1
|
Zhang CY, Zhang R, Zhang L, Wang ZM, Sun HZ, Cui ZG, Zheng HC. Regenerating gene 4 promotes chemoresistance of colorectal cancer by affecting lipid droplet synthesis and assembly. World J Gastroenterol 2023; 29:5104-5124. [PMID: 37744296 PMCID: PMC10514755 DOI: 10.3748/wjg.v29.i35.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang 110042, Liaoning Province, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
2
|
Zheng HC, Xue H, Zhang CY. REG4 promotes the proliferation and anti-apoptosis of cancer. Front Cell Dev Biol 2022; 10:1012193. [PMID: 36172286 PMCID: PMC9511136 DOI: 10.3389/fcell.2022.1012193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation of epidermal growth factor receptor (EGFR)/Akt/cAMP-responsive element binding and the killing inflammatory Escherichia coli, and closely linked to tumorigenesis. Its expression was transcriptionally activated by caudal type homeobox 2, GATA binding protein 6, GLI family zinc finger 1, SRY-box transcription factor 9, CD44 intracytoplasmic domain, activating transcription factor 2, and specificity protein 1, and translationally activated by miR-24. REG4 can interact with transmembrane CD44, G protein-coupled receptor 37, mannan and heparin on cancer cells. Its overexpression was observed in gastric, colorectal, pancreatic, gallbladder, ovarian and urothelial cancers, and is closely linked to their aggressive behaviors and a poor prognosis. Additionally, REG4 expression and recombinant REG4 aggravated such cellular phenotypes as tumorigenesis, proliferation, anti-apoptosis, chemoradioresistance, migration, invasion, peritoneal dissemination, tumor growth, and cancer stemness via EGFR/Akt/activator protein-1 and Akt/glycogen synthase kinase three β/β-catenin/transcription factor 4 pathways. Sorted REG4-positive deep crypt secretory cells promote organoid formation of single Lgr5 (+) colon stem cells by Notch inhibition and Wnt activation. Histologically, REG4 protein is specifically expressed in neuroendocrine tumors and signet ring cell carcinomas of the gastrointestinal tract, pancreas, ovary, and lung. It might support the histogenesis of gastric intestinal–metaplasia–globoid dysplasia–signet ring cell carcinoma. In this review, we summarized the structure, biological functions, and effects of REG4 on inflammation and cancer. We conclude that REG4 may be employed as a biomarker of tumorigenesis, subsequent progression and poor prognosis of cancer, and may be a useful target for gene therapy.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
Takasawa S, Tsuchida C, Sakuramoto-Tsuchida S, Uchiyama T, Makino M, Yamauchi A, Itaya-Hironaka A. Upregulation of REG IV gene in human intestinal epithelial cells by lipopolysaccharide via downregulation of microRNA-24. J Cell Mol Med 2022; 26:4710-4720. [PMID: 35946046 PMCID: PMC9443949 DOI: 10.1111/jcmm.17498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
The pathophysiology of inflammatory bowel diseases (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members (REG Iα, REG Iβ and REG IV) are expressed in Crohn's disease (CD) and ulcerative colitis (UC) and involved as proliferative mucosal factors in IBD. We revealed that REG Iα and REG Iβ were induced in cell culture system by IL‐6/IL‐22. Although REG IV was upregulated in IBD biopsy samples, the upregulation of REG IV was not at all induced in cell culture by autoimmune‐related cytokines such as IL‐6, IL‐22 and TNFα. Here, we analysed REG IV expression in LS‐174 T and HT‐29 human intestinal epithelial cells by real‐time RT–PCR and elisa. REG IV expression was induced by lipopolysaccharide (LPS). However, LPS did not activate REG IV promoter activity. As the LPS‐induced upregulation of REG IV was considered to be regulated post‐transcriptionally, we searched targeted microRNA (miR), which revealed that REG IV mRNA has a potential target sequence for miR‐24. We measured the miR‐24 level of LPS‐treated cells and found that the level was significantly lower. The LPS‐induced increase of REG IV mRNA was abolished by the introduction of miR‐24 mimic but not by non‐specific control RNA.
