, Department of Pathology, Barcelona - all in Spain
| | - Elena Martinez-Saez
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona - all in Spain
| | - William T. Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Ian F. Dunn
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Sun Ha Paek
- Department of Neurosurgery and Department of Pathology, Seoul National University College of Medicine - all in Korea
| | - Sung-Hye Park
- Department of Neurosurgery and Department of Pathology, Seoul National University College of Medicine - all in Korea
| | - Aaron McKenna
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Aaron Chevalier
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Mara Rosenberg
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Frederick G. Barker
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Corey M. Gill
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Paul Van Hummelen
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Aaron R. Thorner
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Bruce E. Johnson
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Mai P. Hoang
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Toni K. Choueiri
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Carrie Sougnez
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Michael S. Rabin
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Nancy U. Lin
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Eric P. Winer
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Matthew Meyerson
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Levi Garraway
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Joint Center for Cancer Precision Medicine, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Stacey Gabriel
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Eric S. Lander
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Rameen Beroukhim
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Department of Cancer Biology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - Tracy T. Batchelor
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Jose Baselga
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York City
| | - David N. Louis
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, all in Boston
| | - Gad Getz
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, all in Boston
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| | - William C. Hahn
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
- Broad Institute, Brigham and Women's Hospital, Harvard Medical School - all in Boston
| |
Collapse
|
39
|
Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem Pharmacol 2015; 98:465-72. [PMID: 26300056 DOI: 10.1016/j.bcp.2015.08.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022]
Abstract
Dinaciclib is a novel cyclin-dependent kinase inhibitor (CDKI) with significant activity against various cancers in vitro and in vivo. ABC efflux transporters play an important role in drug disposition and are responsible for multidrug resistance in cancer cells. Inhibitors and substrates of these transporters may participate in pharmacokinetic drug-drug interactions (DDIs) that alter drug disposition during pharmacotherapy. To assess such risks associated with dinaciclib we evaluated its possible effects on efflux activities of ABCB1, ABCC1 and ABCG2 transporters in vitro. Monolayer transport, XTT cell proliferation, ATPase and intracellular accumulation assays were employed. Here, we show that the transport ratio of dinaciclib was far higher across monolayers of MDCKII-ABCB1 and MDCKII-ABCG2 cells than across MDCKII parental cell layers, demonstrating that dinaciclib is a substrate of ABCB1 and ABCG2. In addition, overexpression of ABCB1, ABCG2 and ABCC1 conferred resistance to dinaciclib in MDCKII cells. In ATPase assays, dinaciclib decreased stimulated ATPase activity of ABCB1, ABCG2 and ABCC1, confirming it has interactive potential toward all three transporters. Moreover, dinaciclib significantly inhibited ABCC1-mediated efflux of daunorubicin (EC50=18 μM). The inhibition of ABCC1 further led to a synergistic effect of dinaciclib in both MDCKII-ABCC1 and human cancer T47D cells, when applied in combination with anticancer drugs. Taken together, our results suggest that ABC transporters can substantially affect dinaciclib transport across cellular membranes, leading to DDIs. The DDIs of dinaciclib with ABCC1 substrate chemotherapeutics might be exploited in novel cancer therapies.
Collapse
|
40
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
41
|
Hu C, Dadon T, Chenna V, Yabuuchi S, Bannerji R, Booher R, Strack P, Azad N, Nelkin BD, Maitra A. Combined Inhibition of Cyclin-Dependent Kinases (Dinaciclib) and AKT (MK-2206) Blocks Pancreatic Tumor Growth and Metastases in Patient-Derived Xenograft Models. Mol Cancer Ther 2015; 14:1532-9. [PMID: 25931518 DOI: 10.1158/1535-7163.mct-15-0028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/26/2015] [Indexed: 12/17/2022]
Abstract
KRAS is activated by mutation in the vast majority of cases of pancreatic cancer; unfortunately, therapeutic attempts to inhibit KRAS directly have been unsuccessful. Our previous studies showed that inhibition of cyclin-dependent kinase 5 (CDK5) reduces pancreatic cancer growth and progression, through blockage of the centrally important RAL effector pathway, downstream of KRAS. In the current study, the therapeutic effects of combining the CDK inhibitor dinaciclib (SCH727965; MK-7965) with the pan-AKT inhibitor MK-2206 were evaluated using orthotopic and subcutaneous patient-derived human pancreatic cancer xenograft models. The combination of dinaciclib (20 mg/kg, i.p., three times a week) and MK-2206 (60 mg/kg, orally, three times a week) dramatically blocked tumor growth and metastasis in all eight pancreatic cancer models examined. Remarkably, several complete responses were induced by the combination treatment of dinaciclib and MK-2206. The striking results obtained in these models demonstrate that the combination of dinaciclib with the pan-AKT inhibitor MK-2206 is promising for therapeutic evaluation in pancreatic cancer, and strongly suggest that blocking RAL in combination with other effector pathways downstream from KRAS may provide increased efficacy in pancreatic cancer. Based on these data, an NCI-CTEP-approved multicenter phase I clinical trial for pancreatic cancer of the combination of dinaciclib and MK-2206 (NCT01783171) has now been opened.
