2
|
Campillo N, Falcones B, Montserrat JM, Gozal D, Obeso A, Gallego-Martin T, Navajas D, Almendros I, Farré R. Frequency and magnitude of intermittent hypoxia modulate endothelial wound healing in a cell culture model of sleep apnea. J Appl Physiol (1985) 2017. [PMID: 28642292 DOI: 10.1152/japplphysiol.00077.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intermittent hypoxia (IH) has been implicated in the cardiovascular consequences of obstructive sleep apnea (OSA). However, the lack of suitable experimental systems has precluded assessment as to whether IH is detrimental, protective, or both for the endothelium. The aim of the work was to determine the effects of frequency and amplitude of IH oxygenation swings on aortic endothelial wound healing. Monolayers of human primary endothelial cells were wounded and subjected to constant oxygenation (1%, 4%, 13%, or 20% O2) or IH at different frequencies (0.6, 6, or 60 cycles/h) and magnitude ranges (13-4% O2 or 20-1% O2), using a novel well-controlled system, with wound healing being measured after 24 h. Cell monolayer repair was similar at 20% O2 and 13% O2, but was considerably increased (approximately twofold) in constant hypoxia at 4% O2 The magnitude and frequency of IH considerably modulated wound healing. Cycles ranging 13-4% O2 at the lowest frequency (0.6 cycles/h) accelerated endothelial wound healing by 102%. However, for IH exposures consisting of 20% to 1% O2 oscillations, wound closure was reduced compared with oscillation in the 13-4% range (by 74% and 44% at 6 cycles/h and 0.6 cycles/h, respectively). High-frequency IH patterns simulating severe OSA (60 cycles/h) did not significantly modify endothelial wound closure, regardless of the oxygenation cycle amplitude. In conclusion, the frequency and magnitude of hypoxia cycling in IH markedly alter wound healing responses and emerge as key factors determining how cells will respond in OSA.NEW & NOTEWORTHY Intermittent hypoxia (IH) induces cardiovascular consequences in obstructive sleep apnea (OSA) patients. However, the vast array of frequencies and severities of IH previously employed in OSA-related experimental studies has led to controversial results on the effects of IH. By employing an optimized IH experimental system here, we provide evidence that the frequency and magnitude of IH markedly alter human aortic endothelial wound healing, emerging as key factors determining how cells respond in OSA.
Collapse
Affiliation(s)
- Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Josep M Montserrat
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Sleep Lab, Hospital Clinic Barcelona, Barcelona, Spain
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Ana Obeso
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, El Instituto de Biología y Genética Molecular/Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Teresa Gallego-Martin
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, El Instituto de Biología y Genética Molecular/Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Institut de Bioenginyeria de Catalunya, Barcelona, Spain; and
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
3
|
Time-lapse imaging of p65 and IκBα translocation kinetics following Ca 2+-induced neuronal injury reveals biphasic translocation kinetics in surviving neurons. Mol Cell Neurosci 2017; 80:148-158. [PMID: 28238890 DOI: 10.1016/j.mcn.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) regulates neuronal differentiation, plasticity and survival. It is well established that excitatory neurotransmitters such as glutamate control NF-κB activity. Glutamate receptor overactivation is also involved in ischemic- and seizure-induced neuronal injury and neurodegeneration. However, little is known at the single cell-level how NF-κB signaling relates to neuronal survival during excitotoxic injury. We found that silencing of p65/NF-κB delayed N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in hippocampal neurons, suggesting a functional role of p65 in excitotoxicity. Time-lapse imaging of p65 and its inhibitor IκBα using GFP and Cerulean fusion proteins revealed specific patterns of excitotoxic NF-κB activation. Nuclear translocation of p65 began on average 8±3min following 15min of NMDA treatment and was observed in up to two thirds of hippocampal neurons. Nuclear translocation of IκBα preceded that of p65 suggesting independent translocation processes. In surviving neurons, the onset of p65 nuclear export correlated with mitochondrial membrane potential recovery. Dying neurons exhibited persistent nuclear accumulation of p65-eGFP until plasma membrane permeabilization. Our data demonstrate an important role for p65 activation kinetics in neuronal cell death decisions following excitotoxic injury.
Collapse
|
4
|
NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4148791. [PMID: 26770651 PMCID: PMC4685121 DOI: 10.1155/2016/4148791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022]
Abstract
NF-E2 related factor-2 (NRF2) is an essential transcription factor for multiple genes encoding antioxidants and detoxification enzymes. NRF2 is implicated in promoting cancer therapeutic resistance by its detoxification function and crosstalk with proproliferative pathways. However, the exact mechanism of this intricate connectivity between NRF2 and growth factor induced proliferative pathway remains elusive. Here, we have demonstrated that pharmacological activation of NRF2 by tert-butylhydroquinone (tBHQ) upregulates the HER family receptors, HER2 and HER3 expression, elevates pAKT levels, and enhances the proliferation of ovarian cancer cells. Preactivation of NRF2 also attenuates the combined growth inhibitory effects of HER2 targeting monoclonal antibodies, Pertuzumab and Trastuzumab. Further, tBHQ caused transcriptional induction of HER2 and HER3, while SiRNA-mediated knockdown of NRF2 prevented this and further caused transcriptional repression and enhanced cytotoxicity of the HER2 inhibitors. Hence, NRF2 regulates both HER2 and HER3 receptors to influence cellular responses to HER2 targeting monoclonal antibodies. This deciphered crosstalk mechanism reinforces the role of NRF2 in drug resistance and as a relevant anticancer target.
Collapse
|
5
|
Regulation of NF-κB Oscillation by Nuclear Transport: Mechanisms Determining the Persistency and Frequency of Oscillation. PLoS One 2015; 10:e0127633. [PMID: 26042739 PMCID: PMC4456371 DOI: 10.1371/journal.pone.0127633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
The activated transcription factor NF-κB shuttles between the cytoplasm and the nucleus resulting in the oscillation of nuclear NF-κB (NF-κBn). The oscillation pattern of NF-κBn is implicated in the regulation of gene expression profiles. Using computational models, we previously reported that spatial parameters, such as the diffusion coefficient, nuclear to cytoplasmic volume ratio, transport through the nuclear envelope, and the loci of translation of IκB protein, modified the oscillation pattern of NF-κBn. In a subsequent report, we elucidated the importance of the “reset” of NF-κBn (returning of NF-κB to the original level) and of a “reservoir” of IκB in the cytoplasm. When the diffusion coefficient of IκB was large, IκB stored at a distant location from the nucleus diffused back to the nucleus and “reset” NF-κBn. Herein, we report mechanisms that regulate the persistency and frequency of NF-κBn oscillation by nuclear transport. Among the four parameters of nuclear transport tested in our spatio-temporal computational model, the export of IκB mRNA from the nucleus regulated the persistency of oscillation. The import of IκB to the nucleus regulated the frequency of oscillation. The remaining two parameters, import and export of NF-κB to and from the nucleus, had virtually no effect on the persistency or frequency. Our analyses revealed that lesser export of IκB mRNA allowed NF-κBn to transcript greater amounts of IκB mRNA, which was retained in the nucleus, and was subsequently exported to the cytoplasm, where large amounts of IκB were synthesized to “reset” NF-κBn and drove the persistent oscillation. On the other hand, import of greater amounts of IκB led to an increase in the influx and the efflux of NF-κB to and from the nucleus, resulting in an increase in the oscillation frequency. Our study revealed the importance of nuclear transport in regulating the oscillation pattern of NF-κBn.
Collapse
|