1
|
Elkurdi A, Guigas G, Hourani-Alsharafat L, Scheerer P, Nienhaus GU, Krauß N, Lamparter T. Time-resolved fluorescence anisotropy with Atto 488-labeled phytochrome Agp1 from Agrobacterium fabrum. Photochem Photobiol 2024; 100:561-572. [PMID: 37675785 DOI: 10.1111/php.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. Three domains, termed PAS, GAF, and PHY domains, constitute the N-terminal photosensory chromophore module (PCM); the C-terminus is often a histidine kinase module. In the Agrobacterium fabrum phytochrome Agp1, the autophosphorylation activity of the histidine kinase is high in the Pr and low in the Pfr form. Crystal structure analyses of PCMs suggest flexibility around position 308 in the Pr but not in the Pfr form. Here, we performed time-resolved fluorescence anisotropy measurements with different Agp1 mutants, each with a single cysteine residue at various positions. The fluorophore label Atto-488 was attached to each mutant, and time-resolved fluorescence anisotropy was measured in the Pr and Pfr forms. Fluorescence anisotropy curves were fitted with biexponential functions. Differences in the amplitude A2 of the second component between the PCM and the full-length variant indicate a mechanical coupling between position 362 and the histidine kinase. Pr-to-Pfr photoconversion induced no significant changes in the time constant t2 at any position. An intermediate t2 value at position 295, which is located in a compact environment, suggests flexibility around the nearby position 308 in Pr and in Pfr.
Collapse
Affiliation(s)
- Afaf Elkurdi
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gernot Guigas
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
2
|
Fischer T, Köhler L, Engel PD, Song C, Gärtner W, Wachtveitl J, Slavov C. Conserved tyrosine in phytochromes controls the photodynamics through steric demand and hydrogen bonding capabilities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148996. [PMID: 37437858 DOI: 10.1016/j.bbabio.2023.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Using ultrafast spectroscopy and site-specific mutagenesis, we demonstrate the central role of a conserved tyrosine within the chromophore binding pocket in the forward (Pr → Pfr) photoconversion of phytochromes. Taking GAF1 of the knotless phytochrome All2699g1 from Nostoc as representative member of phytochromes, it was found that the mutations have no influence on the early (<30 ps) dynamics associated with conformational changes of the chromophore in the excited state. Conversely, they drastically impact the extended protein-controlled excited state decay (>100 ps). Thus, the steric demand, position and H-bonding capabilities of the identified tyrosine control the chromophore photoisomerization while leaving the excited state chromophore dynamics unaffected. In effect, this residue operates as an isomerization-steric-gate that tunes the excited state lifetime and the photoreaction efficiency by modulating the available space of the chromophore and by stabilizing the primary intermediate Lumi-R. Understanding the role of such a conserved structural element sheds light on a key aspect of phytochrome functionality and provides a basis for rational design of optimized photoreceptors for biotechnological applications.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Lisa Köhler
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Philipp D Engel
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chen Song
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany; Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, 33620 Tampa, United States of America.
| |
Collapse
|
3
|
Xu HF, Dai GZ, Wang YJ, Cheng C, Shang JL, Li RH, Liu K, Duanmu D, Qiu BS. Expansion of bilin-based red light sensors in the subaerial desert cyanobacterium Nostoc flagelliforme. Environ Microbiol 2022; 24:2047-2058. [PMID: 35172392 DOI: 10.1111/1462-2920.15932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Abstract
Light is the crucial environmental signal for desiccation-tolerant cyanobacteria to activate photosynthesis and prepare for desiccation at dawn. However, the photobiological characteristics of desert cyanobacteria adaptation to one of the harshest habitats on Earth remain unresolved. In this study, we surveyed the genome of a subaerial desert cyanobacterium Nostoc flagelliforme and identified two phytochromes and seven cyanobacteriochromes (CBCRs) with one or more bilin-binding GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains. Biochemical and spectroscopic analyses of 69 purified GAF-containing proteins from recombinant phycocyanobilin (PCB), biliverdin or phycoerythrobilin-producing Escherichia coli indicated that nine of these proteins bind chromophores. Further investigation revealed that 11 GAFs form covalent adducts responsive to near-UV and visible light: eight GAFs contained PCB chromophores, three GAFs contained biliverdin chromophores and one contained the PCB isomer, phycoviolobilin. Interestingly, COO91_03972 is the first-ever reported GAF-only CBCR capable of sensing five wavelengths of light. Bioinformatics and biochemical analyses revealed that residue P132 of COO91_03972 is essential for chromophore binding to dual-cysteine CBCRs. Furthermore, the complement of N. flagelliforme CBCRs is enriched in red light sensors. We hypothesize that these sensors are critical for the acclimatization of N. flagelliforme to weak light environments at dawn.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yu-Jie Wang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chao Cheng
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jin-Long Shang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Ren-Han Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
4
|