Collapse
Affiliation(s)
- Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | | | | | - Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, Kashihara, Japan.,Department of Diagnostic Pathology, Nara Medical University, Kashihara, Japan
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
4
|
Li X, Shi X, Mesalam NM, Liu L, Chen Z, Yang B. Mechanism of Lysoforte in Improving Jejuna Morphology and Health in Broiler Chickens. Front Vet Sci 2022; 9:946148. [PMID: 35928108 PMCID: PMC9343761 DOI: 10.3389/fvets.2022.946148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lysoforte (LFT) plays a vital role in maintaining broilers' health and intestinal morphology. However, the mechanism behind the effects of LFT improving intestinal morphology and health is still unclear. Therefore, this study was implemented to explore the central genes linked to the regulatory effect of LFT. Seventy-five newly hatched Cobb 500 male broilers were randomly divided into three groups: control, LFT500, and LFT1000 groups, with 25 chicks per group. The control chicks were provided with the basal diet, and the birds in LFT500 and LFT1000 groups were offered the same basal diet with 500 g/ton and 1,000 g/ton LFT, respectively. GSE94622 dataset consisted of the control and two LFT-treated groups (LFT500 and LFT1000). Jejuna samples were obtained from Gene Expression Omnibus (GEO). Totally 106–344 DEGs were obtained by comparing LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500. Gene ontology (GO) enrichment suggested that the DEGs are mainly related to the phosphatidylethanolamine biosynthetic process and neuron projection extension. KEGG analysis suggested the DEGs were enriched in AGE-RAGE, fatty acid elongation, ECM-receptor interaction (ECMRI), glycerophospholipid metabolism, focal adhesion, unsaturated fatty acids biosynthesis, and ABC transporters. Moreover, 29 genes, such as REG4, GJB1, KAT2A, APOA5, SERPINE2, ELOVL1, ABCC2, ANKRD9, CYP4V2, and PISD, might be closely related to promoting jejuna morphology in broilers. Taken together, our observation enhances the understanding of LFT in maintaining intestinal architecture and the general health of broiler chickens.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xiaoli Shi
- College of Animal Science, Guizhou University, Guiyang, China
| | - Noura M. Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, Egypt
| | - Lei Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
- *Correspondence: Bing Yang
| |
Collapse
|
5
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
6
|
Kang G, Oh I, Pyo J, Kang D, Son B. Clinicopathological Significance and Prognostic Implications of REG4 Immunohistochemical Expression in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:938. [PMID: 34577861 PMCID: PMC8464993 DOI: 10.3390/medicina57090938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022]
Abstract
Background and objectives: The present study aimed to evaluate the clinicopathological significance and prognostic implications of REG4 immunohistochemical expression in colorectal cancer (CRC). Materials and Methods: We performed immunohistochemical analysis for REG4 cytoplasmic expression in 266 human CRC tissues. Correlations between REG4 expression, clinicopathological characteristics, and survival were investigated in CRC. Results: REG4 was expressed in 84 of 266 CRC tissues (31.6%). REG4 expression was significantly more frequent in the right colon than that in the left colon and rectum (p = 0.002). However, we observed no significant correlation between REG4 expression and other clinicopathological parameters. REG4 expression was significantly higher in CRCs with low stroma than in those with high stroma (p = 0.006). In addition, REG4 was more frequently expressed in CRCs with the mucinous component than in those without it (p < 0.001). There was no significant correlation between REG4 expression and overall recurrence-free survival (p = 0.132 and p = 0.480, respectively). Patients with REG4 expression showed worse overall and recurrence-free survival in the high-stroma subgroup (p = 0.001 and p = 0.017, respectively), but no such correlation was seen in the low stroma subgroup (p = 0.232 and p = 0.575, respectively). Conclusions: REG4 expression was significantly correlated with tumor location, amount of stroma, and mucinous component in CRCs. In patients with high stroma, REG4 expression was significantly correlated with poor overall and recurrence-free survival.
