1
|
Negeri AA, Mamo H, Gahlot DK, Gurung JM, Seyoum ET, Francis MS. Characterization of plasmids carrying bla CTX-M genes among extra-intestinal Escherichia coli clinical isolates in Ethiopia. Sci Rep 2023; 13:8595. [PMID: 37237011 DOI: 10.1038/s41598-023-35402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
CTX-Ms are encoded by blaCTX-M genes and are widely distributed extended-spectrum β-lactamases (ESBLs). They are the most important antimicrobial resistance (AMR) mechanism to β-lactam antibiotics in the Enterobacteriaceae. However, the role of transmissible AMR plasmids in the dissemination of blaCTX-M genes has scarcely been studied in Africa where the burden of AMR is high and rapidly spreading. In this study, AMR plasmid transmissibility, replicon types and addiction systems were analysed in CTX-M-producing Escherichia coli clinical isolates in Ethiopia with a goal to provide molecular insight into mechanisms underlying such high prevalence and rapid dissemination. Of 100 CTX-Ms-producing isolates obtained from urine (84), pus (10) and blood (6) from four geographically distinct healthcare settings, 75% carried transmissible plasmids encoding for CTX-Ms, with CTX-M-15 being predominant (n = 51). Single IncF plasmids with the combination of F-FIA-FIB (n = 17) carried the bulk of blaCTX-M-15 genes. In addition, IncF plasmids were associated with multiple addiction systems, ISEcp1 and various resistance phenotypes for non-cephalosporin antibiotics. Moreover, IncF plasmid carriage is associated with the international pandemic E. coli ST131 lineage. Furthermore, several CTX-M encoding plasmids were associated with serum survival of the strains, but less so with biofilm formation. Hence, both horizontal gene transfer and clonal expansion may contribute to the rapid and widespread distribution of blaCTX-M genes among E. coli populations in Ethiopian clinical settings. This information is relevant for local epidemiology and surveillance, but also for global understanding of the successful dissemination of AMR gene carrying plasmids.
Collapse
Affiliation(s)
- Abebe Aseffa Negeri
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dharmender K Gahlot
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Eyasu Tigabu Seyoum
- Global One Health Initiative of the Ohio State University, East African Regional Office, Addis Ababa, Ethiopia
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Álvarez-Lugo A, Becerra A. The Fate of Duplicated Enzymes in Prokaryotes: The Case of Isomerases. J Mol Evol 2023; 91:76-92. [PMID: 36580111 DOI: 10.1007/s00239-022-10085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
The isomerases are a unique enzymatic class of enzymes that carry out a great diversity of chemical reactions at the intramolecular level. This class comprises about 300 members, most of which are involved in carbohydrate and terpenoid/polyketide metabolism. Along with oxidoreductases and translocases, isomerases are one of the classes with the highest ratio of paralogous enzymes. Due to its relatively small number of members, it is plausible to explore it in greater detail to identify specific cases of gene duplication. Here, we present an analysis at the level of individual isomerases and identify different members that seem to be involved in duplication events in prokaryotes. As was suggested in a previous study, there is no homogeneous distribution of paralogs, but rather they accumulate into a few subcategories, some of which differ between Archaea and Bacteria. As expected, the metabolic processes with more paralogous isomerases have to do with carbohydrate metabolism but also with RNA modification (a particular case involving an rRNA-modifying isomerase is thoroughly discussed and analyzed in detail). Overall, our findings suggest that the most common fate for paralogous enzymes is the retention of the original enzymatic function, either associated with a dosage effect or with differential expression in response to changing environments, followed by subfunctionalization and, to a much lesser degree, neofunctionalization, which is consistent with what has been reported elsewhere.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, México.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
3
|
Eugenia Nuñez-Valdez M, Lanois A, Pagès S, Duvic B, Gaudriault S. Inhibition of Spodoptera frugiperda phenoloxidase activity by the products of the Xenorhabdus rhabduscin gene cluster. PLoS One 2019; 14:e0212809. [PMID: 30794697 PMCID: PMC6386379 DOI: 10.1371/journal.pone.0212809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
We evaluated the impact of bacterial rhabduscin synthesis on bacterial virulence and phenoloxidase inhibition in a Spodoptera model. We first showed that the rhabduscin cluster of the entomopathogenic bacterium Xenorhabdus nematophila was not necessary for virulence in the larvae of Spodoptera littoralis and Spodoptera frugiperda. Bacteria with mutations affecting the rhabduscin synthesis cluster (ΔisnAB and ΔGT mutants) were as virulent as the wild-type strain. We then developed an assay for measuring phenoloxidase activity in S. frugiperda and assessed the ability of bacterial culture supernatants to inhibit the insect phenoloxidase. Our findings confirm that the X. nematophila rhabduscin cluster is required for the inhibition of S. frugiperda phenoloxidase activity. The X. nematophila ΔisnAB mutant was unable to inhibit phenoloxidase, whereas ΔGT mutants displayed intermediate levels of phenoloxidase inhibition relative to the wild-type strain. The culture supernatants of Escherichia coli and of two entomopathogenic bacteria, Serratia entomophila and Xenorhabdus poinarii, were unable to inhibit S. frugiperda phenoloxidase activity. Heterologous expression of the X. nematophila rhabduscin cluster in these three strains was sufficient to restore inhibition. Interestingly, we observed pseudogenization of the X. poinarii rhabduscin gene cluster via the insertion of a 120 bp element into the isnA promoter. The inhibition of phenoloxidase activity by X. poinarii culture supernatants was restored by expression of the X. poinarii rhabduscin cluster under the control of an inducible Ptet promoter, consistent with recent pseudogenization. This study paves the way for advances in our understanding of the virulence of several entomopathogenic bacteria in non-model insects, such as the new invasive S. frugiperda species in Africa.