Xu HF, Raanan H, Dai GZ, Oren N, Berkowicz S, Murik O, Kaplan A, Qiu BS. Reading and surviving the harsh conditions in desert biological soil crust: The cyanobacterial viewpoint. FEMS Microbiol Rev 2021; 45:6308820. [PMID: 34165541 DOI: 10.1093/femsre/fuab036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Biological soil crusts (BSCs) are found in drylands, cover ∼12% of the Earth's surface in arid and semi-arid lands and their destruction is considered an important promoter of desertification. These crusts are formed by the adhesion of soil particles to polysaccharides excreted mostly by filamentous cyanobacteria, which are the pioneers and main primary producers in BSCs. Desert BSCs survive in one of the harshest environments on Earth, and are exposed to daily fluctuations of extreme conditions. The cyanobacteria inhabiting these habitats must precisely read the changing conditions and predict, for example, the forthcoming desiccation. Moreover, they evolved a comprehensive regulation of multiple adaptation strategies to enhance their stress tolerance. Here we focus on what distinguishes cyanobacteria able to revive after dehydration from those that cannot. While important progress has been made in our understanding of physiological, biochemical and omics aspects, clarification of the sensing, signal transduction and responses enabling desiccation tolerance are just emerging. We plot the trajectory of current research and open questions ranging from general strategies and regulatory adaptations in the hydration/desiccation cycle, to recent advances in our understanding of photosynthetic adaptation. The acquired knowledge provides new insights to mitigate desertification and improve plant productivity under drought conditions.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Hagai Raanan
- Department of Plant Pathology and Weed Research, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 2, 8531100 Israel
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Nadav Oren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Simon Berkowicz
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel.,Interuniversity Institute for Marine Sciences in Eilat, P.O.B 469, Eilat, 8810302 Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| |
Collapse
|
5
|
Phytochrome Mediated Responses in Agrobacterium fabrum: Growth, Motility and Plant Infection. Curr Microbiol 2021; 78:2708-2719. [PMID: 34023916 PMCID: PMC8213605 DOI: 10.1007/s00284-021-02526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1− and agp2− knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2.
Collapse
|
6
|
Lamparter T, Xue P, Elkurdi A, Kaeser G, Sauthof L, Scheerer P, Krauß N. Phytochromes in Agrobacterium fabrum. FRONTIERS IN PLANT SCIENCE 2021; 12:642801. [PMID: 33995441 PMCID: PMC8117939 DOI: 10.3389/fpls.2021.642801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The focus of this review is on the phytochromes Agp1 and Agp2 of Agrobacterium fabrum. These are involved in regulation of conjugation, gene transfer into plants, and other effects. Since crystal structures of both phytochromes are known, the phytochrome system of A. fabrum provides a tool for following the entire signal transduction cascade starting from light induced conformational changes to protein interaction and the triggering of DNA transfer processes.
Collapse
Affiliation(s)
- Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Afaf Elkurdi
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Luisa Sauthof
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| |
Collapse
|
7
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
8
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
9
|
Yu Z, Ali A, Igbalajobi OA, Streng C, Leister K, Krauß N, Lamparter T, Fischer R. Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in
Aspergillus nidulans. Mol Microbiol 2019; 112:1814-1830. [DOI: 10.1111/mmi.14395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Zhenzhong Yu
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
- Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing 210095China
| | - Arin Ali
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Olumuyiwa Ayokunle Igbalajobi
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Christian Streng
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Kai Leister
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Norbert Krauß
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Tilman Lamparter
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| |
Collapse
|
10
|
Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol Ecol 2019; 28:2305-2320. [DOI: 10.1111/mec.15074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Nadav Oren
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences Rutgers University New Brunswick New Jersey
| | - Isaac Kedem
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Adi Turjeman
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Michal Bronstein
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
11
|
Xue P, El Kurdi A, Kohler A, Ma H, Kaeser G, Ali A, Fischer R, Krauß N, Lamparter T. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum. FEBS Lett 2019; 593:926-941. [PMID: 30941759 DOI: 10.1002/1873-3468.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022]
Abstract
During bacterial conjugation, plasmid DNA is transferred from cell to cell. In Agrobacterium fabrum, conjugation is regulated by the phytochrome photoreceptors Agp1 and Agp2. Both contribute equally to this regulation. Agp1 and Agp2 are histidine kinases, but, for Agp2, we found no autophosphorylation activity. A clear autophosphorylation signal, however, was obtained with mutants in which the phosphoaccepting Asp of the C-terminal response regulator domain is replaced. Thus, the Agp2 histidine kinase differs from the classical transphosphorylation pattern. We performed size exclusion, photoconversion, dark reversion, autophosphorylation, chromophore assembly kinetics and fluorescence resonance energy transfer measurements on mixed Agp1/Agp2 samples. These assays pointed to an interaction between both proteins. This could partially explain the coaction of both phytochromes in the cell.