Collapse
Affiliation(s)
- Guhyun Kang
- Department of Pathology, Daehang Hospital, Seoul 06699, Korea;
| | - Ilhwan Oh
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Jungsoo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Dongwook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, 20 Bodeum 7-ro, Sejong 30099, Korea;
- Department of Pathology, Chungnam National University School of Medicine, 266 Munhwa Street, Daejeon 35015, Korea
| | - Byoungkwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| |
Collapse
|
7
|
Jiang J, Jin Z, Zhang Y, Peng L, Zhang Y, Zhu Z, Wang Y, Tong D, Yang Y, Wang J, Yang Y, Xiao K. Robust Prediction of Immune Checkpoint Inhibition Therapy for Non-Small Cell Lung Cancer. Front Immunol 2021; 12:646874. [PMID: 33927719 PMCID: PMC8076602 DOI: 10.3389/fimmu.2021.646874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background The development of immune checkpoint inhibitors (ICIs) is a revolutionary milestone in the field of immune-oncology. However, the low response rate is the major problem of ICI treatment. The recent studies showed that response rate to single-agent programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibition in unselected non-small cell lung cancer (NSCLC) patients is 25% so that researchers defined several biomarkers to predict the response of immunotherapy in ICIs treatment. Common biomarkers like tumor mutational burden (TMB) and PD-L1 expression have several limitations, such as low accuracy and inadequately validated cutoff value. Methods Two published and an unpublished ICIs treatment NSCLC cohorts with 129 patients were collected and divided into a training cohort (n = 53), a validation cohort (n = 22), and two independent test cohorts (n = 34 and n = 20). We identified six immune-related pathways whose mutational status was significantly associated with overall survival after ICIs treatment. Then these pathways mutational status combined with TMB, PD-L1 expression and intratumor heterogeneity were incorporated to build a Bayesian-regularization neural networks (BRNN) model to predict the ICIs treatment response. Results We firstly proved that TMB, PD-L1, and mutant-allele tumor heterogeneity (MATH) were independent biomarkers. The survival analysis of six immune-related pathways revealed the mutational status could distinguish overall survival after ICIs treatment. When predicting immunotherapy efficacy, the overall accuracy of area under curve (AUC) in validation cohort reaches 0.85, outperforming previous predictors in either sensitivity or specificity. And the AUC in two independent test cohorts reach 0.74 and 0.80. Conclusion We developed a pathway-model that could predict the efficacy of ICIs in NSCLC patients. Our study made a significant contribution to solving the low prediction accuracy of immunotherapy of single biomarker. With the accumulation of larger data sets, further studies are warranted to refine the predictive performance of the approach.
Collapse
Affiliation(s)
- Jiehan Jiang
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha, China
| | - Zheng Jin
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Yiqun Zhang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yue Zhang
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhiruo Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaohui Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - De Tong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yining Yang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Jianfei Wang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Yadong Yang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Kui Xiao
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Zhang J, Zhu Z, Miao Z, Huang X, Sun Z, Xu H, Wang Z. The Clinical Significance and Mechanisms of REG4 in Human Cancers. Front Oncol 2021; 10:559230. [PMID: 33489872 PMCID: PMC7819868 DOI: 10.3389/fonc.2020.559230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Regenerating islet-derived type 4 (REG4), a member of the calcium-dependent lectin gene superfamily, is abnormally expressed in various cancers, such as colorectal, gastric, gallbladder, pancreatic, ovarian, prostate, and lung cancer. REG4 is associated with a relatively unfavorable prognosis and clinicopathologic features in cancers, including advanced tumor and nodal