Collapse
Affiliation(s)
| | - Anne Lanois
- DGIMI, INRA, Université de Montpellier, Montpellier, France
| | - Sylvie Pagès
- DGIMI, INRA, Université de Montpellier, Montpellier, France
| | - Bernard Duvic
- DGIMI, INRA, Université de Montpellier, Montpellier, France
| | - Sophie Gaudriault
- DGIMI, INRA, Université de Montpellier, Montpellier, France
- * E-mail: (MENV); (SG)
| |
Collapse
|
4
|
Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene. Braz J Microbiol 2017; 49:320-328. [PMID: 29108975 PMCID: PMC5914203 DOI: 10.1016/j.bjm.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022] Open
Abstract
Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1 mg IMBs for Salmonella tended to be stable at the range of 70–74% corresponding to the concentrations between 101 and 104 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18 CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10 h, which is a promising rapid method to detect Salmonella in emergency.
Collapse
|
5
|
Payelleville A, Lanois A, Gislard M, Dubois E, Roche D, Cruveiller S, Givaudan A, Brillard J. DNA Adenine Methyltransferase (Dam) Overexpression Impairs Photorhabdus luminescens Motility and Virulence. Front Microbiol 2017; 8:1671. [PMID: 28919886 PMCID: PMC5585154 DOI: 10.3389/fmicb.2017.01671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Dam, the most described bacterial DNA-methyltransferase, is widespread in gamma-proteobacteria. Dam DNA methylation can play a role in various genes expression and is involved in pathogenicity of several bacterial species. The purpose of this study was to determine the role played by the dam ortholog identified in the entomopathogenic bacterium Photorhabdus luminescens. Complementation assays of an Escherichia coli dam mutant showed the restoration of the DNA methylation state of the parental strain. Overexpression of dam in P. luminescens did not impair growth ability in vitro. In contrast, compared to a control strain harboring an empty plasmid, a significant decrease in motility was observed in the dam-overexpressing strain. A transcriptome analysis revealed the differential expression of 208 genes between the two strains. In particular, the downregulation of flagellar genes was observed in the dam-overexpressing strain. In the closely related bacterium Xenorhabdus nematophila, dam overexpression also impaired motility. In addition, the dam-overexpressing P. luminescens strain showed a delayed virulence compared to that of the control strain after injection in larvae of the lepidopteran Spodoptera littoralis. These results reveal that Dam plays a major role during P. luminescens insect infection.
Collapse
Affiliation(s)
- Amaury Payelleville
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Anne Lanois
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Marie Gislard
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - David Roche
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Stéphane Cruveiller
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Alain Givaudan
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Julien Brillard
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| |
Collapse
|
6
|
Mouammine A, Pages S, Lanois A, Gaudriault S, Jubelin G, Bonabaud M, Cruveiller S, Dubois E, Roche D, Legrand L, Brillard J, Givaudan A. An antimicrobial peptide-resistant minor subpopulation of Photorhabdus luminescens is responsible for virulence. Sci Rep 2017; 7:43670. [PMID: 28252016 PMCID: PMC5333078 DOI: 10.1038/srep43670] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Some of the bacterial cells in isogenic populations behave differently from others. We describe here how a new type of phenotypic heterogeneity relating to resistance to cationic antimicrobial peptides (CAMPs) is determinant for the pathogenic infection process of the entomopathogenic bacterium Photorhabdus luminescens. We demonstrate that the resistant subpopulation, which accounts for only 0.5% of the wild-type population, causes septicemia in insects. Bacterial heterogeneity is driven by the PhoPQ two-component regulatory system and expression of pbgPE, an operon encoding proteins involved in lipopolysaccharide (LPS) modifications. We also report the characterization of a core regulon controlled by the DNA-binding PhoP protein, which governs virulence in P. luminescens. Comparative RNAseq analysis revealed an upregulation of marker genes for resistance, virulence and bacterial antagonism in the pre-existing resistant subpopulation, suggesting a greater ability to infect insect prey and to survive in cadavers. Finally, we suggest that the infection process of P. luminescens is based on a bet-hedging strategy to cope with the diverse environmental conditions experienced during the lifecycle.
Collapse
Affiliation(s)
| | - Sylvie Pages
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
| | - Anne Lanois
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
| | | | | | | | - Stéphane Cruveiller
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CEA, Genoscope &CNRS, Evry, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, c/o IGF, Montpellier, France
| | - David Roche
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CEA, Genoscope &CNRS, Evry, France
| | | | | | | |
Collapse
|
7
|
Mulley G, Beeton ML, Wilkinson P, Vlisidou I, Ockendon-Powell N, Hapeshi A, Tobias NJ, Nollmann FI, Bode HB, van den Elsen J, ffrench-Constant RH, Waterfield NR. From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity. PLoS One 2015; 10:e0144937. [PMID: 26681201 PMCID: PMC4683029 DOI: 10.1371/journal.pone.0144937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called “nutritional virulence” strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.
Collapse
Affiliation(s)
- Geraldine Mulley
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Michael L Beeton
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff, CF5 2YB, United Kingdom
| | - Paul Wilkinson
- Life Sciences Building, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Isabella Vlisidou
- Life Sciences Building, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Nina Ockendon-Powell
- Primary Care Unit, Microbiology Department, Public Health England, Gloucester Royal Hospital, Great Western Road, Gloucester, GL1 3NN, United Kingdom
| | - Alexia Hapeshi
- Division of Biomedical Sciences, Warwick Medical School, Medical School Building, The University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Nick J Tobias
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Friederike I Nollmann
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Helge B Bode
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Jean van den Elsen
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | - Nicholas R Waterfield
- Division of Biomedical Sciences, Warwick Medical School, Medical School Building, The University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|