Collapse
Affiliation(s)
- Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Afaf El Kurdi
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Anja Kohler
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Arin Ali
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | | |
Collapse
|
12
|
|
13
|
Hasegawa M, Fushimi K, Miyake K, Nakajima T, Oikawa Y, Enomoto G, Sato M, Ikeuchi M, Narikawa R. Molecular characterization of D XCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor. J Biol Chem 2017; 293:1713-1727. [PMID: 29229775 DOI: 10.1074/jbc.m117.816553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors that sense a wide range of wavelengths from ultraviolet to far-red. The primary photoreaction in these reactions is a Z/E isomerization of the double bond between rings C and D. After this isomerization, various color-tuning events establish distinct spectral properties of the CBCRs. Among the various CBCRs, the DXCF CBCR lineage is widely distributed among cyanobacteria. Because the DXCF CBCRs from the cyanobacterium Acaryochloris marina vary widely in sequence, we focused on these CBCRs in this study. We identified seven DXCF CBCRs in A. marina and analyzed them after isolation from Escherichia coli that produces phycocyanobilin, a main chromophore for the CBCRs. We found that six of these CBCRs covalently bound a chromophore and exhibited variable properties, including blue/green, blue/teal, green/teal, and blue/orange reversible photoconversions. Notably, one CBCR, AM1_1870g4, displayed unidirectional photoconversion in response to blue-light illumination, with a rapid dark reversion that was temperature-dependent. Furthermore, the photoconversion took place without Z/E isomerization. This observation indicated that AM1_1870g4 likely functions as a blue-light power sensor, whereas typical CBCRs reversibly sense two light qualities. We also found that AM1_1870g4 possesses a GDCF motif in which the Asp residue is swapped with the next Gly residue within the DXCF motif. Site-directed mutagenesis revealed that this swap is essential for the light power-sensing function of AM1_1870g4. This is the first report of a blue-light power sensor from the CBCR superfamily and of photoperception without Z/E isomerization among the bilin-based photoreceptors.
Collapse
Affiliation(s)
- Masumi Hasegawa
- From the Department of Biological Science, Faculty of Science, and
| | - Keiji Fushimi
- From the Department of Biological Science, Faculty of Science, and.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Keita Miyake
- From the Department of Biological Science, Faculty of Science, and
| | - Takahiro Nakajima
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Yuki Oikawa
- From the Department of Biological Science, Faculty of Science, and
| | - Gen Enomoto
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Moritoshi Sato
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Rei Narikawa
- From the Department of Biological Science, Faculty of Science, and .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529
| |
Collapse
|
14
|
Lamparter T, Krauß N, Scheerer P. Phytochromes from Agrobacterium fabrum. Photochem Photobiol 2017; 93:642-655. [DOI: 10.1111/php.12761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin; Institute of Medical Physics and Biophysics (CC2); Group Protein X-ray Crystallography and Signal Transduction; Berlin Germany
| |
Collapse
|
15
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
16
|
Bai Y, Rottwinkel G, Feng J, Liu Y, Lamparter T. Bacteriophytochromes control conjugation in Agrobacterium fabrum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:192-9. [PMID: 27261700 DOI: 10.1016/j.jphotobiol.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation.
Collapse
Affiliation(s)
- Yingnan Bai
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany; University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Gregor Rottwinkel
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany
| | - Juan Feng
- University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Yiyao Liu
- University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany.
| |
Collapse
|
17
|
Lorenzo CD, Sanchez-Lamas M, Antonietti MS, Cerdán PD. Emerging Hubs in Plant Light and Temperature Signaling. Photochem Photobiol 2015; 92:3-13. [DOI: 10.1111/php.12535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - Pablo D. Cerdán
- Fundación Instituto Leloir; IIBBA-CONICET; Buenos Aires Argentina
- Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|