stage, histological differentiation, and liver and peritoneal metastasis. Moreover, REG4-positive cancer cells show more frequent resistance to chemoradiotherapy, especially 5-FU-based chemotherapy. REG4 participates in many aspects of carcinogenesis, including cell proliferation, apoptosis, cell cycle, invasion, metastasis, and drug resistance. The underlying mechanisms are complex and involve a series of signaling mediators and multiple pathways. Thus, REG4 may be a potential diagnostic and prognostic biomarker as well as a candidate therapeutic target in cancer patients. In this review, we systematically summarize the advances about the clinical significance, biological functions, and mechanisms underlying REG4 in cancer to provide new directions for future cancer research.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
10
|
Lee TY, Huang KY, Chuang CH, Lee CY, Chang TH. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Comput Biol Chem 2020; 87:107277. [PMID: 32512487 DOI: 10.1016/j.compbiolchem.2020.107277] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the most occurring cancer type, and its mortality rate is also the highest, among them lung adenocarcinoma (LUAD) accounts for about 40 % of lung cancer. There is an urgent need to develop a prognosis prediction model for lung adenocarcinoma. Previous LUAD prognosis studies only took single-omics data, such as mRNA or miRNA, into consideration. To this end, we proposed a deep learning-based autoencoding approach for combination of four-omics data, mRNA, miRNA, DNA methylation and copy number variations, to construct an autoencoder model, which learned representative features to differentiate the two optimal patient subgroups with a significant difference in survival (P = 4.08e-09) and good consistency index (C-index = 0.65). The multi-omics model was validated though four independent datasets, i.e. GSE81089 for mRNA (n = 198, P = 0.0083), GSE63805 for miRNA (n = 32, P = 0.018), GSE63384 for DNA methylation (n = 35, P = 0.009), and TCGA independent samples for copy number variations (n = 94, P = 0.0052). Finally, a functional analysis was performed on two survival subgroups to discover genes involved in biological processes and pathways. This is the first study incorporating deep autoencoding and four-omics data to construct a robust survival prediction model, and results show the approach is useful at predicting LUAD prognostication.
Collapse
Affiliation(s)
- Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Kai-Yao Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Cheng-Hsiang Chuang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan.
| | - Cheng-Yang Lee
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City, Taiwan.
| |
Collapse
|
11
|
Hwang JH, Yoon J, Cho YH, Cha PH, Park JC, Choi KY. A mutant KRAS-induced factor REG4 promotes cancer stem cell properties via Wnt/β-catenin signaling. Int J Cancer 2019; 146:2877-2890. [PMID: 31605540 DOI: 10.1002/ijc.32728] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023]
Abstract
Mutant KRAS provides a driving force for enhancement of cancer stem cells (CSCs) characteristics contributing transformation of colorectal cancer (CRC) cells harboring adenomatous polyposis coli (APC) mutations. Here, we identified the factors mediating the promotion of CSCs properties induced by KRAS mutation through microarray analyses of genes specifically induced in CRC spheroids harboring both KRAS and APC mutations. Among them, REG4 was identified as a key factor since CRISPR/Cas9-mediated knockout of REG4 most significantly affected the stem cell characteristics in which CSCs markers were effectively suppressed. We show that REG4 mediates promotion of CSCs properties via Wnt/β-catenin signaling in various in vitro studies including tumor organoid systems. Furthermore, expression patterns of CSCs markers and REG4 correlated in intestinal tumors from Apcmin/+ /KrasG12D LA2 mice and in CRC patient tissues harboring both KRAS and APC mutations. The role of REG4 in the tumor-initiating capacity accompanied by enhancement of CSCs characteristics was also revealed by NSG mice xenograft system. Collectively, our study highlights the importance of REG4 in promoting CSCs properties induced by KRAS mutation, and provides a new therapeutic strategy for CRC harboring both APC and KRAS mutations.