Collapse
Affiliation(s)
- Chaoxin Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tikva Dadon
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Venugopal Chenna
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shinichi Yabuuchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | - Nilofer Azad
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Barry D Nelkin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Anirban Maitra
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
42
|
Li L, Pongtornpipat P, Tiutan T, Kendrick SL, Park S, Persky DO, Rimsza LM, Puvvada SD, Schatz JH. Synergistic induction of apoptosis in high-risk DLBCL by BCL2 inhibition with ABT-199 combined with pharmacologic loss of MCL1. Leukemia 2015; 29:1702-12. [PMID: 25882699 PMCID: PMC4526343 DOI: 10.1038/leu.2015.99] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/10/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023]
Abstract
Better treatments are needed for patients with diffuse large B-cell lymphoma (DLBCL) at high risk of failing standard therapy. Avoiding apoptosis is a hallmark of cancer, and in DLBCL the redundantly functioning anti-apoptotic proteins BCL2 and MCL1 are frequently expressed. Here, we explore drugs that cause loss of MCL1, particularly the potent new cyclin-dependent kinase inhibitor dinaciclib, which knocks down MCL1 by inhibiting CDK9. Dinaciclib induces apoptosis in DLBCL cells but is completely overcome by increased activity of BCL2. We find clinical samples have frequent co-expression of MCL1 and BCL2, suggesting therapeutic strategies targeting only one will lead to treatment failures due to activity of the other. The BH3 mimetic ABT-199 potently and specifically targets BCL2. Single-agent ABT-199 had modest anti-tumor activity against most DLBCL lines and resulted in compensatory up-regulation of MCL1 expression. ABT-199 synergized strongly, however, when combined with dinaciclib and with other drugs affecting MCL1, including standard DLBCL chemotherapy drugs. We show potent anti-tumor activities of these combinations in xenografts and in a genetically accurate murine model of MYC-BCL2 double-hit lymphoma. In sum, we reveal a rational treatment paradigm to strip DLBCL of its protection from apoptosis and improve outcomes for high-risk patients.
Collapse
Affiliation(s)
- L Li
- Bio5 Institute, University of Arizona Cancer Center, Tucson, AZ, USA
| | - P Pongtornpipat
- Bio5 Institute, University of Arizona Cancer Center, Tucson, AZ, USA
| | - T Tiutan
- College of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - S L Kendrick
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - S Park
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - D O Persky
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - L M Rimsza
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - S D Puvvada
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - J H Schatz
- 1] Bio5 Institute, University of Arizona Cancer Center, Tucson, AZ, USA [2] Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA [3] Department of Pharmacology and Toxicology, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
43
|
Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer. Med Oncol 2014; 32:379. [PMID: 25429837 DOI: 10.1007/s12032-014-0379-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Thus, there is an emergent need to invest a novel therapeutic for EOC. In this study, we defined ubiquitin-specific protease 14 (USP14) as a therapeutic target for EOC. Western blot was used to evaluate the expression of USP14 in nine fresh EOC tissues and three fresh normal ovarian tissues. The protein level of USP14 was higher in the cancer samples compared with that in the normal ovary tissues. Immunohistochemistry analysis was performed on formalin-fixed paraffin-embedded section of 116 cases of EOCs and indicated that USP14 was significantly associated with clinical pathologic variables. Kaplan-Meier curve showed that high expression of USP14 was related to poor prognosis of EOC patients. Starvation and re-feeding assay was used to imitate cell cycle, suggesting that USP14 played a critical role in SKOV3 cell proliferation. CCK-8 assay showed that SKOV3 cells treated with USP14-shRNA (shUSP14) grew more slowly than control group. Flow cytometry revealed that the reduced expression of USP14 induced the apoptosis of the SKOV3 EOC cells. In summary, our findings suggest that USP14 is involved in the progression of EOC and that it may be a useful target of therapy in EOC.
Collapse
|