Collapse
Affiliation(s)
- Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biomaterials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Junyong Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jong-Chan Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,CK Biotechnology Inc., Seoul, South Korea
| |
Collapse
|
12
|
Barresi V, Cinnirella G, Valenti G, Spampinato G, Musso N, Castorina S, Condorelli DF. Gene expression profiles in genome instability-based classes of colorectal cancer. BMC Cancer 2018; 18:1265. [PMID: 30563495 PMCID: PMC6299572 DOI: 10.1186/s12885-018-5174-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Broad copy number aberrations (BCNAs) represent a common form of genome instability in colorectal cancer (CRC). CRCs show large variations in their level of aneuploidy: microsatellite-instable (MSI) tumors are known to have a near-diploid karyotype while microsatellite-stable (MSS) tumors show high level of chromosomal instability. However, MSS tumors have great heterogeneity in the number of BCNAs, with a minor percentage of samples showing an almost normal karyotype. In the present work we subdivided MSS CRCs according to a "BCNA score" and characterized their transcriptome profiles, considered as a proxy to their phenotypic features. METHODS Microsatellite testing, genome-wide DNA copy number and whole-transcript expression analysis (HTA) were performed on 33 tumor samples and 25 normal colonic tissue samples from 32 CRC patients. 15.1% of the samples were MSI tumors (n = 5), whereas 84.9% were MSS tumors (n = 28). Gene expression data of 34 additional MSI tumors was retrieved from a public functional genomics data repository. RESULTS Using as a threshold the first quartile of the BCNA score distribution, MSS samples were classified as low-BCNA (LB, n = 7) or high-BCNA (HB, n = 21). LB tumors were enriched for mucinous CRCs and their gene-expression profile resembled that of MSI samples for what concerns a subset of genes involved in secretory processes, mucosal protection, and extracellular matrix remodeling. HB tumors were predominantly non-mucinous adenocarcinomas and showed overexpression of a subset of genes typical of surface colonocytes and EGF signaling. A large percentage of unclassified samples according to the consensus molecular subtypes (CMS) classifier was found in the LB group (43%), whereas 76% HB tumors belonged to CMS2. CONCLUSIONS A classification of colorectal tumors based on the number of BCNAs identifies two groups of MSS tumors which differ for histopathology and gene expression profile. Such information can be exploited for its translational relevance in different aspects of CRC clinical management.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
- Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Giacomo Cinnirella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Giovanna Valenti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
| | - Sergio Castorina
- Department of Surgical Medical Sciences and Advanced Technologies “G. F. Ingrassia”, University of Catania, Catania, Italy
- Fondazione Mediterranea G.B. Morgagni, Catania, Italy
| | - Daniele F. Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Viale Santa Sofia 89-97, 95123 Catania, Italy
- Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Saukkonen K, Hagström J, Mustonen H, Lehtinen L, Carpen O, Andersson LC, Seppänen H, Haglund C. Prognostic and diagnostic value of REG4 serum and tissue expression in pancreatic ductal adenocarcinoma. Tumour Biol 2018. [PMID: 29542402 DOI: 10.1177/1010428318761494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expression of regenerating islet-derived protein 4 (REG4), a secretory protein involved in cell differentiation and proliferation, is upregulated in inflammatory bowel diseases and in many gastrointestinal malignancies. The prognostic significance of its expression in pancreatic ductal adenocarcinoma is unknown. Our aim was to investigate tumor tissue and serum REG4 expression in pancreatic ductal adenocarcinoma patients. We also evaluated as a control the diagnostic value of serum REG4 level in patients with chronic pancreatitis. Immunohistochemical expression of REG4 was evaluated in 154 surgical specimens and serum REG4 level in 130 samples from pancreatic ductal adenocarcinoma patients treated at Helsinki University Hospital, Finland, in 2000-2011. REG4 tissue and serum expression was assessed in relation to clinicopathological parameters and patient survival. A chronic pancreatitis control group comprised 34 patients who underwent pancreatic resection because of suspicion of malignancy. Significant survival differences were detectable in subgroups: in tumor stages IA-IIA, high serum REG4 level predicted worse survival (p=0.046). In patients with grade I tumor, positive tissue REG4 expression predicted better survival (p=0.006). In multivariate analysis, neither tissue nor serum REG4 expression was independent prognostic factors. Serum REG4 levels were higher in pancreatic ductal adenocarcinoma than in chronic pancreatitis (p=0.002), with diagnostic sensitivity of 45% and specificity of 91%. In logistic regression analysis, a multivariate model with REG4, CA19-9, and age provided sensitivity of 82% and specificity of 79%. REG4 tissue expression is a prognostic marker in subgroups of pancreatic ductal adenocarcinoma patients. Serum REG4 level might be useful in differential diagnosis between pancreatic ductal adenocarcinoma and chronic pancreatitis.
Collapse
Affiliation(s)
- Kapo Saukkonen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- 2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura Lehtinen
- 4 Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Carpen
- 3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,4 Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,5 Genome Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- 3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Reg Gene Expression in Periosteum after Fracture and Its In Vitro Induction Triggered by IL-6. Int J Mol Sci 2017; 18:ijms18112257. [PMID: 29077068 PMCID: PMC5713227 DOI: 10.3390/ijms18112257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
The periosteum is a thin membrane that surrounds the outer surface of bones and participates in fracture healing. However, the molecular signals that trigger/initiate the periosteal reaction are not well established. We fractured the rat femoral bone at the diaphysis and fixed it with an intramedullary inserted wire, and the expression of regenerating gene (Reg) I, which encodes a tissue regeneration/growth factor, was analyzed. Neither bone/marrow nor muscle showed RegI gene expression before or after the fracture. By contrast, the periosteum showed an elevated expression after the fracture, thereby confirming the localization of Reg I expression exclusively in the periosteum around the fractured areas. Expression of the Reg family increased after the fracture, followed by a decrease to basal levels by six weeks, when the fracture had almost healed. In vitro cultures of periosteal cells showed no Reg I expression, but the addition of IL-6 significantly induced Reg I gene expression. The addition of IL-6 also increased the cell number and reduced pro-apoptotic gene expression of Bim. The increased cell proliferation and reduction in Bim gene expression were abolished by transfection with Reg I siRNA, indicating that these IL-6-dependent effects require the Reg I gene expression. These results indicate the involvement of the IL-6/Reg pathway in the osteogenic response of the periosteum, which leads to fracture repair.
Collapse
|
15
|
Sztupinszki Z, Győrffy B. Colon cancer subtypes: concordance, effect on survival and selection of the most representative preclinical models. Sci Rep 2016; 6:37169. [PMID: 27849044 PMCID: PMC5111107 DOI: 10.1038/srep37169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple gene-expression-based subtypes have been proposed for the molecular subdivision of colon cancer in the last decade. We aimed to cross-validate these classifiers to explore their concordance and their power to predict survival. A gene-chip-based database comprising 2,166 samples from 12 independent datasets was set up. A total of 22 different molecular subtypes were re-trained including the CCHS, CIN25, CMS, ColoGuideEx, ColoGuidePro, CRCassigner, MDA114, Meta163, ODXcolon, Oncodefender, TCA19, and V7RHS classifiers as well as subtypes established by Budinska, Chang, DeSousa, Marisa, Merlos, Popovici, Schetter, Yuen, and Watanabe (first authors). Correlation with survival was assessed by Cox proportional hazards regression for each classifier using relapse-free survival data. The highest efficacy at predicting survival in stage 2-3 patients was achieved by Yuen (p = 3.9e-05, HR = 2.9), Marisa (p = 2.6e-05, HR = 2.6) and Chang (p = 9e-09, HR = 2.35). Finally, 61 colon cancer cell lines from four independent studies were assigned to the closest molecular subtype.
Collapse
Affiliation(s)
- Zsófia Sztupinszki
- MTA TTK Lendület Cancer Biomarker Research Group, 1117, Budapest, Hungary
- 2 Dept. of Pediatrics, Semmelweis University, 1094, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 1117, Budapest, Hungary
- 2 Dept. of Pediatrics, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
16
|
Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci U S A 2016; 113:E5399-407. [PMID: 27573849 DOI: 10.1073/pnas.1607327113] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF, and Notch signals to neighboring Lgr5(+) stem cells. Whereas the colon lacks Paneth cells, deep crypt secretory (DCS) cells are intermingled with Lgr5(+) stem cells at crypt bottoms. Here, we report regenerating islet-derived family member 4 (Reg4) as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells by using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon organoid growth. In agreement, sorted Reg4(+) DCS cells promote organoid formation of single Lgr5(+) colon stem cells. DCS cells can be massively produced from Lgr5(+) colon stem cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4(+) DCS cells serve as Paneth cell equivalents in the colon crypt niche.
Collapse
|
17
|
Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, Li J, Su L, Yan M, Zhu Z, Liu B, Yang Q. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget 2016; 7:27874-88. [PMID: 27036049 PMCID: PMC5053694 DOI: 10.18632/oncotarget.8442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Being the major reason of recurrence and death after surgery, peritoneal metastasis of gastric cancer dooms the prognosis of advanced gastric cancer patients. Regenerating islet-derived family, member 4 (REG4) is believed to promote peritoneal metastasis, however, its mechanism is still a moot point at present. In the present study, we show that high expression of REG4 correlates with advanced stage and poor survival prognosis for gastric cancer patients. REG4 overexpression significantly enhances peritoneal metastasis by increasing adhesion ability. Moreover, SP1 is proved to be a transcription factor of REG4 and induce REG4 expression upon TGF-alpha stimulation. Also, G protein-coupled receptor 37 (GPR37) is identified to be in the same complex of REG4, which mediates REG4's signal transduction and promotes peritoneal metastasis of gastric cancer cell. Interestingly, we also discover a positive feedback loop triggered by REG4, amplifying itself through EGFR transactivation, consisting of GPR37, ADAM17, TGF-alpha, EGFR, SP1 and REG4. In conclusion, REG4 promotes peritoneal metastasis of gastric cancer through GPR37 and triggers a positive feedback loop.
Collapse
Affiliation(s)
- Hexiao Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baogui Zhang
- Affiliated Hospital of Jining Medical University, Department of Surgery, Jining 272000, People's Republic of China
| | - Yantao Duan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qiumeng Yang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
18
|
Lehtinen L, Vesterkvist P, Roering P, Korpela T, Hattara L, Kaipio K, Mpindi JP, Hynninen J, Auranen A, Davidson B, Haglund C, Iljin K, Grenman S, Siitari H, Carpen O. REG4 Is Highly Expressed in Mucinous Ovarian Cancer: A Potential Novel Serum Biomarker. PLoS One 2016; 11:e0151590. [PMID: 26981633 PMCID: PMC4794165 DOI: 10.1371/journal.pone.0151590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/01/2016] [Indexed: 11/26/2022] Open
Abstract
Preoperative diagnostics of ovarian neoplasms rely on ultrasound imaging and the serum biomarkers CA125 and HE4. However, these markers may be elevated in non-neoplastic conditions and may fail to identify most non-serous epithelial cancer subtypes. The objective of this study was to identify histotype-specific serum biomarkers for mucinous ovarian cancer. The candidate genes with mucinous histotype specific expression profile were identified from publicly available gene-expression databases and further in silico data mining was performed utilizing the MediSapiens database. Candidate biomarker validation was done using qRT-PCR, western blotting and immunohistochemical staining of tumor tissue microarrays. The expression level of the candidate gene in serum was compared to the serum CA125 and HE4 levels in a patient cohort of prospectively collected advanced ovarian cancer. Database searches identified REG4 as a potential biomarker with specificity for the mucinous ovarian cancer subtype. The specific expression within epithelial ovarian tumors was further confirmed by mRNA analysis. Immunohistochemical staining of ovarian tumor tissue arrays showed distinctive cytoplasmic expression pattern only in mucinous carcinomas and suggested differential expression between benign and malignant mucinous neoplasms. Finally, an ELISA based serum biomarker assay demonstrated increased expression only in patients with mucinous ovarian cancer. This study identifies REG4 as a potential serum biomarker for histotype-specific detection of mucinous ovarian cancer and suggests serum REG4 measurement as a non-invasive diagnostic tool for postoperative follow-up of patients with mucinous ovarian cancer.
Collapse
Affiliation(s)
- Laura Lehtinen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
- * E-mail:
| | - Pia Vesterkvist
- VTT Technical Research Centre of Finland, Espoo and Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Pia Roering
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Taina Korpela
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Hattara
- VTT Technical Research Centre of Finland, Espoo and Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Katja Kaipio
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - John-Patrick Mpindi
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Annika Auranen
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Kristiina Iljin
- VTT Technical Research Centre of Finland, Espoo and Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Seija Grenman
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Harri Siitari
- VTT Technical Research Centre of Finland, Espoo and Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Olli Carpen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|